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Glioblastoma is the most common brain tumor. Median survival in unselected patients is o10
months. The tumor harbors stem-like cells that self-renew and propagate upon serial transplan-
tation in mice, although the clinical relevance of these cells has not been well documented. We
have performed the first genome-wide analysis that directly relates the gene expression profile of
nine enriched populations of glioblastoma stem cells (GSCs) to five identically isolated and
cultivated populations of stem cells from the normal adult human brain. Although the two cell
types share common stem- and lineage-related markers, GSCs show a more heterogeneous gene
expression. We identified a number of pathways that are dysregulated in GSCs. A subset of these

pathways has previously been identified in leukemic stem cells, suggesting that cancer stem cells
of different origin may have common features. Genes upregulated in GSCs were also highly
expressed in embryonic and induced pluripotent stem cells. We found that canonical Wnt-
signaling plays an important role in GSCs, but not in adult human neural stem cells. As well we
identified a 30-gene signature highly overexpressed in GSCs. The expression of these signature
genes correlates with clinical outcome and demonstrates the clinical relevance of GSCs.

& 2013 The Authors. Published by Elsevier Inc. Open access under CC BY-NC-SA license.
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Introduction

The cancer stem cell hypothesis proposes that the cells of cancers
are organized in hierarchies initiated and maintained by a cancer
stem cell (CSC). The existence of such a hierarchy in tumor
propagation was first described in hematopoietic malignancies
[3,28], but has later been extended to a variety of other cancers.
The strongest support for this model comes from transplantation
assays in immunodeficient mice where only a subpopulation of
the cells in the tumor bulk can initiate and maintain the tumor
upon serial grafting. Despite substantial evidence from preclinical
studies, the relevance of this model to human disease is uncertain.
Two studies have now identified a leukemic stem cell (LSC)
signature of gene expression associated with acute myeloid
leukemia and it has shown that this signature correlates with
the clinical outcome [9,13]. These studies have established LSCs as
significant in clinical disease. A direct comparison of the gene
expression profiles of LSCs and hematopoietic stem cells (HSCs)
grown under identical conditions, has resulted in new insight into
critical pathways regulating CSCs in leukemia [33].

Besides a paucity of clinical evidence, testing the cancer stem
cell model is challenging due to the lack of markers that
consistently define CSCs. For example, LSCs were initially believed
to be restricted to the CD34+ CD38- population, but have later
been shown to be present in both the CD34- and CD34+CD38+
populations [9,47,48]. Such heterogeneity has also been shown in
solid cancers. In glioblastoma (GBM), the best characterized
surface marker is CD133 (prominin-1), but CD133− cells also
initiate tumors upon xenografting [42,52] and it has been
suggested that the true GBM stem cell (GSC) resides in the
CD133− population [6]. Thus, surface marker-sorted CSC popula-
tions cannot be universally defined and functional confirmation of
CSC activity using well-validated tumor initiation assays is
required.

GBM is both the most common and the most malignant brain
tumor. It is invariably lethal with a median survival of less than 10
months in unselected patient populations [18]. The existence of
CSCs in brain tumors was first suggested following the isolation of
clonogenic stem cell-like spheres from human GBM tissue [21].
Serum-free, growth factor-enriched culturing conditions, devel-
oped to isolate and expand somatic neural stem cells [44], have
been shown to be a robust method for enrichment of stem-like
cells from a range of organs and malignancies [43]. Here, we have
used this technique to directly compare GSCs to ahNSCs harvested
from the subventricular zone. ahNSCs can differentiate into the
three neural lineages [22], including functional neurons [34] that
develop synaptic networks [34,35]. Tumor biopsies cultured
under identical conditions maintain genotype, phenotype and
the ability to form invasive tumors [10,29,51]. Sphere growth rate
and the ability to form spheres under these conditions is related
to tumor grade [49] and is an independent prognostic factor
within the glioblastoma group [27].

