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a b s t r a c t

Finite element analysis of kink band formation in wood is carried out using an anisotropic failure crite-
rion. The criterion is capable of describing the mixed mode I/mode II crack development observed in the
kinked region. The evolution of cracking is simulated with the help of the so-called smeared crack
approach. As for the finite rotation of the fibers in the kinked material, it is implemented in the finite ele-
ment code through a hypo-elastic law characterized by an objective derivate using the rotation of the
fibers. This formulation enables to follow strictly the matter under finite strain; which means that the
evolution of the orthotropic directions is correctly described.

Numerical results, such as the predicted load carrying capacity of wood under compression and its
post-cracking behavior, prove to have a good agreement with the experimental observations. Further,
the applicability of softening orthotropic plasticity under finite strain conditions for simulating compres-
sive failure modes in wood is established.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Failure by kinking in wood has many similarities with kink
banding in fiber reinforced composites. In the case of uniaxial com-
posites, it was found that the compressive peak strength is gov-
erned both by local imperfections causing small misalignments
of fibers and by plastic yielding in the matrix (Budiansky, 1983;
Budiansky and Fleck, 1993; Moran et al., 1995; Kyriakides et al.,
1995; Daniel et al., 1996). It has also been established that the
transverse dilatancy of the material is a key factor that fixes the
kink band orientation in fibrous materials (Budiansky et al.,
1998; Christensen, 2000; Vogler et al., 2001) and in layered struc-
tures (Wadee et al., 2004). These are mainly the same parameters
that account for the observed compressive strength and kink band
inclination in wood species under compression (Poulsen et al.,
1997; Da Silva and Kyriakides, 2007; Benabou, 2008, 2010). Addi-
tionally, it is worth mentioning the developments of Jensen and
Christoffersen (1997) and Jensen (1999) who propose a kink band
formation model for fiber composites based on the J2-deformation
theory and make additional in-depth studies on band broadening.
Also, recent finite element simulations have been carried out to
describe the failure of fiber composites by kinking (Sorensen
et al., 2009; Veluri and Jensen, 2010).

Although wood species, under compression parallel to grain,
exhibit deformation characterized by well-defined bands of bent
fibers in the same way as fiber composites, their microstructure
is much more complex. On the microlevel, wood can be regarded
ll rights reserved.
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as an orthotropic body with three axes of orthotropy denoted L,
R and T (Fig. 1a). The longitudinal direction L is parallel to the cen-
tral axis of the tree and is the direction along which the most abun-
dant type of cells found in wood are oriented. These cells,
presenting tubelike structures and being the major structural
elements of most species, are referred to as fibers for the sake of
simplicity. The radial direction R and the tangential direction T
are oriented respectively along the normal and the tangent to the
growth rings of wood. Fiber misalignments observed in wood are
essentially due to the so-called ray cells much smaller in size than
the longitudinal fibers and located in the plane perpendicular to
the trunk (along the radial direction R of wood) as schematized
in Fig. 1b. In comparison with manufactured composites where
defects cause quite small fiber misalignments (between 1� and
5�), wood rays introduce large local misalignments, with measured
values of 27.7� for beech and 15.6� for spruce, for example.

Poulsen et al. (1997) were the first to carry out an exhaustive
study of the compressive behavior of clear wood in relation with
kink band formation. The overall stress–strain response of wood
helped identify three distinct stages of kinking in that material:
incipient kinking, transient kinking and steady-state kinking
(Fig. 2). During the first stage, kinking initiates near ray cells scat-
tered throughout the material. It remains localized in regions
where highly misaligned fibers are under plastic shearing and
buckling. The second stage takes place when the stress drops from
its peak level to a steady state. During this process, the small
regions of incipient kinking grow and coalesce to form a single
dominant band across the specimen. Within the band, the fibers
are subjected to both compression and large rotation until the
lock-up angle is attained and prevents this mode of deformation

http://dx.doi.org/10.1016/j.ijsolstr.2011.09.024
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Fig. 1. (a) Material orientation in wood. (b) Distortion of longitudinal fibers around the ray cells.

Fig. 2. Schematic diagram of a stress–strain crushing response of wood specimen
with the various stages of kinking.
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due to volumetric constraints. The last stage occurs under constant
applied stress, also called steady state stress. During this regime,
the band broadens laterally into the surrounding material. The
straight fibers just outside the band are indeed rotated and axially
compressed resulting in the observed broadening of the band. In
the case of beech and spruce species studied in Benabou (2008),
post-test examinations of the failure surface of specimens confirm
that large rotation of the fibers occurs within the kink band, as well
as some axial deformation that causes buckling of the fibers
(Fig. 3a and b). From these observations with microscopy, it is also
revealed that micro-cracks are present in the kink band. The inter-
fiber failure is the result of the combined effect of shear deforma-
tion and transverse tension prevailing in the band. Under these
Fig. 3. Post-test observations with microscopy of ki
modes of deformation, wood exhibits a quasi-brittle behavior, i.e.
there is a size effect and, at the kink band micro-scale, the true
stress–strain curves are characterized by a softening branch after
the peak stress (Yamasaki and Sasaki, 2004; Miyauchi and Murata,
2007; Benabou, 2010).

