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We present the extension of our previous results for three-loop Yukawa coupling beta-functions to the 
case of complex Yukawa matrices describing the flavour structure of the SM. The calculation is carried 
out in the context of unbroken phase of the SM with the help of the MINCER program in a general linear 
gauge and cross-checked by means of MATAD/BAMBA codes. In addition, ambiguities in Yukawa matrix 
beta-functions are studied.
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It is an important property of the SM that all the particle 
masses are related to the corresponding couplings of the Higgs 
boson, discovered recently in the LHC experiments [1,2]. Careful 
experimental investigation of the Higgs decay modes shows con-
sistency with the prediction of the SM [3,4]. This kind of studies is 
complemented by the experiments aimed to shed light on the SM 
flavour structure (see Ref. [5] and references therein). In spite of 
the fact that the SM provides a consistent description of the pro-
cesses involving transitions between different fermion generations, 
the origin of flavour physics is still unclear. Most of the observable 
flavour effects in the SM are encoded in the Cabibbo–Kobayashi–
Maskawa (CKM) matrix which enters into the tree-level charged 
quark currents.1 The CKM matrix originates from matrix Yukawa 
couplings after transition from weak (interaction) eigenstates to 
the mass basis. It is obvious that general complex matrices involve 
a lot of unphysical parameters which can be “rotated” away by 
unitary transformations. However, it is sometimes convenient to 
study this general structure in view of possible New Physics which 
can potentially explain the observed hierarchy in quark masses and 
mixing (see, e.g., Ref. [7]).

This article concludes the series of our papers on three-loop 
beta-functions in the SM with complex Yukawa matrices [8,9]. 
One- and two-loop results for SM beta-functions have been known 
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for quite a long time [10–23] and are summarized in Ref. [24], 
in which the renormalization group equations (RGE) are given 
in the matrix form. The three-loop gauge-coupling beta-functions 
with the full flavour structure were calculated for the first time in 
Ref. [25] and confirmed later by our group [8]. The beta-functions 
for the parameters of the Higgs potential in the case of complex 
Yukawa matrices were considered in Ref. [9] (for a flavour diago-
nal case, see Refs. [26,27]). It is interesting to note that the results 
for three-loop RGE in the Minimal Supersymmetric Standard Model 
were found by means of the supergraph formalism [28] about ten 
years ago [29].

In order to obtain the results for matrix beta-functions, we use
FeynArts [30] and DIANA [31]. In both cases, we extend the cor-
responding model files to account for explicit flavour indices and 
develop simple routines for dealing with them. Since the matrix 
couplings do not pose any additional problems in γ5 treatment, 
we will not discuss it here and only refer to Refs. [32,33].

As in our previous studies, the calculation is carried out in 
an almost automatic way with the help of different infrared re-
arrangement (IRR) [34] procedures implemented in our codes. The 
utilized IRR prescriptions consist in either setting all but two ex-
ternal momenta to zero or introducing an auxiliary mass param-
eter M in every propagator and the subsequent expansion in all 
external momenta [35,36]. In the first case, one uses MINCER
[37,38] to compute massless propagator-type integral.2 In the 
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second approach, the fully massive vacuum integrals are evalu-
ated by means of the MATAD package [39] or BAMBA code devel-
oped by V.N. Velizhanin. For the color algebra the FORM package
COLOR [40] is utilized.

Let us briefly specify our notation and renormalization proce-
dure. The full Lagrangian of the “unbroken” (= massless) SM which 
was used in this calculation is given in our previous paper [8]. For 
the reader’s convenience we present here only the terms describ-
ing the fermion-Higgs interactions

LYukawa = −(
Y ij

u
(

Q L
i Φc)uR

j + Y ij
d

(
Q L

i Φ
)
dR

j

+ Y ij
l

(
LL

i Φ
)
lR

j + h.c.
)
. (1)

Here Yu,d,l are the Yukawa matrices. The Higgs doublet Φ and 
its charge-conjugated counterpart Φc = iσ 2Φ† have hypercharges 
Y W = 1 and Y W = −1, respectively.3 The left-handed quark and 
lepton SU(2) doublets, Q L

i and LL
i , carry flavour indices i = 1, 2, 3. 

The same is true for the SU(2) singlets corresponding to the right-
handed SM fermions uR

i , dR
i and lR

i . It is worth mentioning that the 
matrix element Y ij

u describes the transition of the right-handed 
up-type quark of the j-th generation to the left-handed quark 
(either up- or down-type) of the generation i. Conversely, the ma-
trix element Y †,i j

u corresponds to the transition of the left-handed 
quark from the doublet Q j to the right-handed up-type quark ui .