Global gene expression studies of GSC populations have led to
the identification of subgroups [17,32] but have not identified
which pathways that regulate cancer stem cell functions and do
not address the question of how to specifically target GSCs. Here
we directly compare the gene expression from functionally
validated, enriched fractions of CSCs from a solid tumor to its
closest functional non-tumorigenic, adult cell population. We
identify the genes, pathways and networks shared between
ahNSCs and GSCs, and those specific to the oncogenic phenotype
of GSCs. We highlight significant differences found in the expres-
sion of classical stem cell signaling pathways, in particular
dysregulation of the Wnt-pathway through SFRP1, a Wnt-
signaling inhibitor downregulated in GSCs. Cancer stem cell-
specific genes have been validated and we show that their
expression predicts clinical outcome in GBM patients.
Materials and methods

Fresh human biopsy specimens and spheroid cultures

Biopsy specimens were obtained from informed and consenting
patients, and the tissue harvesting was approved by the Norwegian
National Committee for Medical Research Ethics. Histopathological
diagnosis and grading were performed by neuropathologists
according to the World Health organization classification [25].
ahNSC cultures were established from ventricular wall biopsies of
five patients operated on for medically intractable temporal lobe
epilepsy (mean age 42, range 33–60). GSC cultures were estab-
lished from tumor biopsies from nine patients with histopatholo-
gically verified glioblastoma (mean age 61, range 48–71). The cells
were isolated mechanically and enzymatically and further cultured
in serum free medium enriching for stem cells as described earlier
[51]. For dissociation of brain tissue into single cells, Trypsin-EDTA
was substituted by papain (Worthington Biochemical Corporation).

RNA isolation

Total RNA from spheres was isolated using Qiazol and the RNeasy
Micro Kit (Qiagen GmbH, Hilden, Germany). The concentration of
each RNA sample was determined by using a Nanodrop spectro-
photometer and analyzed for quality using an Agilent 2100
Bioanalyzer with the RNA Nano Assay. Only RNA samples with a
RIN value 48 were included for further analysis.

Microarray hybridization and analysis of microarray data

RNA of each sample was reverse transcribed and amplified using
the NanoAmp RT-IVT Labeling Kit (Applied Biosystems). The
resulting cRNA (10 mg) was fragmented and hybridized to Applied
Biosystems Human Genome Survey Microarray V2.0 (Applied
Biosystems) according to the manufacturer's protocol. Analysis
and statistics were done using J-Express (Molmine), R (version
2.11.1) and Bioconductor. External data files were extracted from
the GEO database. For details regarding bioinformatic analysis see
supplemental information.

Quantitative real-time PCR

Total RNA was reverse transcribed using the High Capacity cDNA
synthesis kit (Qiagen, Germany) and followed by qPCR using
predesigned TaqMan gene expression assays and reagents
(Applied Biosystems). Both the standard curve method and the
2−ΔΔCT method were used to analyze the data. For details
regarding TaqMan gene expression assays see supplementary
information and supplementary Table S7.



E X P E R I M E N T A L C E L L R E S E A R C H 3 1 9 ( 2 0 1 3 ) 2 2 3 0 – 2 2 4 32232
Immunofluorescence

Spheres and tumor tissue were fixed in paraformaldehyde,
cryoprotected and incubated in OCT (Tissue-TEK, Sakura Finetek,
CA). Blocks were then cryosectioned at 10 or 20 mm on a freezing
microtome, and thawed onto Super Frost/Plus microscope slides
(Menzel-Gläzer, Braunschweig, Germany). Sections were washed,
blocked and incubated in primary antibody overnight at 4˚ C.
Analysis and image acquisition was done on an Olympus BV 61
FluoView confocal microscope (Olympus, Hamburg, Germany),
using the FV10-ASW 1.7 software (Olympus). For details regarding
antibodies see supplementary information.

