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Abstract

Stable multi-sets are an integer extension of stable sets in graphs. In this paper, we continue our investigations started by Koster
and Zymolka [Stable multi-sets, Math. Methods Oper. Res. 56(1) (2002) 45–65]. We present further results on the stable multi-set
polytope and discuss their computational impact.
The polyhedral investigations focus on the cycle inequalities.We strengthen their facet characterization and show that chords need

not weaken the cycle inequality strength in the multi-set case. This also helps to derive a valid right hand side for clique inequalities.
The practical importance of the cycle inequalities is evaluated in a computational study. For this, we revisit existing polynomial

time separation algorithms. The results show that the performance of state-of-the-art integer programming solvers can be improved
by exploiting this general structure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let G = (V ,E) be an undirected graph and letA be the edge-vertex incidence matrix ofG. We study the integer
program

max cTx

s.t. Ax��,
0�x��,
x ∈ ZV+, (1)

where�, � are positive integer vectors representing bounds for vertices and edges, respectively, andc is a positive
integer vector of vertex weights. We denote the set of feasible solutions by

PIP(G, �, �)= {x ∈ ZV+ |0�xv��v∀v ∈ V, xv + xw��vw∀vw ∈ E}
with its convexhull forming thepolytopeP(G, �, �)=conv(PIP(G, �, �)).Moreover,PLP(G, �, �)={x ∈ RV |0�xv�
�v∀v ∈ V, xv + xw��vw∀vw ∈ E} refers to the polytope described by the linear relaxation ofPIP(G, �, �). If there
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is no danger of confusion, we usePIP, P , andPLP as short version ofPIP(G, �, �), P(G, �, �), andPLP(G, �, �),
respectively.
Program (1) is a special case of a general integer program. Instead of considering a general matrixA, we require

all entries ofA to be 0 or 1, and the number of non-zero entries of any row to be two. If in addition the right hand
side� is assumed to be the all-one vector, we obtain the well-studied stable set problem. Hence, solutions of (1) can
be interpreted as an integer extension of stable sets, forming vertex multi-sets, where amulti-setallows for element
repetition and is represented by themultiplicity vectorx = (xv)v∈V ∈ ZV+. Corresponding to the notion of stable sets,
vertex multi-sets satisfying the vertex and edge bounds are calledstable multi-setsor b-stable setswhereb subsumes
both vertex and edge bounds.
The polytopeP(G, �, �) has been studied by researchers with different intentions in mind. In all these studies,

the valid cycle inequalities play an important role. Given a cycleC with vertex setVC ⊂ V , edge setEC ⊂ E and
�(C) := ∑

e∈EC �e,

∑
v∈VC

xv�
⌊
1

2
�(C)

⌋
(2)

is called thecycle inequality(associated withC). All cycle inequalities are valid forP(G, �, �) and, in fact, they define
all facets of Chvátal rank 1, cf. Gerards and Schrijver[4]. Hence,PLP(G, �, �) is a polytope only with integer vertices
if and only if all cycle inequalities are dominated by model inequalities as characterized in[9]. Conditions under which
the cycle inequalities are facet defining are also derived in[9] (and reconsidered in Section 3.1). Analogous to stable
sets, Gijswijt and Schrijver[6] introduce the class oft-perfect graphs with respect to�, � for which P(G, �, �) is
completely described by the model and all cycle inequalities, and prove that the graphs that aret-perfect with respect
to all �, � are exactly the bad-K4 free graphs. In the context of general integer programming, the cycle inequalities (2)
are special cases of the{0, 12}-cutsormod-2-cuts, defined by Caprara and Fischetti[1] and Caprara et al.[2].
In this paper, we study the stable multi-set problem for general instances(G, �, �). We consider cycle inequalities

from both a theoretical and a computational point of view. We discuss the influence of chords and identify conditions
under which they do not weaken the strength of cycle inequalities—a property that does not occur in stable sets. As
an interesting by-product, this result helps also to determine “good” right hand sides for inequalities on non-uniformly
bounded cliques.
To apply an efficient cutting plane approach, polynomial time separation of cycle inequalities is desirable.We discuss

the algorithm of Gerards and Schrijver[4], which extends the odd hole separation for stable sets in a natural way. We
present an alternative extension that resides on bipartite graphs, also developed independently by Cheng and de Vries
[3]. The comparison of several branch-and-cut approaches within a computational study points out which acceleration
can be achieved by inclusion of the cycle inequalities. The experiments also indicate that these inequalities, due to the
generic structure in which they occur, could be beneficial for solving general integer programs.
The remainder of this paper is structured as follows. We introduce further notations and preliminaries in Section 2.

Next, Section 3 is devoted to polyhedral results on cycle inequalities. We report on their separation and the results of a
computational evaluation in Section 4. Finally, concluding remarks in Section 5 close the paper.

2. Notation and preliminaries

We use the following notation and refer to Schrijver[12] for non-explained elementary graph theoretical notions.An
undirected graphG= (V ,E) consists of a finite set of verticesV and a set of edgesE. Throughout the paper, we use
n = |V | andm = |E|. We assume all considered graphs to be simple, i.e., to contain no loops and no multiple edges.
We always use the short notationvw for an edge{v,w} ∈ E. LetNG(v) denote the set of neighbors ofv ∈ V , i.e.,
NG(v) := {w ∈ V | vw ∈ E}. Moreover, forW ⊆ V , let NG(W) := {v ∈ V \W | vw ∈ E,w ∈ W } be the set of
vertices that separatesW from the rest of the graph. Given a subsetS ⊆ V of vertices, the subgraph ofG induced byS
isG[S], whereasE[S] denotes the edges induced byS. Similarly, x[S] refers to the vectorx restricted to the vertices
in S ⊆ V . If graphG is isomorphic to graphH, we writeG = H . A clique in a graph is a subsetQ ⊂ V of mutually
adjacent vertices.
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A cycleC inG is defined as a connected subgraph(VC,EC)with degree of each vertex inVC even. In this paper, we
assume all cycles to be simple, i.e., all degrees equal two. The cardinality ofVC determines whether a cycle is called
odd or even. A cycleC can also be identified by the vertices consecutively visited by traversing the edges of the cycle.
Without loss of generality we assume the vertices of an odd cycle to be indexed consecutivelyv1, . . . , v2k+1. Indices
are always considered modulo 2k + 1 (in the range 1, . . . ,2k + 1).
Throughout this paper, we use a graph-oriented definition of stable multi-sets. LetG = (V ,E) be a graph,�v >0