In the Lagrangian (1) we assume that the bare fermion fields 
and Yukawa couplings are expressed in terms of the corresponding 
running quantities defined in the MS renormalization scheme by 
means of ( f = u, d, l)
(

Q L)
Bare = [

Z 1/2
Q

]
Q Lμ−ε,

(
uR)

Bare = [
Z 1/2

u
]
uRμ−ε,(

dR)
Bare = [

Z 1/2
d

]
dRμ−ε, (2)(

LL)
Bare = [

Z 1/2
L

]
LLμ−ε,

(
lR)

Bare = [
Z 1/2

l

]
lRμ−ε,

(Y f )Bare = (Y f + �Y f )μ
ε, (3)

where the generation indices are suppressed. The renormalization 
constants Z = (Z 1/2

Q , Z 1/2
L , Z 1/2

u , Z 1/2
d , Z 1/2

l ) and �Y f are 3 × 3 ma-
trices in the flavour space and can be decomposed as

Z = 1 +
∞∑

l=1

δZ (l), δZ (l) =
l∑

n=1

c(l,n)

εn
, (4)

�Y f =
∞∑

l=1

[
�Y (l)

f

]
,

[
�Y (l)

f

] =
l∑

k=1

1

εk

[
�Y (l,k)

f

]
(5)

with δZ (l) and �Y (l)
f being l-loop contributions and ε = (D − 4)/2

corresponding to the parameter of dimensional regularization.
As it was mentioned above, we used two approaches to IRR. Let 

us consider the first one, when all Feynman integrals are converted 
to massless propagators and it is convenient to use multiplicative 
renormalization of Green functions. Contrary to the second case, 
when a new auxiliary mass is introduced, no new parameter ap-
pears in the problem, so that the matrix renormalization constants 
can be recursively obtained via the relations

Γ
(2)

f ,Ren

(
k2

μ2
,ai, Y f

)

= [
Z 1/2

f

]†
Γ

(2)

f ,Bare

(
k2,ai,Bare, Y f ,Bare, ε

)[
Z 1/2

f

]
, (6)

3 The hypercharge normalization is fixed by its relation to electric charge Q =
T3 + Y W /2 and weak isospin T3.
Γ
(3)

f̄ ′ f φ,Ren

(
k2

i

μ2
,ai, Y f

)

= [
Z 1/2

f ′
]†

Γ
(3)

f̄ ′ f φ,Bare

(
k2

i ,ai,Bare, Y f ,Bare, ε
)[

Z 1/2
f

]
Z 1/2

φ . (7)

In these equations Γ (2)

f corresponds to the one-particle irreducible 
(1PI) two-point Green functions for the fermion f (left-handed or 
right-handed). The three-point 1PI vertex Γ (3)

f̄ ′ f φ
describes the tran-

sition of the right-handed fermion f to the left-handed fermion f ′
due to interactions with the Higgs boson φ, either neutral φ = h, χ
or charged φ = φ± . The Green functions are normalized in such a 
way, that at the tree-level Γ (2)

f = 1 and Γ (3)

f̄ ′ f φ
= Y f . As in our pre-

vious papers [8,33], we define the following quantities:

ai =
(

5

3

g2
1

16π2
,

g2
2

16π2
,

g2
s

16π2
,

λ

16π2
, ξG , ξW , ξB

)
(8)

with gs , g2, g1 being SU(3) × SU(2) × U (1) gauge couplings,
λ – Higgs self-coupling and ξG , ξW , ξB corresponding to the gauge-
fixing parameters in the unbroken SM. In addition, the following 
abbreviations ( f = u, d, l)

Y f ≡ Y f Y †
f

16π2
, Y f f ≡ Y f Y †

f Y f Y †
f

(16π2)2
,

Y f f f ≡ Y f Y †
f Y f Y †

f Y f Y †
f

(16π2)3
,

Yud = Yu Y †
u YdY †

d

(16π2)2
, Ydu ≡ YdY †

dYu Y †
u

(16π2)2
,

Yuud ≡ Yu Y †
u Yu Y †

u YdY †
d

(16π2)3
, Yudu ≡ Yu Y †

u YdY †
dYu Y †

u

(16π2)3
,

Yduu ≡ YdY †
dYu Y †

u Yu Y †
u

(16π2)3
,

Yudd ≡ Yu Y †
u YdY †

dYdY †
d

(16π2)3
, Yddu ≡ YdY †

dYdY †
dYu Y †

u

(16π2)3
,

Ydud ≡ YdY †
dYu Y †

u YdY †
d

(16π2)3
(9)

will be used for the Yukawa matrix products.
It is worth pointing out that in the absence of Yukawa interac-

tions (1) the SM Lagrangian is invariant under an accidental global 
flavour symmetry4 U (3)Q × U (3)u × U (3)d × U (3)L × U (3)l . Due to 
this, we have an equivalence relation