Western-blot analysis

Cells were lysed in preheated (100 1C) buffer, then boiled,
sonicated and centrifuged to remove unsolubilized protein.
Aliquots of 30 ug were denatured and separated on SDS gradient
gels and transferred to PVDF membranes. Membranes were
incubated with blocking buffer, washed and incubated with
primary antibody in blocking buffer at 4 1C overnight. The
membranes were further incubated with HRP-conjugated sec-
ondary antibodies and quantified using ECL Advance Western
blotting detection solution (Amersham) and the Kodak Image
Station 400 MM PRP (Kodak). For details regarding antibodies see
supplementary information.

SFRP1 stimulation

GSCs and ahNSCs were passaged into single cells and seeded in 96
well plates (Sarstedt AG & Co, Germany) at a density of 500 cells
per well in stem cell enriching media. SFRP1 was added daily in
three different concentrations (100, 400, and 800 ng/ml) for 2
weeks. Each assay included 6 replicates of each treatment and
was repeated 3 times in total. Spheres in individual wells were
inspected and counted manually using a microscope and an
automatic colony counter (Gelcount, Oxford Optronix). Cell pro-
liferation was measured as change in total level of nucleic acids as
compared to untreated control cells using CyQUANT according to
the manufacturer's instructions (Molecular Probes, Invitrogen).

Accession Numbers

Microarray data have been submitted to the Gene Expression
Omnibus (GSE31262) and the online resource “The Stem Cell
Discovery Engine” [19].
Results

Obtaining and characterizing samples

ahNSCs and GSCs were cultivated as free floating spheres from
five normal subventricular zone and nine primary GBM tissue
biopsies, respectively. All cell cultures formed secondary spheres.
Both ahNSCs and GSCs maintained the ability to proliferate, self-
renew and differentiate in vitro, but only the GSCs gave rise to
tumors upon orthotopic transplantation to SCID-mice [49]. GSCs
were able to initiate tumor formation upon serial transplantation,
and maintained their genome, global expression profile and
ability to differentiate after in vitro cultivation [51]. All but one
GBM tissue sample (G3) was IDH1 mutation negative in line with
the frequency of IDH1 mutations in primary GBMs [24].

GSCs are more heterogeneous than ahNSCs and represent
different subtypes of GBMs

Hierarchical clustering based on the pair-wise correlation of global
gene expression profiles separated the GSC and ahNSC samples,
indicating that the transcriptional programs of individual GSC
cultures differ from ahNSCs (Fig. 1A). There was generally a much
greater heterogeneity across the GSCs than across the ahNSCs (0.81
vs. 0.47; average square of differences to the mean per probe).
Two outliers were identified in the tumor group (G2 and G3)
(Fig. 1C & D). Of these, G3 showed a pronounced difference in
behavior compared to the other GSC cultures. In addition to a more
limited differentiation ability in vitro, it also formed a compact
noninvasive tumor bulk containing spindle-like cells when trans-
planted to SCID mice [51]. Since G3 obviously had lost its ability to
mimic the invasive nature of GBMs, it was excluded from further
gene-expression analysis.

Investigation of GBM heterogeneity in tissue biopsies suggests the
existence of molecular subgroups [12,40,50]. The Cancer Genome
Atlas (TCGA), being the most significant study, describes four such
subgroups of GBMs: the proneural, neural, classical and mesenchymal
subtype. The subtypes are identified dependent on the level of
enrichment of a total of 840 genes (210 genes per class). To explore
if such subtypes were present among our population of GSCs, we
calculated the enrichment of these subtypes individually for every
sample. The expression score was calculated as the mean expression
of the genes in the signature using the rank-normalized gene
expression scores (z-score). 173 samples from the original TCGA-
study were included as positive controls. While all ahNSCs showed a
homogeneous correlation with the neural subtype, seven of the GSC
cultures were enriched in genes representing either the classical,
proneural or mesenchymal subtype. Two of the GSC cultures
(including the outlier G3) did not show enrichment of any particular
subgroup (supplementary Fig. S1 and supplementary Table S1). We
further classified our samples according to the less well established
GSC classification by Lottaz et al. [32]. This classification contains only
two groups, (1) mesenchymal and (2) proneural. Hierarchical cluster-
ing according to their 24-gene signature identified one sample as
belonging to their type 1 (G9) while the other 7 belonged to type 2
(Supplementary Fig. S1). The outlier (G3) clustered separately from
the others and was generally much less enriched in signature genes.