andcv >0 integers associated with each vertexv ∈ V , and�vw >0 integers associated with each edgevw ∈ E. A
stable multi-set (SMS) is a vertex multi-set defined by a multiplicity vectorx ∈ ZV+ such that 0�xv��v for all v ∈ V

andxv + xw��vw for all vw ∈ E. The SMS problem is to find a stable multi-set of maximum value
∑

v∈V cvxv. With
stable sets as special case, the stable multi-set problem is obviouslyNP-hard.
In [9], a number of reduction rules for the SMS problem has been stated.Without loss of generality, we assume in the

sequel each SMS problem to beirreducible, i.e., max{�v, �w}��vw < �v +�w for all vw ∈ E, and minw∈NG(v){�vw −
�w} = 0 for all v ∈ V . Furthermore, among themodel inequalitiesfrom (1), the non-negativity inequalityxv�0
defines a facet ofP for all v ∈ V , whereas thevertex inequalityxv��v is facet defining if and only if�vw > �v for all
w ∈ NG(v). An edge inequalityxv + xw��vw defines a facet ofP if and only if, for all u ∈ NG({v,w}), there exist
integersx̄v��v andx̄w��w with x̄v + x̄w = �vw, x̄v < �vuif u ∈ NG(v)\{w}, andx̄w < �wu if u ∈ NG(w)\{v}.

3. Polyhedral results

In this section, we address polyhedral aspects of the cycle inequalities for the integer stable multi-set polytope
P(G, �, �). For a cycleC in G, we denote with�(C) := ∑

vw∈EC �vw the sum of the edge bounds along the cycle. A
cycleC is called odd-valued if�(C) is odd and even-valued otherwise.

3.1. Facet defining cycle inequalities

From[9], we know that, for any irreducible SMS instance(G, �, �):

(i) even cycles and even-valued odd cycles are dominated by model inequalities and hence redundant;
(ii) an odd-valued odd cycle is dominated by model inequalities if and only if

min
i=1,...,2k+1


�vi +

k∑
p=1

�vi+2p−1vi+2p


 �

⌊
1

2
�(C)

⌋
; (3)

(iii) if restricting to the odd-valued odd cycle, i.e.,G= C, the cycle inequality is facet defining forP(G, �, �) if and
only if (3) is violated and

max
i=1,...,2k+1




k∑
p=1

�vi+2p−1vi+2p


 �

⌊
1

2
�(C)

⌋
. (4)

Considering the two latter properties suggests that there could be odd-valued odd cycles whose associated inequality
is not dominated by model inequalities and does not define a facet ofP . To disprove this possibility, the main step
consists in the following lemma which strengthens the characterization in (iii):

Lemma 1. LetG= C be an odd-valued odd cycle. If(4) is violated, then(3) holds.

Proof. Let m ∈ {1, . . . ,2k + 1} be an arbitrary index for which the maximum is reached (note that several may be
possible). Then the precondition reads (since�(C) is odd)

k∑
p=1

�vm+2p−1vm+2p
>

⌊
1

2
�(C)

⌋
= 1

2


2k+1∑
p=1

�vpvp+1
− 1



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and transforms, by multiplication with two and subtraction of one sum of the left hand side from both sides as well as
an appropriate index substitution respecting the modulo rule, to

k∑
p=1

�vm+2p−1vm+2p
>

k∑
p=0

�vm+2pvm+2p+1
− 1.

Since both sides are integer, the right hand side can be increased by one if the relation is turned to “greater or equal
than”, yielding the equivalent inequality

k∑
p=1

�vm+2p−1vm+2p
�

k∑
p=0

�vm+2pvm+2p+1

to which we now add the right hand side to both sides and get

�(C)�2
k∑

p=0

�vm+2pvm+2p+1
= 2


�vmvm+1

+
k∑

p=1

�vm+2pvm+2p+1


 .

Since�(C) is odd and the right hand side is even, the left hand side can be rounded down after division by 2. Finally,
�vm+1��vmvm+1

implies

⌊
1

2
�(C)

⌋
��vmvm+1

+
k∑

p=1

�vm+2pvm+2p+1
��vm+1 +

k∑
p=1

�vm+2pvm+2p+1

� min
i=1,...,2k+1


�vi +

k∑
p=1

�vi+2p−1vi+2p


 ,

as claimed. �

Now Proposition 4 in[9] simplifies to:

Proposition 2. LetG = C be an odd-valued odd cycle. Then the cycle inequality(2) defines a facet ofP(G, �, �) if
and only if(3) is violated, i.e.,

min
i=1,...,2k+1


�vi +

k∑
p=1

�vi+2p−1vi+2p


>

⌊
1

2
�(C)

⌋
. (5)

Thus, the cycle inequality (2) is either facet defining forP(C, �, �) or dominated by model inequalities.

3.2. Chords in cycles

Proposition 2 specifies whether a cycle inequality is facet defining in the special case ofG=C. Next, we turn tomore
general graphs. A first step in this direction is to consider cycles with chords, i.e., graphsG= (VC,E) with EC ⊂ E.
Any two different verticesvj1, vj2 ∈ C are connected by two paths on the cycle, one of them with an even number

of edges, the other with an odd one. In what follows, we focus on the odd path connectingvj1 andvj2, and assume
without loss of generalityj1<j2 andj2 − j1 odd. Next, the edge bounds on this path are alternatingly added up in
two sums, the first beginning with the first edge on the path and then taking each second one until the other vertex is
reached, and the second by taking all other (intermediate) path edges, i.e.,

�odd+j1j2
:=

(j2−j1−1)/2∑
p=0

�vj1+2pvj1+2p+1
and �odd−j1j2

:=
(j2−j1−1)/2∑

p=1

�vj1+2p−1vj1+2p
.
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For graphs consisting of an odd cycle with a single chord, it turns out that the cycle inequality remains facet defining
if the chord bound satisfies a simple condition on these sums:

Theorem 3. Let G = (VC,E) consist of an odd-valued odd cycle{v1, . . . , v2k+1} and a single chorde = vj1vj2,
3�j2 − j1 odd. Then the cycle inequality(2) defines a facet ofP(G, �, �) if and only if condition(5) is satisfied, and
the chord bound satisfies