The objective of this paper is to simulate numerically the kink
band formation in wood based on a smeared-out plane constitutive
model. In Section 2, an anisotropic stress-based criterion (Weihe
et al., 1998) is specialized for the fracture process observed in
the kinked region and all variables relevant for the initiation and
evolution of the wood degradation are described. The smeared fic-
titious crack approach is used with the criterion to formulate the
micro-cracking process. It is shown how this approach makes it
possible to use the well established concepts of classical plasticity
to treat the kinking failure. In Section 3, the algorithmic implemen-
tation of the constitutive model is presented first in the framework
of conventional infinitesimal plasticity according to the standard
predictor–corrector algorithm and the Newton–Raphson iteration
scheme. In Section 4, an extension to finite strain is then made in
order to treat large rotation conditions in the kinked material.
The formulation makes use of the rotated frame defined by the fi-
ber direction so that the evolution of the directions of orthotropy is
strictly described during the kinking process. This approach, quite
novel in the treatment of large deformation for wood, is imple-
mented as a user subroutine in the finite element code ABAQUS.
Details of the computational steps to process finite rotation at a
material point are given at the end of the section. In Section 5,
the paper concludes with numerical simulations of kink band
formation in beech and spruce species. The model does include a
global imperfection based on the measured values of fiber misa-
lignments in wood and the outputs are compared with the results
of a previous experimental study carried out by the author.
nk bands in LT-plane: (a) beech and (b) spruce.
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2. Anisotropic failure criterion

2.1. Initiation of failure

The failure mode observed in combined transverse/shear load-
ing of wood is characterized by cracking parallel to grain and
mixed mode I/mode II crack development. In order to describe this
mode of failure observed in the kinked region, where mixed mode
of shear/transverse deformation occurs, the criterion of Weihe
et al. (1998) will be used here. Initially developed for materials like
soil, this criterion was successfully applied to the modeling of
anisotropic failure in spruce wood by Lucena-Simon et al. (2000)
and serves also as basis in Mackenzie-Helnwein et al. (2003) to
describe failure of wood under mixed mode of radial tension and
shear. Under plane stress or plane strain conditions, the criterion
(Fig. 4) is given in terms of stress components on the considered
failure plane, i.e. the stresses rT and sLT:

f ðr;qÞ ¼ �ðrT � qn � aÞ2 þ s2
LT

tan2 u
þ a2 ð1Þ

where qn is the current tensile strength in the T-direction (perpen-
dicular to the crack), a is a stress type parameter which is uniquely
related to the current shear strength qt (parallel to the crack),

a ¼ 1
2

qn
ðqt=qnÞ

2

tan2 u
� 1

 !
P 0 ð2Þ

and tanu is the friction coefficient of the surface of a fully devel-
oped crack. These parameters define a hyperbolic yield function.
Micro-cracking is initiated when f = 0; which characterizes the ulti-
mate load that the material can withstand without further degrada-
tion. Before crack initiation, the failure criterion obeys the material
parameters of the undamaged material, qn0 and qt0. For the angle of
residual friction, a value of 25�, found in Mackenzie-Helnwein et al.
(2003), will be taken for both species. As the crack develops, there is
a change in the location and the shape of the failure criterion, as it
will be described more precisely in the following sub-sections. Pure
mode I failure causes total loss of tensile strength but leaves a
rougher interface than mode II failure, as can be seen on the com-
pressive side of Fig. 4.

2.2. Smeared crack approach

To preserve the continuity of the displacement field in the finite
element solution, a discrete crack is homogenized and simulated
by plastic strains distributed over a finite area. This approach,
based on the so-called smeared crack concept, consists in consider-
ing the crack behavior in terms of stress–strain relationships. In
Fig. 4. Micromechanical description of mixed mode failure observed in the kinked
material.
this context, Oliver (1989) proposed to define the actual crack band
width by a material parameter, referred to as characteristic length
‘c . Thus, the degradation of the material can be modeled by inelas-
tic deformations following the concepts of classical elasto-plastic-
ity (Weihe et al., 1998; Ohmenhäuser et al., 1999). The inelastic
strain-like parameters ep, interpreted as equivalent plastic strains,
are formulated according to a ‘‘flow’’ rule:

_ep ¼ _ucr=‘c ¼ _km; m ¼ A � @f
@r

ð3Þ

where ucr ¼ ½ucr
n ; u

cr
t � is the crack opening/sliding which is directly

related to the flow _km, with _k being the consistency parameter.
The associated Kuhn–Tucker conditions read:

f 6 0; _k P 0; _kf ¼ 0 ð4Þ

The transformation matrix A is used to provide for a pressure
dependent dilatation:

A ¼
g 0
0 1

� �
; g ¼ gc exp �gp

qt;r

qn0

� �
ð5Þ

The parameter gp realizes a decreasing dilatation with increasing
normal compressive stress on the crack and thus, the dilatation is
asymptotically suppressed under high confining stresses. A con-
stant reduction of the dilatation, activated for compressive as well
as for tensile normal stress on the crack, can be provided by
gc < 1. As for the parameter qt,r, it represents the residual shear
strength.

2.3. Crack evolution

In analogy to fracture mechanics, the softening behavior, result-
ing from the development of the crack, is governed by the fracture
toughnesses (energy release rates) GI

f and GII
f , for modes I and mode

II respectively. With respect to the associated failure mode, the
fracture toughness is understood as the energy which is dissipated
from initiation of failure to complete separation. Assuring that the
energy dissipated due to friction is excluded, this transforms into:

GI
f ¼

Z 1

ucr
n ¼0

rT ducr
n j sLT¼0

ducr
n >0

GII
f ¼

Z 1

ucr
t ¼0
ðjsLT j � qt;rÞjducr

t jjrT¼0

ð6Þ

Two normalized internal state variables, expressed with respect to
the inelastic strains rather than the crack opening displacements,
are introduced to describe the dissipated energy for each failure
mode:

_nI ¼ ‘c

GI
f

rTh _ep
Ti ¼

‘c

GI
f

rThmni _k

_nII ¼ ‘c

GII
f

ðjsLT j � qt;rÞj _c
p
LT j ¼

2‘c

GII
f

ðjsLT j � qt;rÞjmtj _k
ð7Þ

where hxi = (x + |x|)/2. The residual shear strength is also taken into
account through:

qt;r ¼ h�rT tan ui ð8Þ

ensuring that the energy under mode II which is dissipated due to
friction is excluded. The post-failure behavior of wood is then
described with the evolution laws of the strength values:

qn ¼ ð1� jnÞqn0; jn ¼minð1; nI þ nIIÞ
a ¼ ð1� jaÞa0; ja ¼ nII

ð9Þ

The failure in mode I leads to a complete decohesion by reducing the
tensile strength qn to zero. However, degradation under this mode
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does not affect the roughness of the surface and thus, the asperity
parameter remains constant. The failure in mode II decreases the
tensile strength and grinds off the asperities as well. Therefore, shear
failure affects both the tensile strength qn and the asperity parame-
ter a. The strength degradation, which could be obtained by integrat-
ing Eq. (7), can be shown to follow an exponential decay with respect
to the corresponding crack opening/sliding.

2.4. Localization limiter and characteristic length

Within the local approach of softening cracking, the material
behavior usually localizes and the mesh size may have an influence
on the numerical results. By using the localization band width ‘c

proportional to the size of the finite elements, an energetically con-
sistent framework is established. The fracture toughnesses are
substituted by element specific values GI

f =‘c and GII
f =‘c and thus,

the description parameters relevant to degradation are the plastic
strains rather than the crack opening displacements, as written in
Eq. (7). Therefore, in the simulation of structural degradation pro-
cesses, the same amount of dissipated energy is computed inde-
pendent of the element size, alleviating the mesh dependency of
the results. Also, uniaxial investigations of wood behavior in Mac-
kenzie-Helnwein et al. (2003) show that the characteristic length
must not exceed an upper limit so that the behavior of the model
remains physically relevant. Considering uniaxial tension in T-
direction, as is the case within the kinked region, yields to the fol-
lowing constraint:

‘c < ‘c;critical ¼
ET GI

f

q2
n0

ð10Þ

The band width ‘c may be the length of a finite element perpendic-
ular to the crack direction and so, Eq. (10) states that if the element
size exceeds ‘c;critical, instant loss of stiffness may be observed.

3. Numerical implementation for infinitesimal plasticity

3.1. Integration of equilibrium equations

The finite element discretization of the momentum balance
equation for the system is carried out based on the dynamic expli-
cit approach. The nonlinear equation can be expressed as follows:

M � €uþ F int ¼ Fext ð11Þ

where M is the mass matrix, Fint and Fext are the vectors of the inter-
nal and external forces, respectively. The integration of the equation
is made using the central difference time integration scheme, avail-
able in ABAQUS/Explicit. The acceleration term at time tn is
obtained with Eq. (11):

€un ¼M�1 � ðFext
n � F int

n Þ ð12Þ

From this relation, the mid-step velocity term, for time tn+1/2, can be
defined as follows:

_unþ1=2 ¼ _un�1=2 þ
Dtn þ Dtnþ1

2
€un ð13Þ

with Dtn+1 the time increment between tn and tn+1, and Dtn being
defined similarly. Finally, the displacement term is calculated at
time tn+1 according to the formula:

unþ1 ¼ un þ Dtnþ1 _unþ1=2 ð14Þ

Based on the element-by-element estimate, the stability condition
for the time increment can be expressed with respect to the charac-
teristic element length ‘c and the wave speed of the material
cd ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
:

Dt 6
‘c

cd
ð15Þ
3.2. The implicit elastic predictor/return-mapping scheme

The numerical implementation of the proposed constitutive
model within the infinitesimal plasticity framework is based on
the return mapping algorithm as generalized by Simo and Hughes
(1998). Some details are also found in Mackenzie-Helnwein et al.
(2003, 2005) for a more general orthotropic elastoplastic model ap-
plied to wood. The Fortran user subroutine in ABAQUS/Explicit,
called VUMAT, is used to implement the plasticity constitutive
equations. All quantities are known at time tn (initial conditions)
and they are to be determined at time tn+1, with the exception of
the total strain en+1 which is assumed to be known from the current
solution for the global displacement field. The backward (or fully
implicit) Euler scheme is adopted to integrate the plastic flow rule
(Eq. (3)), the evolution equations for the softening parameters (Eq.
(7)), and the Kuhn–Tucker conditions (Eq. (4)). The prescribed
incremental strain being Den+1 = en+1 � en for the current step, the
following discretised system has to be solved:

Dee
nþ1 ¼ Denþ1 � Dknþ1mnþ1

Dnnþ1 ¼ Dknþ1Knþ1
ð16Þ

for the unknowns Dee
nþ1; Dnnþ1, and Dkn+1 subjected to the

constraints:

f ðrnþ1;qnþ1Þ 6 0; Dknþ1 P 0; Dknþ1f ðrnþ1;qnþ1Þ ¼ 0 ð17Þ

In Eq. (16), mnþ1 ¼ A@rf ðrnþ1;qnþ1Þ is the plastic flow direction of
the surface and Kn+1 are factors derived from the relationships in
Eq. (7). The softening rules, giving the evolution of n ¼ bnI; nIIc,
directly involve the stresses at t = tn+1 and are solved according to
an implicit scheme in this study, making a difference with the expli-
cit scheme used in Mackenzie-Helnwein et al. (2003). At the end of
the time step, the computation of the other variables is eventually
made using the elastic stress–strain relationship and the evolution
laws for the strength functions:

rnþ1 ¼ rn þ C : Dee
nþ1

qn;nþ1 ¼ ð1� jn;nþ1Þqn0; anþ1 ¼ ð1� ja;nþ1Þa0
ð18Þ

The sets of equations are solved following a two-step algorithm
(Fig. 5):
� The Elastic Trial Step is defined by the previous equations with