GSCs and ahNSCs share common stem- and lineage-related
markers

To determine the common molecular phenotype of ahNSCs and
GSCs, we directly compared the expression of known “stemness”
genes as well as markers of the three principal cellular compo-
nents of the nervous system - neurons (DCX, NCAM1, TUBB3, and
MAP2), astrocytes (CD44, VIM, GFAP, and SLC1A3) and oligoden-
drocytes (OLIG2, CNP, CA2, and CSPG4). GSCs and ahNSCs
expressed approximately the same levels of stemness markers,
such as nestin (NES), SSEA1 (FUT4), OCT4 (POU5F1), BMI1
(PCGF4), β1-integrin (ITGB1) and SOX2. There was no significant
difference in the expression of markers for neurons, astrocytes
and oligodendrocytes (Fig. 2A). CD133 (PROM1) and MELK were
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Fig. 1 – Gene expression profiles of GSCs and ahNSCs identify differentially regulated transcriptomes: (A) Unsupervised hierarchical
clustering analysis completely separates GSCs and ahNSCs. (B) Unsupervised hierarchical clustering analysis of the most
significantly regulated genes identified by the Rank Product Algorithm (1% false discovery rate). (C) Principal Component Analysis
of GSCs (○) and ahNSCs (Δ). The first and second principal components identified G2 and G3 as outliers. (D) Principal Component
Analysis of GSCs (○) and ahNSCs (Δ). The second and third principal components distinguished ahNSCs and GSCs.
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significantly upregulated in GSCs (Fig. 2A). Using immunofluor-
escence we investigated the expression of selected markers (NES,
GFAP, MELK, CXCR4, BMI1 and SOX2) at the protein level. All
markers were similarly expressed, except for SOX2 which was
overexpressed in GSCs (Fig. 2B).

A GSC expression index correlates with patient survival

Recently, it was shown for the first time that an LSC gene
signature predicts patient survival in human leukemia [9,14],
providing the impetus for an analogous investigation in GBM.
Using the Rank Product algorithm [5] at a stringent threshold
(0.1% false discovery rate (FDR)), we identified 179 genes being
significantly upregulated in GSCs compared to ahNSCs. An addi-
tional filter was applied (fold change45; coefficient of varia-
tiono30 in GSC samples; average log2o1 for ahNSCs) to isolate a
30-gene signature which was highly overexpressed in all GSC
samples studied (Fig. 3A and Table S2). This GSC signature
included MELK, a gene known to regulate self-renewal and
proliferation of both neural stem cells and GSCs in vitro and
in vivo [37,38]. Interestingly, a literature search for each signature
gene identified eleven of these as downstream targets of or
related to the Notch-, Hedgehog- or Wnt- pathways (Table S2).
The signature was further projected onto a network of protein
association data, including protein interactions, co-expression,
co-localization and domain similarity [53] (Fig. 3B). The network
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analysis demonstrated that a high proportion of the signature
genes codes for proteins that are known to physically interact
with each other, strongly suggesting that these play a coordinated
role in the regulation on GSCs. Their enriched set of biological
processes involve proliferation and cell-division (gene ontology
analysis, Table S2).
We calculated a GSC expression index for each array from a

publically available dataset containing gene expression levels for
normal brain tissue, and low- and high grade gliomas [45], based
on the summed Z-scores of the 30 genes in the GSC signature.
This index correlated to an increasing grade of malignancy (Fig. 3C
and Table S3).