�vj1vj2 ��odd+j1j2
− �odd−j1j2

+ 1. (6)

Proof. From the proof of Proposition 4 in[9], we know that there are exactly 2k + 1 uniquely determined disjoint
pointsx1, . . . , x2k+1 satisfying the cycle inequality at equality: solve the linear equation system induced by the edge
inequalities of the cycle edges 2k + 1 times, each time with a different right hand side. The right hand side consists
of the edge bounds for all but one edges, and the edge bound minus one for the remaining edge (see[9] for a formal
elaboration). By definition these right hand sides are affinely independent. Moreover, the edge-vertex incidence matrix
has full rank for odd cycles, and thus the unique solutions of the 2k+1 linear equation systems are affinely independent
as well.
For i = 1, . . . ,2k + 1, the solution valuexivj for vertexvj , j = 1, . . . ,2k + 1, is given by

xivj = 1
2(�

1
j − �2j + (−1)j−i ),

�1j :=
k∑

p=0

�vj+2pvj+2p+1
and �2j :=

k∑
p=1

�vj+2p−1vj+2p
,

wherej − i is taken modulo 2k + 1 (in the range 1, . . . ,2k + 1). So, the cycle inequality (2) defines a facet if and
only if all these points are feasible forP(G, �, �), i.e., satisfy all vertex and edge bounds on the cycle as well as satisfy
the chord bound. By Proposition 2, the condition on the cycle is equivalent to (5). Thus it remains to show that the
condition on the chord bound is equivalent to (6).
Clearly, all pointsx1, . . . , x2k+1 satisfy the chord bound if and only if

�vj1vj2 � max
i=1,...,2k+1

{xivj1 + xivj2
}

= max
i=1,...,2k+1

{
1

2
(�1j1 − �2j1 + (−1)j1−i )+ 1

2
(�1j2 − �2j2 + (−1)j2−i )

}

= 1

2
(�1j1 − �2j1 + �1j2 − �2j2)+ 1

2
max

i=1,...,2k+1
{(−1)j1−i + (−1)j2−i}

= �odd+j1j2
− �odd−j1j2

+ 1

2
max

i=1,...,2k+1
{(−1)j1−i + (−1)j2−i}.

To evaluate the last maximum, note that fori= j1+1, j2− i is even andj1− i=2k (computed modulo 2k+1), hence
also even. Thus, for this indexi both exponents are even (modulo 2k + 1), which yields maxi=1,...,2k+1{(−1)j1−i +
(−1)j2−i} = 2, completing the proof. �

Note that for the special case of stable sets, condition (6) is always violated: the chord bound is 1, whereas the right
handsidealwaysevaluates to2, since�odd+j1j2

sumsuponeedgemore than�odd−j1j2
.This shows fromanotherperspectivewhy

only odd holes may yield facet defining cycle inequalities for stable sets, as was originally proven by Padberg[11].
The result of Theorem 3 is also the key to cycles with several chords:

Corollary 4. LetG= (VC,E) be a graph consisting of a cycleC and several chords. Then the inequality

∑
v∈V

xv�
⌊
1

2
�(C)

⌋

is valid for P and defines a facet ofP(G, �, �) if and only if�(C) is odd, condition(5) holds, and condition(6) is
satisfied for all chordsvw ∈ E\EC .
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So, in contrast to stable sets, inequalities for odd cycles with chords can also define facets of the stable multi-set
polytope. In particular fort-perfect graphs with respect to�, �, a complete description ofP(G, �, �) does not anymore
consist only of model and odd hole inequalities.

3.3. Cycles in cliques

Corollary 4 turns out to be also valuable in an unexpected way. In[9], we studied another class of valid inequalities
based on so-called�-cliques, i.e., uniformly bounded cliques. For a cliqueQ ⊆ V inGwith �vw=� for all vw ∈ E[Q],
the�-clique inequalityis defined by

∑
v∈Q

xv� |Q|
⌊
1

2
�

⌋
+ (�mod 2) (7)

and defines for|Q|�3 a facet ofP if and only if� is odd,�v��12�� for all v ∈ Q, and for allu ∈ NG(Q), there exists
w ∈ Q with w /∈NG(u) or �uw��12�� + 1. Note that not only maximal�-cliques can fulfill these conditions but also
subcliques (for odd��3). If G is equivalent to a�-clique satisfying the above facet-conditions, thenP is completely
described by the model inequalities and the�-clique inequalities for all (sub-)cliques.
In this section, we describe a way to derive valid inequalities for non-uniformly bounded cliques. These inequalities

do not generalize the uniform�-clique inequalities (7), but base on the results obtained earlier. The key to thecycle-
in-clique inequalitiesis the following interpretation of cliques:

Cliques are just cycles with many chords.

What is not stated by this observation is which edges belong to the cycle and which are the chords:

Proposition 5. LetG = (V ,E) be a graph andQ ⊆ V a clique in G with|Q|�3, odd. Moreover, let CQ define a
minimum edge weight Hamiltonian cycle inQ with value�Q = �(CQ). Then the cycle-in-clique inequality

∑
v∈Q

xv�
⌊
1

2
�Q

⌋
(8)

is valid forP(G, �, �) and defines a facet ofP(G[Q], �[Q], �[E[Q]]) if and only if�Q is odd, condition(5) is satisfied,
and condition(6) is satisfied for allvw ∈ E[Q]\ECQ .Moreover, the right hand side of(8) is best possible if and only
if at least one of the pointsx1, . . . , x2k+1 from the proof of Theorem3 is feasible, i.e., xi ∈ P(G, �, �).