Dkn+1 = 0. If f ðrnþ1;qnþ1Þ 6 0, the solution is assumed purely
elastic and the unknowns at the end of the step are given by:
Deetrial
nþ1 ¼ Denþ1

Dntrial
nþ1 ¼ 0

ð19Þ
� The Plastic Corrector Step is required when f ðrnþ1;qnþ1Þ > 0. The
unknowns Dee

nþ1; Dnnþ1 and Dknþ1 are obtained by solving the
system given in Eq. (20) according to the standard iterative pro-
cedure of Newton–Raphson:
rnþ1 ¼
Dee

nþ1 � Dee trial
nþ1 þ Dknþ1mnþ1

Dnnþ1 � Dknþ1Knþ1

f ðrnþ1;qnþ1Þ

8><
>:

9>=
>; ¼

0
0
0

8><
>:

9>=
>; ð20Þ
The gradients of the residual rn+1 have to be computed with respect
to the unknowns xnþ1 ¼ fDee

nþ1Dnnþ1Dknþ1gT so that a correction for
the known approximation of the solution at the iteration k may be
obtained following the procedure in Eq. (21). This iterative proce-
dure is repeated until the condition in Eq. (20) is verified with a
satisfactory tolerance. The dot product represents the appropriate
multiplication operator for the involved scalars, vectors and
tensors.



Fig. 5. General return mapping scheme for plasticity.
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rðkÞnþ1 þ @xrðkÞnþ1 � dxðkþ1Þ ¼ 0) dxðkþ1Þ ¼ �ð@xrðkÞnþ1Þ
�1 � rðkÞnþ1

xðkþ1Þ
nþ1 ¼ xðkÞnþ1 þ dxðkþ1Þ

ð21Þ
Fig. 6. Green–Naghdi frame rotated by the rotation R and fiber frame rotated by the
rotation K.
4. Extension to finite strain elastoplasticity

4.1. Large deformation analysis of fibrous materials

The material in the kinked region undergoes large shear angles
causing material nonlinearities. In addition, the rigid body rotation
part of the motion, which is significant in kinking failure, plays also
a crucial role in the nonlinear behavior. Thus, it is necessary to for-
mulate the elastoplastic model under large deformation condi-
tions. In this context, rate constitutive equations (or hypo-elastic
laws) are widely used (Belytschko et al., 2000) and an objective
stress rate is employed to ensure the frame indifference of the con-
stitutive response of the material. Classically, co-rotational stress
rates, such as the Green–Naghdi or the Jaumann objective deri-
vates, are used because they allow to remove that part of the total
stress rate due to simple rigid rotation of the material. However,
these derivates use rotations that are mean values of the material
rotations and are well adapted for finite strain calculations of iso-
tropic media like metals. In the case of fibrous media, such as
wood, the fiber orientation does not follow the orientation of the
frames associated to the previously mentioned objective derivates.
To take into account this particular point for wood, we use a meth-
od derived from studies in the field of woven materials. One of the
most frequently used approach for these materials consists in per-
forming the calculations in the rotated frame (Green–Naghdi or
Jaumann frame) with the quantities necessary for the incremental
computation obtained, by a change of base, from their specific form
in the fiber frame (Dong et al., 2001; Peng and Cao, 2005). The
alternative approach, which has been proven to be preferable
(Badel et al., 2008), consists in using another objective derivate
defined from the fiber rotation (Hagege et al., 2005; Boisse et al.,
2005). In the present work, the second approach is chosen to
describe wood behavior under large deformation and is extended
to account for the plasticity formulation developed in Section 3.

4.2. Formulation of the hypo-elastic law accounting for fiber rotation

First, the basic elements of the rate-based model, which are
analogous to those of the infinitesimal theory, are presented.
Working in the spatial configuration and assuming that the elastic
strains are small compared to the plastic strains, the following
decomposition of the rate of deformation D, generally used in the
implementation of finite plasticity models into finite element
codes, is used:

D ¼ De þ Dp ð22Þ

where De and Dp are the elastic and plastic parts, respectively. The
hypo-elastic relation, coupling the objective stress rate with the
rate of elastic deformation, is given by:

rr ¼ C : ðD� DpÞ ð23Þ

In Eq. (23), C is the elastic stiffness tensor, and rr is the objective
stress rate of the Cauchy stress. The specificity of this objective rate
lies in the use of a rotation tensor based on the fiber rotation K

(Boisse et al., 2005; Badel et al., 2008) and its definition is given by:

rr ¼ K � d
dt
ðKT � r � KÞ

� �
� KT ¼ _r�X � rþ r �X ð24Þ

in which X ¼ _K � KT is the skew symmetric tensor. When working
with FEM, the initial orientation ff 0

i g of the orthotropic axes of
the material has to be defined relative to the global axes {gi} and
this can be expressed with the help of the rotation O:

f 0
i ¼ O � gi ð25Þ

Then, the material rotation K is used to update the initial constitu-
tive axes ff 0

i g to the current constitutive axes {fi} (Fig. 6):

f i ¼ K � f 0
i ð26Þ

Whereas the current Green–Naghdi axes {ei} are updated with Eq.
(27) using the initial orientation of these axes fe0

i g and the rotation
tensor R obtained from the polar decomposition of the deformation
gradient tensor F. The directions ff 0

i g and fe0
i g are assumed to coin-

cide initially.