(Yu, Yd, Yl) ⇔ (
Y ′

u, Y ′
d, Y ′

l

) = (
V Q Yu V †

u, V Q Yd V †
d, V L Yl V

†
l

)
,

V f ∈ U (3) f , f = Q , L, u,d, l, (10)

implying that the Lagrangians (1) with couplings (Yu, Yd, Yl) and 
(Y ′

u, Y ′
d, Y

′
l ) lead to the same physics [41], since one can always 

compensate the factors V f by appropriate basis change f → f ′ =
V f f without affecting the rest of the SM Lagrangian. It is easy 
to notice that Eq. (10) entails equivalence relations for the matrix 
products (9), i.e., Yq...q′ ⇔ Y ′

q...q′ = V Q Yq...q′ V †
Q . This property of 

the Lagrangian will be important in our discussion of the ambigu-
ities in the Yukawa matrix beta-functions.

The left-hand side (LHS) of Eqs. (6)–(7) is finite when the pa-
rameter ε tends to zero. This allows us to find the expressions for 

4 Corresponding to SU(2)-compatible rotations of the left-handed (Q and L) and 
right-handed (u, d, and l) fermion fields.
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certain combinations of MS-renormalization constants by cancel-
ing recursively the poles in ε , which appear in the right-hand side 
(RHS) of the same equations. From the fermion self-energies Γ (2)

f

we extract a hermitian combination Z2, f = [Z 1/2
f ]† Z 1/2

f . Taking the 
square root operation in perturbation theory one fixes the hermi-
tian part (denoted by Z̃ 1/2

f ) of Z 1/2
f :

Z̃ 1/2
f = 1 + 1

2
δZ (1)

2, f + 1

2

(
δZ (2)

2, f − 1

4
δZ (1)

2, f δZ (1)

2, f

)

+ 1

2

(
δZ (3)

2, f − 1

4

(
δZ (1)

2, f δZ (2)

2, f + δZ (2)

2, f δZ (1)

2, f

)

+ 1

8
δZ (1)

2, f δZ (1)

2, f δZ (1)

2, f

)
+ . . . , (11)

where only the terms relevant for our three-loop calculations are 
retained. It turns out that at three loops the hermitian factors Z̃ 1/2

f

used in place of Z 1/2
f give rise to infinite expressions (in the limit 

ε → 0) for the matrix anomalous dimension γ f of renormalized 
quark fields F f = Q L, uR , dR defined as

γ f · F f (μ) ≡ d

d lnμ2
F f (μ,ε)

∣∣∣∣
ε=0

= −
(

Z−1/2
f

d

d lnμ2
Z 1/2

f

)
· F f . (12)

In other words, pure hermitian renormalization constants do not 
satisfy the pole equations [42] for the u- and d-quark. To circum-
vent this problem, we introduced the following unitary factors:

Z̄ 1/2
Q L

= 1 − a1h3

320

(
1

6ε2
− 1

ε3

)
[Yu,Yd]

+ h3

64

(
1

6ε2
+ 1

ε3

){
Yu −Yd, [Yu,Yd]

}
, (13)

Z̄ 1/2
uR = 1 − h3

32

(
1

6ε2
− 1

ε3

)
Y †

u[Yu,Yd]Yu,

Z̄ 1/2
dR

= 1 + h3

32

(
1

6ε2
− 1

ε3

)
Y †

d[Yu,Yd]Yd, (14)

where the commutator [Yu, Yd] is an anti-hermitian matrix, which 
is a measure of whether Yu and Yd can be diagonalized simulta-
neously,5 and hl is used to indicate l-loop contribution. Due to the 
unbroken SU(2) invariance, we have Z̄ 1/2

uL = Z̄ 1/2
dL

= Z̄ 1/2
Q L

. The fac-

tors Z̃ 1/2 and Z̄ 1/2 combine to form Z 1/2

Z 1/2
f = Z̄ 1/2

f Z̃ 1/2
f ,

[
Z 1/2

f

]† = Z̃ 1/2
f

[
Z̄ 1/2

f

]†
,

[
Z̄ 1/2

f

]†
Z̄ 1/2

f = 1, Z2, f = [
Z̃ 1/2

f

]2
. (15)