Proof. For every subset of edgesE∗ ⊂ E[Q] that defines a cycleC∗ onQ, we can derive a cycle inequality (2) by
rounding down half the edge bounds. The left hand side of all these cycles is equivalent. Hence, the best inequality is
obtained by minimizing the sum of edge bounds. This minimum is attained by the minimum edge weight Hamiltonian
cycleCQ inQ. Now validness and the conditions under which (8) defines a facet ofP(G[Q], �[Q], �[E[Q]]) follow
by applying Corollary 4.
Finally, the pointsx1, . . . , x2k+1 satisfy (8) with equality. Ifxi ∈ P(G, �, �) for somei ∈ {1, . . . ,2k + 1}, a lower

right hand side would be violated by this solution. On the other hand, the pointsx1, . . . , x2k+1 are the only integer
points that can satisfy (8) with equality (cf. the proof of Theorem 3), and thus if none of them is feasible, the right hand
side can be improved without cutting off feasible points.�

On first sight, determining�Q would require the solution of a minimum weight Hamiltonian cycle problem which
is NP-hard. However, since the Hamiltonian cycle defines a cycle for which (8) represents the associated cycle
inequality, the separation of (8) is subsumed within the separation of cycle inequalities (with chords) which can be
done in polynomial time, as discussed in Section 4.1.
Notice that for cliquesQ for which the right hand side of (8) is not best possible (i.e., all pointsx1, . . . , x2k+1 are

infeasible), it can be lowered by at least one. To lower the right hand side with more than one, it is necessary to check
whether any feasible integer point that sums up to the new right hand side is feasible. All these points can also be found
by solving a linear equation system for a number of right hand side vectors. The number of right hand side vectors to
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check increases as the right hand side of the inequality is decreased further, yielding more and more computational
effort. By applying this approach to (8) for the special case of a�-clique, the right hand side is decreased�12|Q|� − 1
times, from�12�Q� = �12|Q|�� to |Q|�12�� + 1, the right hand side of the�-clique inequalities (7).

4. Computational results

In this section, we report on computational studies on the impact of valid inequalities known for stable multi-sets.
The uniform�-clique inequalities (7) turned out to be of minor computational importance in our experiments. Thus, we
focus on the class of cycle inequalities.We first discuss existing polynomial time algorithms for their separation. Next,
we describe the setting and the instances, before we present the results of two comparisons on the benefit of separating
odd-valued odd cycles.

4.1. Separation of cycle inequalities

To strengthen the linear relaxation of the stable multi-set polytope, the inclusion of cycle inequalities is beneficial.
However, the number of cycle inequalities to be taken into account can be exponentially large, and thus it is not
recommended to add all those inequalities to the linear program. Instead,weaimat separating violated cycle inequalities
over the stable multi-set polytope. This separation problem reads:

Stable multi-set cycle separation

Instance: A stable multi-set problem instance(G, �, �) andx ∈ PLP.
Question: Does there exist an odd-valued odd cycleC in G violating (2), i.e., with

∑
v∈VC

xv >

⌊
1

2
�(C)

⌋
?

For the stable set problem, there is a polynomial time separation algorithm for cycle inequalities proposed in Grötschel
et al. [7]. For a fractional solutionx ∈ PLP, an auxiliary graphH = (W, F ) is constructed byW = {ve, vo | v ∈ V }
andF = {vewo, wevo | vw ∈ E}, i.e.,H consists of two copiesVe, Vo of V and two copies of each edgee ∈ E

connecting the associated vertices from both vertex sets (seeFig. 1). Moreover, each edgevw ∈ E is assigned the value
zvw = 1− xv − xw, and the edges inH inherit this value from the corresponding edge inG, i.e.,zvewo = zwevo = zvw
for all vw ∈ E.
Clearly,H is bipartite, thus any path fromVe to Vo has an odd number of edges, and any pathp from ve to vo

corresponds to an odd cycleCp throughv in G. Note thatCp need not to be simple even ifp is, but always can be

a

e
d

c

b

G

→

ae

b

c

de

e

e

e

e

ao

b

c

do

e

o

o

o

H

Ve Vo

Fig. 1. Construction of the auxiliary graphH for the separation of cycle inequalities for stable sets.
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e
d

c

b

G

11

10

12

11

9
12

8 →

H

ae

b

c

de

e

e

e

e

ao

b

c

do

e

o

o

o

Ve Vo

Fig. 2. Construction of the auxiliary graph̄H for the separation of cycle inequalities for stable multi-sets.

decomposed into even cycles and at least one simple odd cycleC (not necessarily containingv). For separating cycle
inequalities, a shortest path fromve to vo in H is computed for anyv ∈ V . Such a path with total weight smaller than
1 indicates an odd cycleC in G for which the cycle inequality is violated.
For stable multi-sets, this construction can be extended in two ways. Gerards and Schrijver[4] (see also Caprara

and Fischetti[1]) generalized this algorithm for separating odd-valued odd cycle inequalities for the stable multi-set
polytope as follows. Recall that from the stable multi-set perspective, each edge in a stable set instance has edge bound
1. Hence, a path fromve to vo in H is not only a path of odd length, but also of odd edge bound sum. To incorporate
even-bounded edges, we then introduce edges among the vertices inVe and inVo. Formally, we consider the auxiliary
graphH̄ = (W̄ , F̄ ) defined by

W̄ = {ve, vo | v ∈ V },
F̄ = {vewe, vowo | vw ∈ E, �vw even} ∪ {vewo, vowe | vw ∈ E, �vw odd}.

This construction is exemplarydepicted inFig. 2. For eachedgevw ∈ E inG,wedefineaweight̄zvw=�vw−xv−xw�0,
which is carried over to the associated edges inH̄ .
Obviously, each violated odd-valued odd cycle inequality translates to a path fromve tovo with totalz̄-weight smaller

than 1. The following lemma shows that odd-valued even cycles do not.

Lemma 6. Letx ∈ PLP andC be an odd-valued even cycle in G. Then
∑

vw∈EC z̄vw�1.

Proof. LetC be an odd-valued even cycle. Then

∑
vw∈EC

z̄vw =
∑

vw∈EC
(�vw − xv − xw)= �(C)− 2

∑
v∈VC

xv��(C)− 2

⌊
1

2
�(C)

⌋
= 1.

Here the� sign holds since the cycle inequalities for even cycles are redundant forPLP. �

Hence, each such pathp corresponds to an associated odd-valued odd cycleCp in G, but this cycle need not to be
simple as mentioned before. Similar as for stable sets, non-simple cycles can be decomposed into simple cycles, but
this time we have to be more careful, due to the doubled parity.

Proposition 7. Let p be a path fromve to vo in H̄ with total z̄-weight smaller than1.ThenCp contains at least one
simple odd-valued odd cycle(not necessarily containingv) for which the cycle inequality(2) is violated.