ei ¼ R � e0
i ð27Þ

The material rotation K in Eq. (26) is obtained using the procedure
given by Crisfield (1997) for large rotations of three-dimensional
beams. The developments, made in the context of our study, are
detailed in Appendix A. Based on these results, the relations in Eq.
(28) give explicitly the constitutive axes {fi} as functions of the ini-
tial constitutive axes ff0

i g and the deformation gradient F:
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f 1 ¼
F � f 0

1

kF � f 0
1k

f 2 ¼ f 0
2 �

b2

1þ b1
ðf 0

1 þ f 1Þ

f 3 ¼ f 0
3 �

b3

1þ b1
ðf 0

1 þ f 1Þ

ð28Þ

with bk ¼ f 1 � f 0
k and bk – 1. In that formulation, the fiber direction

of wood, and so the strong anisotropic direction, remains aligned
with the first material direction f1. For a two-dimensional rotation
in the 1–2 plane, as is the case with kinking in wood occurring in
the LT-plane, f 3 ¼ f 0

3 ¼ g3. As for the constitutive behavior, it is
fully defined at each time with the help of the initial elastic stiffness
tensor C0. The constitutive tensor C0 is computed from the tradi-
tional engineer’s constants and has the specific form for fibrous
materials. In our application, the elastic behavior of wood remains
orthotropic during kink banding and is therefore assumed constant
when expressed in the fiber frame.

C0 ¼ C0
ijklf

0
i � f 0

j � f 0
k � f 0

l and C ¼ C0
ijklf i � f j � f k � f l

ð29Þ

Let us denote now H the rotation between the Green–Naghdi frame
{ei}, used by ABAQUS, and the material frame {fi}:

H ¼ Hijei � ej ¼ ðei �H � ejÞei � ej ¼ ðei � f jÞei � ej ð30Þ

With the definition of this rotation, it becomes possible to trans-
form the strain increments from the Green–Naghdi basis (the work
basis of ABAQUS) to the current fiber basis at each time. Then, the
update of the stresses is made in the fiber frame and these stresses
are expressed back in the Green–Naghdi frame. The details of the
stress computation algorithm are given in the following section.

4.3. Stress computation algorithm for finite rotation in wood

To distinguish between the various works bases used in the
computations, the tensors expressed in the material frame are de-
noted by an overbar and those expressed in the Green–Naghdi
frame by a hat. In our approach, the stresses are updated in the
material frame {fi} and then returned, with a change of base, in
the code’s work frame of ABAQUS which is the Green-Naghdi frame
{ei}. Also, it is essential to use an integration algorithm to trans-
form the original time-continuum constitutive equation into an
Fig. 7. Green–Naghdi and fiber rotated f
incremental law satisfying incremental objectivity. This is done
by adopting the generalized midpoint rule, related to the Hu-
gues–Winget algorithm (Hughes and Winget, 1980), in which
deformation rates are evaluated on the intermediate configuration
at time tn+1/2. Following this scheme, the stress increments are
accumulated in the fiber frame:

�rnþ1 ¼ �rn þ �Cnþ1=2 : D�ee
nþ1=2 with D�ee

nþ12 ¼ Dt �De
nþ1=2 ð31Þ

In Eq. (31), the elastic stiffness tensor expressed in the fiber frame
can be assumed constant as explained before and the stresses �rn

were calculated during the previous step. Only the term D�ee
nþ1=2

has to be calculated to compute the stresses at time tn+1. However,
the prescribed strain increment is provided by the code in the
Green–Naghdi frame, i.e. Dênþ1=2, and thus, a change of base must
be performed between {ei,n+1/2} and {fi,n+1/2}, requiring to compute
the rotation Hn+1/2. For the sake of simplicity, it is assumed that
the time increments are sufficiently small so that the approxima-
tion Hn+1/2 �Hn+1 may be done. The different frames and the rota-
tions needed to obtain these frames are represented at different
time increments in Fig. 7. The following procedure describes the
computational process performed at each material (Gauss) point
during the loading:
� At the beginning of the time step Dtn+1, the code provides the

deformation gradient Fn+1, the right stretch tensor Un+1 and
the prescribed incremental strains Dênþ1=2 in the Green–Naghdi
basis.
� Compute the polar rotation tensor using the polar decomposi-

tion of the deformation gradient: Rnþ1 ¼ Fnþ1 � U�1
nþ1 .

� Compute the current Green–Naghdi basis {ei,n+1} using Eq. (27).
� Compute the current material basis {fi,n+1} using Eq. (28).
� Compute the rotation Hn+1 using Eq. (30).
� Compute the prescribed strain increment in the material frame

from the code’s strain increment: D�enþ1=2 ¼ HT
nþ1 � Dênþ1=2 �Hnþ1.