The value of this index in predicting clinical outcome was
assessed using two additional publicly available gene expression
data-sets of high-grade gliomas [12,40]. In each study, patients
were stratified into two groups according to the expression of the
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Fig. 3 – A gene signature of GSC-upregulated genes correlates with histology of glioma patients: (A) Heatmap of the expression of
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GSC signature using K-means clustering. In both datasets we
identified a significant correlation between the GSC expression
index and survival, with a median survival of 124 vs. 62 weeks (low
and high signature, respectively) and 684 vs. 224 days (Fig. 4A & B
and Table S4). For both datasets the two clusters included both
WHO glioma grade III and GBM tumors. The fraction of grade IV
tumors was higher in the group with high GSC expression
signature; 85% vs. 60% and 97% vs. 64% in the two datasets (high
and low signature, respectively). Interestingly, our GSC expression
index showed a better ability to discern patient survival than a
gene signature recently developed based on unsupervised gene
clustering in the tumor bulk by Li et al. [30]; having a median
survival of 97 vs. 65 weeks (low and high signature, respectively)
Fig. 4 – The enrichment of the GSC-upregulated signature correlates
ES/iPS cells. (A–B) Kaplan Meier plot of patients from the Phillips
survival of glioma patients with a high expression of the 30-gene
normalized distribution of GSC up-regulated signature (5% FDR) ac
expression of the GSC up-regulated signature (5% FDR) for a pane
fibroblasts was used as a control (blue).
and 412 vs. 341 days (Table S4). This strongly suggests that our 30-
gene signature is clinically relevant and provides evidence that the
CSC model is applicable to human GBM.
Genes upregulated in GSCs correlate with the expression
profiles of ESCs and iPSCs

To determine the extent to which the GSC signature is expressed
across a wide range of cell types, a summary score was calculated for
the expression of the GSC signature (5% FDR) across a large
proportion of the publicly available gene expression arrays in the
Gene Expression Omnibus (�160,000 arrays). Fitting the distribution
with decreased survival of glioma patients and pluripotency of
(A) and the Freije (B) datasets showing significantly decreased
signature (group 2, red) (C) Upper histogram shows the
ross the GEO database corpus. Lower panel shows the increased
l of 127 ESC (red) and 154 iPSC sources (green). A set of 127
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of these scores to a mixture-model allowed for the calculation of a
probability of expression of the GSC signature in each array (Fig. 4C;
upper panel). Within this dataset, a collection of embryonic stem
cells (ESCs) and inducible pluripotent stem cells (iPSCs) arrays were
manually curated to highlight the expression of the GSC signature in
these arrays relative to the full GEO data. A set of fibroblast arrays
was used as an additional control. The genes in the signature was
found to be highly expressed within the group of 281 pluripotent
arrays of ESCs and iPSCs (p¼0.042) (Fig. 4C; lower panel and Table
S5), with a mean expression level higher than 96% of all arrays
profiled. Calculated as individual groups, iPSCs (p¼0.033) showed a
higher expression of this signature than ESCs (p¼0.062). These
findings support the hypothesis that GSCs share gene expression
programs with pluripotent cell types known for their tendency to
generate tumors when transplanted in preclinical models of neuro-
degenerative disease.

Dysregulation of pathways and networks in GSCs

The functional characteristics that distinguish GSCs from ahNSCs
were determined by identifying signaling pathways and regulatory
networks enriched in the differentially expressed gene signature.
Two strategies were used, providing different levels of sensitivity
and specificity. Firstly, using a differential gene expression analysis
applying the Rank Product algorithm we identified 423 upregulated
and 414 downregulated genes at 1% FDR (Fig. 1B and Table S6). The
enrichment of canonical pathways in this gene list was determined
using the hypergeometric distribution, based on pathways from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) and Wikipath-
ways [41]. Twenty-four pathways were found to be significantly
enriched (p-valueo0.01), with the cell cycle (p-value¼1.42E-13)
and the Wnt pathway (p-value¼3.75E-5) being the most significant
(Fig. 5 and Table S6).