Proof. Each pathp from ve to vo in H̄ is odd-valued by construction. By Lemma 6, this path is also odd. IfCp is
simple, we have found an odd-valued odd cycle for which the inequality (2) is violated. It remains to be shown that in
case of a non-simple cycle,Cp contains at least one simple odd-valued odd cycle with totalz̄-weight smaller than 1.
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v uodd_valued
even cycle even_valued

odd cycle

Fig. 3. A non-simple odd-valued odd cycleCp can decompose into an odd-valued even cycle and an even-valued odd cycle.

Assume thatCp does not contain a simple odd-valued odd cycle. ThenCp decomposes into at least one simple
odd-valued even cycle and one simple even-valued odd cycle, cf.Fig. 3. However, from Lemma 6 we know that the
total z̄-weight of each odd-valued even cycle adds up to at least 1, a contradiction. Hence,Cp contains at least one
simple odd-valued odd cycle. Sincez̄vw�0 for all vw ∈ E, the totalz̄-weight of this cycle remains smaller than 1, and
thus implies a violated inequality (2).�

Theorem 8. For the stable multi-set problem, cycle inequalities can be separated in polynomial time.

Proof. Let C be an odd-valued odd cycle for which the inequality (2) is violated. Forv ∈ VC , the shortest path from
ve to vo in H̄ has total weight smaller than 1. This path implies a violated cycle inequality (2) (not necessarily the one
implied byC).
Hence,n shortest path computations detect a violated cycle inequality if one exists. This procedure clearly takes

polynomial time. �

We remark that the polynomial time separation algorithm presented above heavily depends on the fact thatx ∈ PLP.
If x /∈PLP, Lemma 6 cannot be applied anymore, andCp could indeed decompose into an odd-valued even cycle and
an even-valued odd cycle.
An alternative construction, preserving the bipartiteness of the graphH, reflects that both values have to be odd, the

path length and the sum of the edge bounds. Instead of two copies of the vertices, four copies can be introduced for
odd/even-valued odd/even paths. These copies can be indexedVee, Veo, Voe, andVoo, where for a path starting inVee,
the first index indicates whether the number of edges of the path so far is even or odd, and the second index does the
same for the path edge bound sum. In addition, each edgevw ∈ E is copied four times connecting the appropriate
vertices depending on the parity of�vw. Finally, these edge copies inherit the weightzvw = �vw − xv − xw from
their originalvw ∈ E. As a result, a path fromvee to voo in this bipartite graph represents a (not necessarily simple)
odd-valued odd cycle. For paths with total weight smaller than 1, it can be shown that this cycle contains at least one
simple odd-valued odd cycle with total weight smaller than 1 which again corresponds to a violated cycle inequality.
An approach very similar to this construction has been independently developed by Cheng and de Vries[3]. Their
separation method detects, in general, not necessarily simple cycles (which they denote as circuits). In this context,
Proposition 7 additionally states that the class of such odd-valued odd circuit inequalities in fact reduces to the class of
odd-valued odd simple cycle inequalities.
By the equivalence of separation and optimization, the result of Theorem 8 is in particular relevant for graphs that are

t-perfect with respect to�, �. Gijswijt and Schrijver[6] proved that graphs which aret-perfect with respect to all�, �
simultaneously are exactly the graphs without a badK4 subdivision.1 Such graphs can be recognized in polynomial
time, see Gerards and Shepherd[5].

Corollary 9. The stable multi-set problem is polynomial time solvable for graphs that are t-perfect with respect to
�, �, in particular for graphs without a badK4 subdivision.

1A K4 subdivision is a graph that can be constructed by subdividing the edges ofK4. It is calledodd if each triangle of theK4 subdivision is
odd. It is calledgood, if it is odd and if there are two disjoint edges ofK4 such that these are not subdivided and the other four edges are subdivided
to even length paths. Finally abadK4 subdivision is aK4 subdivision that is not good.
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4.2. Setting and instances

To evaluate the impact of cycle inequalities, we implemented a branch-and-cut algorithm for the stable multi-set
problem with C++ as programming language. ILOG’s Concert Technology has been used as a general framework
for the implementation of the branch-and-cut algorithm, together with CPLEX[8], version 9.0, as (integer) linear
programming solver. We also use LEDA[10], version 4.1, for graph representations. All computations have been
carried out on a PC with a 3.2GHz Intel Pentium 4 HT processor, 2GB Internal Memory, and Linux as operating
system.
For this computational study, we adapted stable set instances to stable multi-sets. Since a maximum stable set

corresponds to a maximum clique in the complement of the graph, the so-called DIMACS maximum clique instances
[13] are frequently used for computational studies on stable sets. This set contains 66 graphs ranging from 28 upto
3361 vertices (cf.Table 1for the exact sizes of the graphs). Stable multi-set instances have been generated from these
instances in four steps:

(i) complement the graph;
(ii) randomly generate values�′

v ∈ {5,6, . . . ,15} for all verticesv ∈ V ;
(iii) randomly generate values�′

vw ∈ {max{�′
v, �

′
w}, . . . , �′

v + �′
w − 1} for all vw ∈ E;

(iv) compute�v=minw∈N(v)(�′
vw−�′

v) for all v ∈ V , and set�v=�′
v−�v, cv=1 for allv ∈ V , and�vw=�′

vw−�v−�w
for all vw ∈ E.

Note that this procedure automatically generates irreducible instances of the maximum cardinality stable multi-set
problem. All instances can be downloaded fromhttp://www.zib.de/koster/

4.3. Computational comparison

We report on two comparisons which show the potential of cycle inequalities. For the first study, we compute the
value of thelinear programming relaxationwith and without cycle inequalities, indicating the progress towards the
integer solution value. Our second comparison concerns the performance of some integer programming algorithms to
find integer solutions.
By the addition of cycle inequalities to the linear relaxation, the gap between LP and IP can be reduced substantially.

In fact, from Corollary 9 we know that this gap can be closed completely for graphs without a badK4 subdivision. To
test their impact in general, we have computed the LP value before and after the separation of the cycle inequalities. The
results are presented inTable 1. Here,zLP refers to the value of the linear relaxation,z

+
LP to the LP value including the

cycle inequalities,zIP to the value of the optimal integer solution (or best known solution in case the optimal solution
is not known), and the column “gap closed” refers to the percentage by which the gap between LP value and IP value
is closed due to the inserted cycle inequalities, i.e., it reflects the value(zLP − z+LP)/(zLP − zIP). Finally, the columns
“# rnds” and “# ineq.” list, respectively, the number of separation rounds (i.e., the number of times the LP has been
resolved until no violated inequalities could be found anymore) and the total number of inequalities separated.