The renormalization constants for other SM quantum fields, e.g., 
Z 1/2

φ required to define (7), can be easily obtained from the corre-
sponding two-point functions. In order to find the renormalization 
constant for the Yukawa matrix Y f , we use (7). After two-loop 
renormalization of RHS we are left with the divergence, which 
should be canceled by the three-loop part of the vertex counter-
term

5 It is interesting to note that det[Yu , Yd] = −2T (yu)B(yd) J , where T (yu) =
(y2

t − y2
u)(y2

t − y2
c )(y2

c − y2
u), B(yd) = (y2

b − y2
d)(y2

b − y2
s )(y2

s − y2
d), with y f and J

being the Yukawa coupling for the quark mass eigenstate f and the Jarlskog invari-
ant [43], respectively. The latter can be expressed in terms of CKM matrix elements 
V ij , e.g., J = Im(V 11 V 22 V ∗

12 V ∗
21), and measures CP-violation in the SM.
Z f̄ ′ f φY f ≡ [
Z 1/2

f ′
]†

(Y f + �Y f )
[

Z 1/2
f

]
Z 1/2

φ , (16)

originating from the Lagrangian (1). It is worth noticing that it is 
always possible to factorize Y f (Y †

f ) from the right (left) of the 
considered matrix three-point Green functions involving incoming 
(outgoing) right-handed fermion f . From Eq. (16) one can deduce 
that

Y f + �Y f = [
Z−1/2

f ′
]†

Z f̄ ′ f φY f
[

Z−1/2
f

]
Z−1/2

φ

= Z̄ 1/2
f ′

[
Z̃−1/2

f ′ Z f̄ ′ f φY f Z̃−1/2
f Z−1/2

φ

][
Z̄ 1/2

f

]†
. (17)

In our calculation we used Γ (3)

f̄ f φ
with f = u, d, l and φ = h, χ for 

extraction of �Y f . Moreover, the vertex Γ (3)

ūdφ+ was also consid-
ered for additional verification of the correctness of the results. 
The Green function with charged would-be goldstone φ+ allows us 
to find the counter-terms for both Y †

u (ūRdLφ
+) and Yd (ūLdRφ+). 

Irrespectively of the considered vertex the results for Y f turn out 
to be the same.

The matrix Yukawa beta-functions βY f are defined by

βY f Y f ≡ dY f (μ,ε)

d lnμ2

∣∣∣∣
ε=0

(18)

and can be found from the relation between bare and renormalized 
couplings by differentiation

0 = d

d lnμ2
(Y f )Bare

=
(

−ε

2
Y f + βY f Y f + d

d lnμ2
(�Y f )

)
με

+ ε

2
(Y f + �Y f )μ

ε, (19)

from which one deduces

βY f Y f

=
∞∑

l=1

[
ai

∂

∂ai
+ 1

2

∑
f ′=u,d,l

(
Y ij

f ′
∂

∂Y ij
f ′

+ Y †,i j
f ′

∂

∂Y †,i j
f ′

)
− 1

2

]
�Y (l,1)

f

=
∞∑

l=1

l · �Y (l,1)

f , (20)

assuming the validity of the corresponding pole equations.
It is interesting to mention that the expressions for the ma-

trix renormalization constants discussed in this article were ob-
tained for the first time by means of the described procedure. 
The computer setup (FeynArts [30] for diagram generation +
MINCER for integral computations) was the same that we used 
in our first two papers [8,33] on the three-loop SM beta-function. 
The obtained expressions for �Y f were free from gauge-parameter 
dependence. However, in this calculation we did not take into ac-
count the unitary factors Z̄ 1/2

f and were unable to satisfy the pole 
equations for the quark fields and Yukawa couplings.

In order to figure out the problem and to cross-check the 
obtained results, we made use of another established setup 
(DIANA + MATAD/BAMBA), which is based on the second men-
tioned approach to IRR. The crucial difference in the renormaliza-
tion procedure is that one calculates renormalization constants for 
Green function Γ via

ZΓ = 1 −KR′Γ, (21)

with R′ being the incomplete R-operation without the last sub-
traction (see, e.g., Ref. [44]), and K extracts the singular part in ε . 
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The implementation of the method requires introduction of ex-
plicit counter-term insertions corresponding to all SM fields and 
parameters and, in addition, to the auxiliary mass M . By means 
of this procedure the same result for renormalization constants of 
the considered two- and three-point Green functions was obtained. 
This ensures the correctness of the corresponding expressions.