� The term D�enþ1=2 defines the material strain increment for
use in the conventional small-strain plasticity formulation
presented in Section 3. Invoke the elastic predictor/return map-
ping algorithm, with Eqs. (19)–(21), to calculate the elastic
strain increment D�ee

nþ1=2 and the state variables in the material
frame.
� Compute the material stress tensor �rnþ1 using Eq. (31).
� Return the material stress tensor in the work code basis:

r̂nþ1 ¼ Hnþ1 � �rnþ1 �HT
nþ1.
rames at different time increments.
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5. Numerical simulations

5.1. The model parameters

In this section, all the needed parameters for the simulation of
kink band formation in wood are presented relatively to the two
tested species, beech and spruce wood. Under plane strain condi-
tions, the marked elastic orthotropy of wood species is expressed
by the following stress-elastic strain relation referred to the fiber
frame:

eL ¼ S11rL þ S12rT

eT ¼ S21rL þ S22rT

cLT ¼ S66sLT

ð32Þ

Wood will be assumed to be transversely isotropic, i.e. isotropic in
the RT-plane, since its behavior in radial and tangential directions is
rather similar. Then, the compliances Sij in terms of familiar engi-
neering material parameters are:

S11 ¼ 1� mLTmTLð Þ=EL; S22 ¼ ð1� m2
RTÞ=ET ;

S12 ¼ S21 ¼ �ðmTL þ mTLmRTÞ=ET ; S66 ¼ 1=GLT
ð33Þ

The inversion of the system (32) gives the elastic stiffness tensor.
The values of the elastic constants, as well as the strengths and
the fracture toughnesses, given in Table 1 are used in the simula-
tions. The value of the coefficient mTL is determined by the relation
mTL = mLTET/EL.

The blocks of wood, used for the simulations, have a height of
20 mm and a cross section of 10 mm � 10 mm with the fiber direc-
tion outside the kink band coinciding with the global g1-axis. Since
a dynamic explicit approach is used, the densities of the blocks are
taken equal to 680 kg/m3 for beech and 400 kg/m3 for spruce. Four-
node plane strain elements with reduced integration are used for
the sample discretization. Two different meshes are used for each
species to assess the sensitivity of the results to mesh refinement:
a 64 � 38 mesh and a 102 � 51 mesh. Examples of meshes,
Table 1
Material parameters.

Elastic
constants

Longitudinal Young modulus,
EL (MPa)

Transverse Young modulus, ET

(MPa)
S
(

Beech 14,000 1160 1
Spruce 11,000 490 7
Failure

parameters
Tensile strength, qn0 (MPa) Shear strength, qt0 (MPa) F

u
(

Beech 27.5 24.6 0
Spruce 12.4 13.1 0

Fig. 8. F.E. meshes with 64 � 38 elem
involving a total of 64 � 38 elements and containing a global
imperfection at the center, are given in Fig. 8a and b, for beech
and spruce respectively. The models are loaded in longitudinal
compression with displacement control by prescribing a velocity
of 10 mm/min on the right surface while the left surface remains
fixed. In order to ensure quasi-static conditions, the loading is slow
enough to eliminate any significant inertia effects. For problems
involving brittle failure, this is especially important since the sud-
den drop in load-carrying capacity, that normally accompanies
brittle behavior, leads to increases in the kinematic content of
the response. Furthermore, it is known that applying the explicit
dynamic procedure to quasi-static problems requires some special
considerations because it is often computationally impractical to
analyze the problem in its natural time scale. It would indeed re-
quire an excessive number of small time increments. To obtain
an economical solution, the technique of mass scaling has been
implemented in our models. Like this, the simulation is accelerated
in some way, while keeping the inertial forces insignificant.
According to Eq. (15), artificially increasing the material density
q by a factor f2 increases the stable time increment by a factor f.
Nevertheless, moderate values of mass scaling have been used in
the simulations to ensure that correct solutions are found.

As a first approach to model the initial imperfection present in
the material and trigger kink band development, the fibers are gi-
ven the homogeneous inclination in the form of a sinusoidal wav-
iness of the fibers along the g1-direction (Fig. 9). Referred to as
global imperfection, the inclination is included according to the
expression:

vg ¼ a sin
p cos b

b
ðx1 þ x2 tan bÞ

� �
þ 1

� �
ð34Þ

with amplitude a = btan/0/pcosb and (x1,x2) being the global coor-
dinates. The geometric parameters of the kink band (initial fiber
misalignment /0, band inclination b, band width b) are listed in
Table 2. In this first approach, we assume that a long band of mis-
aligned fibers exists in the initial, unstressed state.
hear modulus, GLT

MPa)
Poisson’s ratio, vLT Poisson’s ratio,

mRT

038 0.52 0.71
40 0.40 0.55
racture toughness

nder Mode I GI
f

N mm�1)

Fracture toughness under Mode II, GII
f

(N mm�1)

.73 1.79

.23 0.68

ents: (a) beech and (b) spruce.



Fig. 9. Schematics and definition of the kink band geometric parameters.

Table 2
Geometric parameters of the kink band.

Characteristics of
the kink band

Fiber
misalignment
/0 (�)

Kink band
orientation, b (�)

Kink band
width, b (mm)

Beech 27.7 30.8 1.6
Spruce 15.6 21.6 0.7

Table 3
Peak stresses obtained from axial compression tests.

Compressive strength Peak stress, rc (MPa)

Beech 51.3 ± 3.2
Spruce 47.4 ± 2.4
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5.2. Load type parameter

In order to characterize clearly the type of loading at a point and
for the clarity of the subsequent discussions, the following dimen-
sionless triaxiality factor T.F. will be used:

T:F: ¼ 3rH

req
¼ rTffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
T þ 3s2

LT

q ð35Þ

with the hydrostatic stress rH and the Von Mises stress req. In this
formula, the longitudinal stress rL along the fiber direction is inten-
tionally not taken into account. It is indeed of limited interest as it is
not involved in the failure criterion. Moreover, by considering only
the stress components relevant for the degradation process of the
material, the parameter T.F. is able to give a precise indication of
the failure mode characterizing kink banding: mode I and/or mode
II crack development. The following specific states can thus be iden-
tified in the context of kink band loading:

T.F. = �1 uniaxial compression (rT < 0).
T.F. = 0 pure shear (mode II crack development).
T.F. = +1 uniaxial tension (mode I crack development).
Fig. 10. Axial stress-end displacement response of the 2-D mo
5.3. Results

Fig. 10a and b show the material response under compression of
the beech and spruce species, respectively. During the compressive
deformation, the fiber inclination will increase, resulting in a lower
overall stiffness of the material. A localized deformation state is
found in the rectangular blocks, indicating a maximum load carry-
ing capacity of approximately 63.1 MPa and 55.3 MPa for beech
and spruce, respectively. Although the predictions for the limit
load seem to be higher than the corresponding experimental val-
ues given in Table 3, they remain relatively in good agreement with
the measurements. The implementation of the model does include
a material length scale, and consequently the solutions show low
mesh dependency with the coarse mesh and the fine mesh giving
similar results.