4.3.1. Linear relaxation
For seven instances, no violated cycle inequalities could be found in the first round. Thus we can conclude that

for these instances the linear program is already integer (since the cycle inequalities coincide with the Chvátal rank
1 inequalities, cf. Section 1). For four other instances, some violated inequalities have been generated although the
optimal solution value is already attained by the LP solution. Moreover,Table 1shows that for 37 of the 55 remaining
instances the gap is completely closed by the cycle inequalities. In these cases, the number of separation rounds is
typically small. For the remaining instances, the gap is closed by 85% on average with a minimum of 57%.
Taking a closer look at the table, we observe that the gap in absolute value between the LP and the IP solution is

typically small, compared to similar results for stable sets. (Note that theoretically, the difference can be of orderO(n),
e.g., for a�-clique with � odd.) A possible explanation of this observation could be that the size of the integrality
gap correlates with the number of facet defining Chvátal rank 1 inequalities. For stable multi-sets, these are the cycle
inequalities which are redundant not only for even cycles (as in the stable set case), but also for even-valued odd cycles
and for certain odd-valued odd cycles (namely if and only if (5) is violated). Whether such a correlation exists states
an interesting research direction.

http://www.zib.de/koster/
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Table 1
Improvement of the LP value by cycle inequalities

Instance n m zLP z+LP zIP Gap closed (%) # rnds # ineq.

MANN-a9 45 72 185.50 184.00 184 100.00 2 3
MANN-a27 378 702 1516.00 1500.00 1500 100.00 2 32
MANN-a45 1035 1980 4240.50 4199.00 4199 100.00 2 92
MANN-a81 3321 6480 13297.00 13164.00 13164 100.00 2 274
brock200-1 200 5066 923.50 923.00 923 100.00 2 39
brock200-2 200 10024 957.00 955.00 955 100.00 2 116
brock200-3 200 7852 969.50 969.00 969 100.00 2 4
brock200-4 200 6811 948.00 948.00 948 — 2 63
brock400-1 400 20077 1928.00 1927.00 1927 100.00 2 24
brock400-2 400 20014 1935.00 1934.00 1934 100.00 4 32
brock400-3 400 20119 1937.00 1930.00 1930 100.00 9 787
brock400-4 400 20035 1945.00 1945.00 1945 — 2 28
brock800-1 800 112095 3871.00 3856.00 3856 100.00 13 820
brock800-2 800 111434 3811.50 3798.25 3798 98.15 9 626
brock800-3 800 112267 3813.00 3795.76 3795 95.78 11 864
brock800-4 800 111957 3874.50 3861.31 3861 97.70 12 509
c-fat200-1 200 18366 974.50 973.00 973 100.00 3 29
c-fat200-2 200 16665 968.50 967.00 967 100.00 4 41
c-fat200-5 200 11427 930.00 930.00 930 — 3 56
c-fat500-1 500 120291 2415.00 2394.06 2391 87.25 9 526
c-fat500-2 500 115611 2350.00 2329.08 2324 80.46 9 491
c-fat500-5 500 101559 2369.50 2347.33 2344 86.94 14 846
c-fat500-10 500 78123 2412.00 2398.33 2398 97.64 10 664
hamming6-2 64 192 257.00 257.00 257 — 1 0
hamming6-4 64 1312 301.00 301.00 301 — 2 1
hamming8-2 256 1024 1187.00 1187.00 1187 — 1 0
hamming8-4 256 11776 1255.50 1252.00 1252 100.00 7 278
hamming10-2 1024 5120 4593.00 4593.00 4593 — 1 0
hamming10-4 1024 89600 4864.00 4850.00 4850 100.00 10 1147
johnson8-2-4 28 168 127.00 127.00 127 — 1 0
johnson8-4-4 70 560 336.00 335.00 335 100.00 2 3
johnson16-2-4 120 1680 600.00 599.00 599 100.00 3 53
johnson32-2-4 496 14880 2468.00 2467.00 2467 100.00 2 130
keller4 171 5100 846.00 845.00 845 100.00 2 40
keller5 776 74710 3693.50 3689.00 3689 100.00 2 309
keller6 3361 1026582 15966.50 15815.41 15731a 64.16 19 7854
p-hat300-1 300 33917 1469.00 1465.00 1465 100.00 4 115
p-hat300-2 300 22922 1486.50 1481.00 1481 100.00 4 242
p-hat300-3 300 11460 1429.50 1429.00 1429 100.00 2 27
p-hat500-1 500 93181 2320.00 2298.30 2297 94.35 10 660
p-hat500-2 500 61804 2329.50 2321.00 2321 100.00 7 423
p-hat500-3 500 30950 2406.00 2403.00 2403 100.00 9 351
p-hat700-1 700 183651 3350.50 3322.21 3317 84.45 9 730
p-hat700-2 700 122922 3348.50 3334.47 3334 96.76 16 620
p-hat700-3 700 61640 3364.00 3357.00 3357 100.00 4 1019
p-hat1000-1 1000 377247 4720.50 4661.26 4642a 75.46 11 1603
p-hat1000-2 1000 254701 4766.00 4730.46 4728 93.53 12 1137
p-hat1000-3 1000 127754 4816.50 4798.06 4797 94.56 12 1121
p-hat1500-1 1500 839327 7040.00 6924.81 6838a 57.02 13 3161
p-hat1500-2 1500 555290 7031.50 6949.24 6924a 76.52 14 3223
p-hat1500-3 1500 277006 7183.50 7148.97 7144 87.42 15 1711
san200-0.7-1 200 5970 978.50 978.00 978 100.00 2 62
san200-0.7-2 200 5970 948.00 947.00 947 100.00 2 105
san200-0.9-1 200 1990 952.00 952.00 952 — 1 0
san200-0.9-2 200 1990 927.00 926.33 926 67.00 2 7
san200-0.9-3 200 1990 934.00 933.00 933 100.00 6 157
san400-0.5-1 400 39900 1902.50 1899.00 1899 100.00 2 229