Secondly we performed an additional analysis with a greater
emphasis on sensitivity rather than specificity using the Compara-
tive Marker Selection suite [16]. This identified 1713 upregulated
and 2544 downregulated genes (po0.05) (Table S6). Their enrich-
ment in the Canonical Pathways collections of the Molecular
Signatures Database (MSigDB) were assessed by the
Fig. 5 – Network view of pathways being dysregulated in GSCs: The
Rank Product Algorithm (1% FDR) and was done using wikipathwa
indicated by the color code. Gene overlap between pathways is ind
pathways.
hypergeometric distribution. The most significantly enriched upre-
gulated genes were related to the cell cycle (Cell Cycle Combined,
DNA Replication Reactome, G1 To S1 Cell Cycle Reactome) and to
cell signaling pathways (TNF, MAPK, NFKβ, mTOR, NOTCH and p53/
apoptosis) (Fig. S2 and Table S6). Several pathways related to cell-
to-cell interaction (Tight Junction, Axon guidance) and neuronal
function (calcium regulation, GABA pathway) were downregulated
in GSCs compared to their normal counterparts (Fig. S2 and Table
S6).
Detailed information about the experiments and the resulting

gene sets generated are available for pathway comparison with
other stem and cancer stem cell datasets in the online resource
“The Stem Cell Discovery Engine” [20].

Stem cell pathways - the Wnt-pathway is more
dysregulated than hedgehog and notch

Earlier studies have suggested that inhibition of the Hedgehog- or
Notch-signaling pathway reduces the tumorigenicity of GSCs
[7,11]. Interestingly, although we found that the Hedgehog path-
way and activated transcriptional targets of the Notch pathway
were enriched in GSCs (p¼8.47�10−4 and p¼1.79�10−3 respec-
tively), the Wnt-signaling pathway was the most significantly
dysregulated (p¼3.75�10−5). A gene-level analysis of each of
these pathways and their downstream targets was conducted to
provide a detailed understanding of their role in GSCs (Fig. 6).
Both cell types expressed very low levels of the Hedgehog

pathway-associated Shh-ligand and the transcription factors GLI1
and GLI2. GSCs, however, expressed significantly higher levels of
the membrane receptor smoothened (SMO) and the transcription
factor GLI3 (Fig. 6A). Significant upregulation of downstream
targets (p¼0.02) supported the importance of the Hedgehog-
pathway in GSCs.
The core genes necessary for Notch-signaling (KEGG) were

present above background levels in both cell types. The Notch 2
receptor and the transcription factor Hes1 were significantly
upregulated in GSCs (Fig. 6B). Analysis of downstream targets
gave ambiguous results as both activated and repressed targets of
Notch were enriched in GSCs.
pathway analysis was based on the gene list identified by the
ys and netpath. The significance of each pathway is reflected as
icated by the intensity of the lines connecting the different



Fig. 6 – Pathway maps of gene expression data in Shh-, Notch- and Wnt-pathway: Pathway maps of the (A) Hedgehog-, (B) Notch-
and (C) Wnt-signaling in GSCs compared to ahNSCs. Hedgehog- and Notch-pathway data were extracted from microarrays whereas
Wnt data are from qPCR-analysis.
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Analysis of the Wnt-pathway showed that core genes were
expressed in both cell types, but a number of the pathway members
were differentially regulated. The membrane receptors FZD3, 5 and
7 were upregulated in GSCs compared to ahNSCs, while soluble
Frizzled related protein 1 (SFRP1) was significantly downregulated.
The set of activated downstream targets of the Wnt pathway were
also enriched in the set of GSC expressed genes (p¼0.002).