It can also be seen, from Fig. 10a and b, that the load versus
shortening curves show more or less pronounced material soften-
ing after the peak load is reached, depending on the wood species.
For spruce, the material response is more like the behavior of a
brittle material with an abrupt stress drop of high magnitude
occurring quasi-instantaneously whereas the softening of beech
wood appears to be less important. Then, in the post-cracking
stage, a clear stiffening of the behavior can be observed for both
species; which is indicative of a compressive regime within the
kink band during which frictional shear stress can be transferred
to the material. As it is well described by the failure criterion pre-
sented in Section 2, the already developed crack can indeed trans-
mit shear stress sLT through friction when it is subjected to
compressive normal stress, i.e. rT < 0. This compressive regime
along the transverse direction is dominant mainly after the peak
load has been reached, at approximately d/L = 0.5% whereas shear-
ing is dominant prior to the peak load as shown by the evolution of
the load parameter T.F. in Fig. 11a and b.

Along with the deformed meshes, Fig. 12a and b and Fig. 13a
and b show a contour plot of the two state variables, nI and nII, at
the end of the loading for both wood species. These variables, rep-
resenting the level of degradation under mode I and mode II fail-
ure, give many indications of the damage process within the kink
band. In the case of beech, shearing is predominantly responsible
del loaded in pure compression: (a) beech and (b) spruce.
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for the degradation occurring in the band as nII reaches a value of
0.85 and nI attains a lower value of 0.33. In the case of spruce,
the levels of degradation caused by shearing and transverse ten-
sion are more comparable with critical points being characterized
by nI = 0.87 and nII = 0.96. It is also worth noting that the mode I
failure is principally located where fiber curvature is the highest,
at the two boundaries of the kink band. In the case of beech, for
example, it is seen that transverse tension is high in the zones
where the fibers are the most bended (Fig. 14a). This means that
Fig. 11. Evolution of the load type parameter during the loading at a m

Fig. 12. Contour plot of the state variables for beech

Fig. 13. Contour plot of the state variables for spruce
a high level of axial stresses there, resulting logically from the
severe local bending, combined with transverse stresses appear-
ing in the same locations, cause the fibers of wood to break in
these regions; which constitutes the hinges of the kink band as
observed experimentally in Benabou (2008). While transverse
tension is located in the boundaries of the kink band, the inte-
rior of the kinked domain is characterized by a high compressive
stress state; which is also confirmed by the evolution of the tri-
axiality factor inside the kink band discussed previously. As for
aterial point within the kinked region: (a) beech and (b) spruce.

at the end of the compression: (a) nI and (b) nII.

at the end of the compression: (a) nI and (b) nII.



Fig. 14. Transverse stress and shear stress within the beech specimen: (a) rT and (b) sLT.

Fig. 15. Comparison for the two approaches of the angle of rotation of the fibers inside the kink band: (a) beech and (b) spruce.

Fig. A.1. Rotation of a vector in the 1–2 plane through h.

L. Benabou / International Journal of Solids and Structures 49 (2012) 408–419 417
shear stresses, their development takes place to a large extent
exclusively within the kink band as illustrated in Fig. 14b in
the case of beech.

Finally, the evolution of the angle of rotation of the fibers
within the kinked region is plotted according to the Green–
Naghdi approach used by default in ABAQUS and the fiber
frame approach implemented in ABAQUS using the VUMAT user
subroutine (Fig. 15a and b). For both species, the material ori-
entation calculated from the standard polar decomposition of
the gradient tensor is largely underestimated at finite strains
compared to the orientation obtained by the fiber frame
approach. This shows that the classical rotated frame of
Green–Naghdi cannot be used in a satisfactory manner for large
strain simulation of fibrous material such as wood. Wood is
characterized by a strong anisotropic direction and using an
objective derivate defined from the fiber rotation allows to fol-
low as much as possible the matter; which is essential for the
correct description of the mechanical behavior during the defor-
mation. Indeed, it was shown that the transverse behavior and
shear behavior of wood play a crucial role in kink banding and
that large rotation of fibers occurs. So, keeping the orthotropy
directions strictly coinciding with fiber directions was essential
for obtaining accurate simulation of the studied anisotropic
damage mechanism.

6. Conclusion

Kink banding develops in wood subjected to compressive load-
ing in the fiber direction. This mode of failure is responsible for the
limitation of the load carrying capacity of wood members under
compression and has, thus, to be correctly understood and mod-
eled in the perspective of wood structural design. The degradation
process, which takes place in a localized band of fibers undergoing
large rotation, is triggered by the initial fiber misalignment natu-
rally present in wood and is characterized by micro-cracking under
mixed mode of radial tension and shear. An anisotropic failure cri-
terion is used to describe this mode of rupture observed in the
kinked region and is implemented under finite strain conditions
in ABAQUS/Explicit using the VUMAT user subroutine. The model,
which does include a material length scale, permits to control the
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evolution of tensile strength and shear strength by means of two
inelastic strain-like parameters representing the crack opening
and the relative slip in the interface, respectively. Based on an ap-
proach successfully applied to woven materials for the treatment
of finite strain conditions, the damage constitutive law of the wood
material is expressed in the rate form in the fiber frame to update
the tensorial quantities. These quantities are then transformed to
the basis of the working code (e.g. Green–Naghdi basis for ABA-
QUS/Explicit).