252 A.M.C.A. Koster, A. Zymolka /Discrete Optimization 2 (2005) 241–255

Table 1 (continued)

Instance n m zLP z+LP zIP Gap closed (%) # rnds # ineq.

san400-0.7-1 400 23940 1946.00 1945.00 1945 100.00 4 272
san400-0.7-2 400 23940 1897.00 1896.00 1896 100.00 2 19
san400-0.7-3 400 23940 1959.00 1958.00 1958 100.00 2 26
san400-0.9-1 400 7980 1878.00 1878.00 1878 — 1 0
san1000 1000 249000 4740.50 4703.00 4703 100.00 9 1295
sanr200-0.7 200 6032 952.00 951.00 951 100.00 3 41
sanr200-0.9 200 2037 928.00 928.00 928 — 1 0
sanr400-0.5 400 39816 1968.50 1968.00 1968 100.00 2 29
sanr400-0.7 400 23931 1965.50 1965.00 1965 100.00 2 23

aValue of best known solution.

Nevertheless, we can conclude that for those cycles that contribute to the gap, the odd-valued odd cycle inequalities
are indeed effective to improve the LP relaxation of the stable multi-set polytope.

4.3.2. Integer solutions
Our second comparison is on the performance of the MIP solver with and without odd-valued odd cycle separation.

For this purpose, a total of three scenarios has been considered:

• BB represents the usual branch-and-bound method in which no cycle inequalities are separated at all;
• CB denotes the method in which cycle inequalities are separated only in the root node of the search tree, then
continuing with branch-and-bound to explore the tree;

• BC applies the branch-and-cut method, separating cycle inequalities in each node of the search tree.

In order to have a fair comparison, the scenarios have been run with the same CPLEX parameters. Experiments with
the parameters revealed that some instances that turned out to be extremely difficult for CPLEX branch-and-bound
in default setting, could be solved in the root node if the separation of Gomory cuts was changed from “default” to
“aggressive” (note that the cycle inequalities can be viewed as Gomory cuts). Also “strong branching” turned out to
be effective. Therefore, all computations have been carried out using CPLEX with aggressive Gomory cuts, strong
branching, and a time limit, while all other CPLEX parameters keep their default values.
As already pointed out byTable 1, the LP (with/without cycle inequalities) is already integral for many instances.

Therefore, we subdivided the set of instances into three subsets according to their difficulty:

(i) instances for which the integer optimal solution is already found in the root node by BB (37 graphs, including 11
for which zLP = zIP);

(ii) instances with an integer optimal solution found in the root node by CB (17 graphs); and
(iii) all remaining instances (12 graphs).

For the first set of instances, the automatic separation of Gomory as well as other cuts and the CPLEX-internal primal
heuristic already solve the problem. Therefore, these instances are left out in our further considerations.

For the second set of instances, the results of the comparison betweenBB andCBare summarized inTable 2, whereas
the results for the remaining instances are presented inTable 3. In both cases, a time limit of 2 h is used. For the search
tree,Tables 2and3(a) list the total number of explored nodes (“nodes”) and the number of nodes left (“left”) after 2 h
of computation, the best solution value found so far (“value”), and the final gap in each of the scenarios (“gap”). In
addition,Tables 2and3(b) discuss the overall CPU time needed for each scenario (“time”), and in case of CB and BC,
the time spent for separation (“sep. time”) as well as the total number of cycle inequalities that have been separated
(“# ineq.”). For BC, the column “new” refers to the new inequalities that are separated in addition to those in the root
node of the branch-and-cut tree.
The results allow for several remarks. First of all, although Gomory cuts are generated aggressively, the tables show

that a substantial performance increase could be gained by including the cycle inequalities in the root of the branch-
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Table 2
Results for instances of subset (ii): CB solves the problem already in the root node (CPU times are in seconds)

Instance BB CB

time nodes left value gap time sep. time # ineq. value

brock200-2 1.35 5 0 955 0 0.72 0.24 131 955
brock400-3 6.92 11 0 1930 0 13.84 2.06 693 1929
brock800-1 703.45 415 0 3856 0 93.16 29.51 864 3856
brock800-2 168.83 97 0 3798 0 63.67 23.21 392 3798
brock800-3 1039.26 577 0 3795 0 319.81 56.84 736 3795
brock800-4 177.95 89 0 3861 0 33.36 8.19 427 3861
hamming8-4 1.10 1 0 1252 0 1.19 0.41 183 1252
hamming10-4 444.23 87 0 4850 0 120.29 12.42 1029 4850
keller4 0.33 1 0 845 0 0.29 0.13 53 845
p-hat300-2 3.98 3 0 1481 0 3.36 0.75 263 1481
p-hat500-2 22.49 13 0 2321 0 11.36 2.77 380 2321
p-hat500-3 7.44 7 0 2403 0 5.65 1.82 256 2403
p-hat700-2 267.62 151 0 3334 0 79.38 19.45 456 3334
p-hat700-3 32.04 6 0 3357 0 28.96 3.69 800 3357
p-hat1000-3 4831.78 1963 0 4797 0 364.74 76.26 1263 4797
san400-0.5-1 7.49 5 0 1898 0 3.89 1.00 214 1898
san1000 7355.51 1288 678 4702 0.18% 259.38 61.27 1058 4703

Table 3
Results for instances of subset (iii): (a) # B&B nodes (left), value and gap; (b) CPU times (in seconds) overall and for separation, and # inequalities
generated

Instance BB CB BC Optimal value

nodes left value gap (%) nodes left value gap (%) nodes left value gap (%)

(a)
c-fat500-1 2016 0 2391 0 15 0 2391 0 10 0 2391 0 2391
c-fat500-2 4074 0 2324 0 80 0 2324 0 102 0 2323 0 2323
c-fat500-5 4092 2347 2344 0.30 9 0 2343 0 7 0 2343 0 2343
c-fat500-10 98 0 2398 0 3 0 2398 0 4 0 2398 0 2398
keller6 77 78 15661 1.74 0 1 15661 1.30 0 1 15661 1.30 ?
p-hat500-1 5933 0 2297 0 5 0 2297 0 10 0 2297 0 2297
p-hat700-1 2375 1879 3315 0.42 36 0 3317 0 26 0 3317 0 3317
p-hat1000-1 958 910 4633 1.28 155 120 4641 0.40 68 61 4641 0.42 ?
p-hat1000-2 1492 1080 4727 0.31 20 0 4728 0 14 0 4728 0 4728
p-hat1500-1 391 386 6832 2.62 8 9 6836 1.28 4 5 6836 1.28 ?
p-hat1500-2 575 522 6916 1.21 40 35 6922 0.39 16 17 6922 0.38 ?
p-hat1500-3 1262 1055 7140 0.31 58 24 7143 0.04 12 11 7143 0.04 7144