Wnt-pathway dysregulation could be confirmed at gene
expression- and protein level

To confirm the finding that the Wnt pathway plays a significant
role in GBM/GSCs we performed a qPCR screen of more than 90
Wnt-related genes (Fig. 6C & supplementary Table S7). Excluding
weakly expressed genes (Ct 430), we identified upregulation of
WNT7A and FZD 2, 3 and 7 and downregulation of WNT5B. The
downregulation of SFRP1 and upregulation of SFRP4 was con-
firmed. LEF1 and TCL7F, transcription factors involved in Wnt
downstream signaling, were significantly upregulated.

The activity of β-catenin depends on its phosphorylation state.
In cells not exposed to Wnt signals, β-catenin levels are kept low
as a result of phosphorylation by GSK-3. When cells are exposed
to Wnt signals, GSK-3 is trapped in another complex and does not
phosphorylate β-catenin anymore. Only this unphosphorylated,
stabilized form of the protein can enter the nucleus to interact
with transcription factors. To investigate the activity of β-catenin
in GSCs and ahNSCs, we quantified both total and active (depho-
sphorylated) β-catenin by western blot. While total β-catenin was
present in both cell types, its active form was only present in
GSCs (Fig. 7E). To further establish the activation status of Wnt-
signaling in GSCs, we used immunofluorescence combined with
confocal microscopy to determine the subcellular localization of
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Fig. 7 – β-Catenin is highly upregulated in GSCs and SFRP1 regulates their proliferation and sphere forming capacity:
(A) Immunofluoresence of spheres showing the expression of active β-catenin (green) in non-treated GSCs (upper panel) and SFRP1
treated GSCs (3200 ng/ml, lower panel). Cell nuclei were stained with Hoechst (blue). SFRP1 treated spheres display altered sphere
morphology compared to controls. (B) SFRP1 treatment reduces cell proliferation dose-dependently in GSCs. Results are presented
as mean7SD of three individual experiments and calculated as percentage of controls. Bars with * have p-value o0.01 (C) SFRP1
treatment reduces sphere formation dose-dependently in GSCs. Results are presented as mean7SD of three individual experiments
and calculated as percentage of controls. Bars with * have p-value o0.01 (D) SFRP1 treatment does not reduce cell proliferation in
ahNSCs. Results are presented as mean7SD of three individual experiments and calculated as percentage of controls (E) Western
blot showing the differential protein expression of active β-catenin and total β-catenin between ahNSCs (N) and GSCs (G). β-Actin
was used as a loading control.
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β-catenin. This showed the presence of active β-catenin in the
nucleus of GSCs (Fig. 7A, upper panel). These data further support
the finding that Wnt-signaling is upregulated in GSCs.

Wnt-pathway inhibition reduces proliferation and sphere
forming capacity in GSCs

GSCs proliferate and form spheres much more efficiently than
ahNSCs [49], and the ability to form such spheres is a prognostic
predictor for patients with GBM [27]. Our data indicated both
downregulation of the naturally occurring Wnt antagonist SFRP1
and an upregulation of Wnt pathway ligands, receptors and
transcription factors in GSCs. Therefore, we investigated the effect
of SFRP1 on GSCs and ahNSCs in culture. Recombinant SFRP1 was
added daily in three different concentrations to the GSC and
ahNSC cultures for two weeks. This treatment led to a significant
and dose-dependent reduction of both proliferation and sphere
formation in GSCs by as much as 70% and 50%, respectively
(Fig. 7B & C). In contrast, SFRP1-stimulation did not interfere with
proliferation of ahNSC (Fig. 7D). SFRP1 treated spheres were also
smaller than non-treated (Fig. 7A, right) and β-catenin was
located in the cytoplasm and the cell membrane, instead of in
the nucleus (Fig. 7A, lower panel). This indicates that loss of
naturally occurring Wnt-inhibition through downregulation of
SFRP1 is important for GSCs' ability to proliferate and self-renew.
Discussion