Applicability of the model was shown by predicting kinking
failure for two wood species with different features, with regards
to anatomy, such as fiber misalignment, and to behavior under
both shearing and perpendicular-to-grain tension. It is demon-
strated that the approach qualitatively predicts the load–dis-
placement curve of wood subjected to compressive failure by
providing its load carrying capacity and reproducing the post-
cracking behavior. The sequence of events characterizing the
kinking phenomenon is also well described. The wood begins
deforming globally in an elastic manner until the peak load is
reached; then, the material first softens as the deformation local-
izes into a kink band; finally material softening stops and some
stiffening is observed as the compressive state, which develops
within the kink band, allows frictional shear stresses to be trans-
ferred to the material.

The current developments have been proved to be relatively
satisfying for the description of the failure modes of wood under
compression and for the simulation of its inelastic behavior in
the large strain domain. The computations also pointed out the
direction of future enhancements, namely the treatment of kink-
ing propagation by using a small local imperfection instead of a
global one. Moreover, the shown examples are encouraging in
that future applications can be made in the case of more com-
plex and larger wood structures subjected to compressive failure
modes.

Appendix A

A.1. Expression of the rotation characterized by an axis and an angle

During kinking, the wood fibers rotate in the plane 1–2
(LT-plane of wood). The rotation is characterized by the vector
h = he3 where e3 is the unit vector about which the rotation occurs.
In Fig. A.1, a vector r0 is rotated in the 1–2 plane through the angle
h to become a vector rn. The following relation between the two
vectors can therefore be written:

rT
n ¼ r0fcosða0 þ hÞ; sinða0 þ hÞ; 0g ðA:1Þ

where r0 = ||r0||. For small rotations, we can make the
approximation:

rn ¼

1 0 0

0 1 0

0 0 1

2
664

3
775þ

0 �h 0

h 0 0

0 0 0

2
664

3
775

8>><
>>:

9>>=
>>; � r0 ¼ ½I þ SðhÞ� � r0 ðA:2Þ

Thus, from the relation in Eq. (A.2), the rotation matrix for small
rotations is given by:

K ¼ I þ SðhÞ ðA:3Þ

In Eq. (A.3), the tensor S(h) operating on the vector r0 can
be defined alternately as S(h) � r0 = h � r0 where � denotes the
cross product. For large rotations, the rotation matrix has the
exponential form K = exp(S(h)) and the formula of Rodrigues
(1840) can be established by expanding the exponential in a
power series:
K ¼ I þ sinðhÞ
h

SðhÞ þ 1� cosðhÞ
h2 SðhÞ2 ðA:4Þ
A.2. Particularization of the Rodrigues formula

Let us consider now for our application that r0 ¼ e0
1 ¼ f 0

1 and
rn = f1 with f 1 ¼ F � f 0

1=kF � f 0
1k. With this condition, the rotation

matrix K is defined so that the fiber direction of wood, i.e. the
strong anisotropic direction, remains aligned with the first vector
of {fi}. The cosine and the sine of the angle of rotation can be ex-
pressed as functions of the axes of the material and initial frames:

cosðhÞ ¼ f 0
1 � f 1

sinðhÞ
h

h ¼ f 0
1 � f 1

ðA:5Þ

Using these relations, both terms of the Rodrigues formula can be
obtained:

sinðhÞ
h

SðhÞ ¼ S
sinðhÞ

h
h

� �
¼ Sðf 0

1 � f 1Þ

1� cosðhÞ
h2 SðhÞ2 ¼ 1

1þ f 0
1 � f 1

sinðhÞ
h

� �2

S
h

sinðhÞ f
0
1 � f 1

� �2

¼ 1
1þ f 0

1 � f 1
Sðf 0

1 � f 1Þ2

ðA:6Þ

which gives, using Eq. (A.4), the following particular form of the
material rotation:

K ¼ I þ Sðf 0
1 � f 1Þ þ

1
1þ f 0

1 � f 1
Sðf 0

1 � f 1Þ2 ðA:7Þ
A.3. Computation of the current material axes

We use the definition in Eq. (A.7) of the material rotation to find
the current material axes {fi} as functions of the initial material
axes ff 0

i g and the deformation gradient F:

f 1 ¼
F � f 0

1

jjF � f 0
1jj

f 2 ¼ K � f 0
2 ¼ f 0

2 �
b2

1þ b1
ðf 0

1 þ f 1Þ

f 3 ¼ K � f 0
3 ¼ f 0

3 �
b3

1þ b1
ðf 0

1 þ f 1Þ

ðA:8Þ

with bk ¼ f 1 � f 0
k and bk – 1. For the two-dimensional rotation

characterizing the kink banding mechanism, b3 ¼ 0 and so,
f 3 ¼ f 0

3. To obtain the relations in Eq. (A.8), it was made use of
the fact that ff ig and ff 0

i g are orthonormal bases and the following
property of the cross product was employed:

ðp� qÞ � r ¼ qðp � rÞ � pðr � qÞ ðA:9Þ

where p, q, r are three vectors.
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