After a careful study of the employed procedures we have found 
that the square root operation, which was used to find Z 1/2

f , has 

an ambiguity. The latter was utilized and the unitary factors Z̄ 1/2
f

were introduced. It is worth mentioning that these factors them-
selves do not satisfy pole equations so that one can not define the 
finite anomalous dimensions γ̄ f = − Z̄−1/2

f
˙̄Z 1/2

f .
A comment on the remaining ambiguity is in order since one 

can introduce additional unitary factors involving the first poles 
in ε . For example, we can multiply the obtained renormalization 
constant Z 1/2

Q L
by a factor (A1 is an arbitrary constant)

ZQ L = 1 + h2

ε
A1[Yu,Yd] + h3

ε2
A1

[
2αu

u + αd
u

3

{
Yu, [Yu,Yd]

}

+ 2αd
d + αu

d

3

{
Yd, [Yu,Yd]

} + 2αd
0 + 2αu

0

3
[Yu,Yd]

]
(22)

without any effect on the propagator (Z 1/2†
Q L

Z 1/2
Q L

− 1) and ver-

tex (Z f̄ ′ f φ − 1)Y f counter-terms. The coefficient of h3/ε2 in (22)
is determined from pole equations and ensures the finiteness 
of the corresponding anomalous dimension γ ′

L ≡ −Z†
Q L
ŻQ L =

2A1h2(Yud − Ydu) up to three loops. The coefficients αu
i and αd

i
enter into one-loop beta-functions for Yu and Yd:

βY f = α
f

u ·Yu + α
f

d ·Yd + α
f

0 , f = u,d, (23)

and in the SM

αu
u = αd

d = −αu
d = −αd

u = 3

4
,(

αu
0

αd
0

)
= −4as − 9

8
a2 + 3 tr[Yu] + 3 tr[Yd] + tr[Yl]

2
−

( 17
40
1
8

)
a1.

(24)

It is clear that the substitution Z 1/2
Q L

→ ZQ L Z 1/2
Q L

in (2) will mod-
ify the anomalous dimension for the left-handed quarks and the 
Yukawa coupling beta-functions in the following way6:

γQ → γ ′
Q = γQ + γ ′

L, βY f → βY ′
f
= βY f + γ ′

L . (25)

With the chosen ZQ L the RG functions (25) are affected already 
at the two-loop level. The three-loop beta-functions can also be 
easily modified by adding the h3/ε terms to ZQ L . However, hav-
ing in mind the freedom (10), it is easy to convince oneself that it 
is possible to get rid of ZQ L together with arbitrary right-handed 
Zu , Zd factors by the formal substitution Y f → Y ′

f = Z†
Q L

Y f Z f

accompanied by the SU(2)-compatible change of the basis for the 
quark fields Q L → Q ′ L =Z†

Q L
Q L , etc. As a consequence, the beta-

functions βY f and βY ′
f

from Eq. (25) are equivalent, leading to the 
same RG flow of the quark sector “observables” – six eigenvalues 
of Yu and Yd together with four independent parameters of the 
CKM matrix. Due to this, we restrict ourselves to the “minimal” 
case with all Z ≡ 1, for which the quark anomalous dimensions 
are purely hermitian. We would like to stress that this prescription 

6 In the general case we have βY f Y f → βY f Y f + γ ′
L Y f − Y f γ

′
f with γ ′

f being an 
analog of γ ′

L for the right-handed quark f .
is just a convenience choice. In order to justify this statement, one 
can use the analogy with the Hydrogen atom in a uniform mag-
netic field (see Refs. [45,46]). Let us assume that the latter depends 
on some external parameter (an analog of scale μ). By tuning 
the parameter one changes the field magnitude and its orienta-
tion with respect to some chosen basis. However, if one relates the 
components of the magnetic field to a measurable quantity (e.g., 
Zeeman splitting), the dependence on the orientation drops out at 
any value of the considered parameter. The same happens with 
the MS Yukawa matrices in the SM if we relate them (by matching 
procedure at certain scale μ) to some flavour (pseudo)observables.