Instance BB CB BC

time time sep. time # ineq. time sep. time # ineq. new

(b)
c-fat500-1 2877.80 141.07 12.64 545 137.11 33.32 635 90
c-fat500-2 5305.92 628.54 13.88 523 1141.18 220.42 1260 737
c-fat500-5 7393.13 125.39 19.68 746 135.11 28.61 768 22
c-fat500-10 135.41 37.32 10.27 524 47.64 17.57 539 15
keller6 7257.99 7224.17 294.83 2151 7243.93 309.77 2151 0
p-hat500-1 5608.91 89.97 20.76 624 175.99 44.71 669 45
p-hat700-1 7411.98 525.52 51.29 580 709.60 250.23 956 376
p-hat1000-1 7384.70 7241.34 154.37 1743 7253.11 2725.49 2957 1214
p-hat1000-2 7385.96 933.46 123.09 1115 1038.11 352.62 1352 237
p-hat1500-1 7363.94 7227.84 578.10 3322 7241.27 1098.96 3488 166
p-hat1500-2 7367.38 7227.22 507.67 3214 7235.90 2150.38 3881 667
p-hat1500-3 7374.42 7216.93 289.74 1831 7230.10 1180.27 2574 743
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Table 4
Results with 10/24h of computation: (a) # B&B nodes (left), value and gap; (b) CPU times (in seconds) overall and for separation, and # inequalities
generated

Instance BB CB BC Optimal value

nodes left value gap (%) nodes left value gap (%) nodes left value gap (%)

(a)
keller6 (10h) 589 573 15699 1.48 0 1 15731 0.54 0 1 15731 0.54 —
p-hat1000-1 4835 4212 4641 1.03 802 682 4641 0.38 404 347 4641 0.38 —
p-hat1500-1 2073 2031 6835 2.53 284 269 6836 1.28 122 123 6836 1.28 —
p-hat1500-2 2974 2791 6920 1.09 367 331 6922 0.37 169 153 6924 0.34 —
p-hat1500-3 6064 5018 7142 0.24 144 0 7144 0 86 0 7144 0 7144

keller6 (24h) 1630 1569 15709 1.40 126 127 15731 0.53 45 46 15731 0.53 —

Instance BB CB BC

time time sep. time # ineq. time sep. time # ineq. new

(b)
keller6 (10h) 36349.42 36042.81 2501.28 7723 36051.87 2729.93 7723 0
p-hat1000-1 36881.42 36164.14 154.54 1743 36203.20 12082.35 5317 3574
p-hat1500-1 36831.34 36145.34 580.94 3322 36329.18 12663.09 5777 2455
p-hat1500-2 36847.97 36123.80 503.29 3214 36260.94 15101.41 6647 3433
p-hat1500-3 36882.71 17342.31 289.42 1831 26091.42 4374.03 3750 1919

keller6 (24h) 87221.67 86518.10 2655.46 7723 86606.40 24972.38 10410 1721

and-cut tree. In total, nine instances could not be solved within 2 h with BB, but four of them are solved by CB within
2 h. Thereby, the number of nodes explored by CB is only a fraction of the number explored by BB.
Even for instances that are solved by BB within 2 h, the incorporation of cycle inequalities provides significant

improvements. For the 16 instances of subset (ii) that BB solved, the computation time can be reduced by 39.5% on
average. The number of inequalities that has been separated adds up to more than thousand for the larger instances.
Note that these values differ from those inTable 1since Gomory cuts are now generated as well. Nevertheless, the
cycle inequalities are not always found by the built-in cut generation routines of CPLEX, but turn of to be very
effective.
Separation of the inequalities in nodes other than the root node is less effective. Although the number of nodes

needed by the branch-and-cut algorithm is reduced further, the separation is relatively time consuming, resulting in
longer overall running times. Themajority of the inequalities is typically separated in the root node. For those instances
that cannot be solved within 2 h of computing time, about half the number of nodes explored by CB are explored by
BC. Note that for instance keller6 the exploration of the root could not be finished within 2 h of computation. Hence,
the results of CB and BC do not differ for this instance.
To see whether more time allows CB or BC to find an optimal solution for those instances that could not be solved

within 2 h by CB or BC, we run all scenarios for 10h. Since the root relaxation of keller6 in CB and BC is still not
solved within this period, we also run the algorithms for this instance for 24h. The results can be found inTable 4.
Again, the gap is reduced significantly by inclusion of the cycle inequalities. Instance p-hat-1500-3 could be solved in
less than 5h by CB (about 7 h by BC) using a fraction of the number of nodes explored (and left) by BB.
From a general perspective, it can be observed that the inclusion of cycle inequalities improves the solution per-

formance significantly. As their nature is combinatorial, they are numerically more stable then general Gomory cuts.
Their separation effort is fairly small and grows only moderate, even for the difficult instances. Hence, the integration
of these inequalities turns out to be crucial for the optimization of stable multi-sets. Furthermore, these inequalities
encode a very general structure which may occur in various programs. Therefore, they may be interesting candidates
for general purpose integer programming solvers, similar to clique inequalities for stable sets.
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5. Concluding remarks

Guided by the knowledge for stable sets, various interesting results for stable multi-sets have been derived. The
integer extension exhibits some new properties, such as chords in cycles which do not prohibit the corresponding
inequality to be facet defining. This result allows to view cliques from a different perspective: as cycles with many
chords. By this, we derive a valid right hand side for clique inequalities which define under certain conditions facets
as well.
Knowledge of the polyhedral structure of the stable multi-set polytope is also of computational importance. Our

results show that not all odd cycle inequalities are detected by general purpose methods. Hence, the explicit separation
of these inequalities provides significant improvements. Whether structures similar to odd-valued odd cycles (with or
without chords) are likely to appear in general integer programs is topic of further research.
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