To conclude, by explicit calculation we obtained the three-loop 
RGE for the general complex Yukawa matrices. The two-loop part 
reproduces the known expressions7 [24]. The three-loop contribu-
tions are free from gauge-parameter dependence and coincide with 
our previous results in the limit of diagonal Yukawa couplings. 
In addition, we analyzed the ambiguity in the MS Yukawa matrix 
beta-functions, which appears starting from the two-loop level.

In order to save space, we do not present the full expressions 
for βY f , f = u, d, l here.8 However, in a quite reasonable limit of 
vanishing couplings g1 = g2 = Yl = 0 the beta-functions are not 
very lengthy, so we present here the result for βYu = β

(1)
Yu

+ β
(2)
Yu

+
β

(3)
Yu

+ . . . in this approximation. Employing the notation (9) the 
loop expansion of βY f can be given as (λ̂ = aλ)

β
(1)
Yu

= −4as + 3

2

(
tr[Yd] + tr[Yu]) + 3

4
(Yu −Yd), (26)

β
(2)
Yu

= 3λ̂2 − 6λ̂Yu + 11

8
Ydd − 1

2
Ydu − 1

8
Yud

+ 3

4

(
Yuu + tr[Yud]

) + 15

8
Yd

(
tr[Yd] + tr[Yu])

+ 8as(Yu −Yd) + 10as
(
tr[Yd] + tr[Yu])

− 27

8

(
tr[Ydd] + tr[Yuu] + (

tr[Yd] + tr[Yu])Yu
)

+ a2
s

(
40

9
nG − 202

3

)
, (27)

β
(3)
Yu

= −18λ̂3 − a3
s

[
1249 −

(
4432

27
− 320

3
ζ3

)
nG − 560

81
n2

G

]

+ a2
s

[
tr[Yd]

(
457

3
− 16nG − 108ζ3

)

+ tr[Yu]
(

505

3
− 16nG − 12ζ3

)

+Yu

(
2779

12
− 11nG − 102ζ3

)

−Yd

(
2659

12
− 41

3
nG − 86ζ3

)]

+ as

[
Ydd(13 + 40ζ3) +Yud(14 + 4ζ3) −Ydu(9 − 4ζ3)

− 38Yuu + 8λ̂Yu + tr[Yud]
[

57

2
− 24ζ3

]

+ (
tr[Yd] + tr[Yu])

[
Yd

(
97

4
− 36ζ3

)

7 One should identify Yu , Yd and Yl with H+ , F+
d and F+

L of Refs. [19,24], respec-
tively.

8 The results in a computer-readable form are available as the ancillary files of 
the arXiv version of the paper.
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−
(

177

4
− 36ζ3

)
Yu

]
+

[
15

4
− 36ζ3

](
tr[Ydd] + tr[Yuu])

]

+ λ̂

(
3

2
Yud − 15Ydd + 63

2
Yuu + 45Yu

(
tr[Yd] + tr[Yu])

+ 45

2

(
tr[Ydd] + tr[Yuu])

)

+ λ̂2
(

285

8
Yu − 21

8
Yd − 135

4

(
tr[Yd] + tr[Yu])

)

+
(

9

8
− 9

4
ζ3

)
Yddd −

(
345

32
− 9

4
ζ3

)
Yuuu

+ 43

16
Yudu + 75

32
Yuud + 83

32
Yduu − 37

16
Ydud

−
(

95

16
− 6ζ3

)
Yudd −

(
183

32
− 6ζ3

)
Yddu

+
(

3

8
Ydu − 69

8
Ydd − 9

8
Yuu + 21

8
Yud

)(
tr[Yd] + tr[Yu])

+
(

135

16
Yu − 9

4
Yd

)(
tr[Yuu] + tr[Ydd]

)

+
((

147

4
− 36ζ3

)
Yd − 81

8
Yu

)
tr[Yud]

+
(

789

32
+ 9

2
ζ3

)(
tr[Yddd] + tr[Yuuu])

+ 831

32

(
tr[Yudd] + tr[Yuud]

)
(28)

where nG = 3 is the number of fermion generations. It is worth 
pointing out that the corresponding expressions for β(l)

Y †
u

can be de-

duced from (26), (27) and (28) by the substitutions

Yud ↔ Ydu, Yudd ↔ Yddu, Yuud ↔ Yduu . (29)

The obtained expressions can be applied to RGE studies of dif-
ferent BSM models aimed to unveil the physics behind the ob-
served SM flavour pattern. It is also worth mentioning that from 
Yu and Yd it is possible to deduce the three-loop RGE for the CKM 
matrix elements [47–49] or Quark Flavour invariants (see Refs. [50,
51]) in the MS-scheme.
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