We have developed the first internally consistent experimental and
molecular reference between GSCs and ahNSCs using functionally
validated sphere-forming cells. Sphere-forming conditions enrich
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for stem cells but result in a heterogeneous mixture of stem- and
progenitor cells. There is, however, evidence that comparison of
closely related but distinguishable cell fractions can reveal stem cell
specific gene expression, even though the actual stem cell frequency
is relatively low. For example, many genes identified from enriched
but not purified HSC fractions have subsequently been shown to
have HSC-specific function [15,39]. Similarly, in this study we
identified MELK and EHZ2, both of which have earlier been
suggested to regulate GSC self-renewal and tumor initiating capacity
[37,38,46]. Our strategy of directly comparing expression patterns of
GSCs to ahNSCs, as opposed to non-stem cell populations, has
enhanced our ability to identify genes and pathways that are
disrupted at the stem cell level in GBM.
While there is substantial preclinical evidence that certain

cancers are organized in cell hierarchies initiated and maintained
by a CSC, the relevance of this model in human disease is still
uncertain. Two independent groups compared transcriptional
programs of functionally validated LSCs and HSCs, identified a
LSC gene signature, and showed that high expression of this
signature was associated with adverse clinical outcome in human
leukemia [9,14]. These studies were first to provide substantial
support for the CSC hypothesis in leukemia from a clinical
perspective. Using a similar strategy we have here identified a
gene expression signature that exists in GSCs, but not in ahNSCs,
that correlates to survival in independent data sets. This indicates
that GSCs are of clinical importance in GBM.
Recently, Engström et al. compared four glioma stem cell lines with

two human fetal neural lines [8]. In contrast to both our study and the
study of Majeti et al. on LSCs, both of which used early passage
normal stem cells from relevant normal human tissue, Engström el al.
used cells that were (1) fetal and (2) grown as adherent cell lines [32].
This result in a different cell type and accordingly, a very different
profile from what we found when comparing GSCs to ahNSCs. While
Engström et al. identified 739 genes being differentially regulated
within a significance level of 10% FDR, a similar cut-off in our study
generated a list of 3264 differentially regulated genes. The two lists
had 247 genes in common, but none of these were among our most
significant genes (179 genes, FDR 0.1%). Consequently, the extracted
core signatures capturing the major gene expression alterations in the
respective studies differ. This was also reflected in the results from
pathway analysis identifying the top-most enriched KEGG-pathways.
While our study identified the cell cycle and the Wnt pathway,
Engström et al. identified cytokine–cytokine receptor interaction and
the chemokine signaling pathway as the most dysregulated pathways.
ECM-receptor interaction was the only pathway shared between the
two studies. Despite differences in the cell types used and the
signatures identified, the results from Engström et al. are in consistent
with a clinical relevance of the CSC hypothesis in solid tumors.
We found that GSC cultures were more heterogeneous than

ahNSCs. While our GSC cultures covered a spectrum of TCGA
subtypes, all five ahNSCs correlated with the neural subtype. Not
all GSC cultures showed enrichment of a particular subgroup. The
TCGA sub-classification [50] was, however, developed using
tumor bulk tissue and may not be optimal for stem cell enriched
cell types. Although significant, the expression scores of subtype-
genes in GSCs were not as high as those found in tissue samples.
Subtyping of the samples according to Lottaz et al. identified one
sample (G9) as their type I with a mesenchymal profile similar to
ahNSCs. G9 was also identified as mesenchymal according to
TCGA. Lottaz showed that their type II corresponds with a
proneural phenotype, but did not investigate enrichment of
subtypes other than mesenchymal and proneural. Our samples
identified as Lottaz type II, were enriched in genes of either the
proneural or classical TCGA subtypes. In order to get a full
overview of the tumor initiating cell/stem cell population and
significantly establish subtypes of GSCs, it will be important to
cultivate cells from a larger number of patients.

We also found that genes up-regulated in GSCs were highly
expressed in both ESCs and iPSCs as compared to the other arrays
in the GEO database. This is in keeping with the tendency of these
cell types to form tumors following transplantation in preclinical
models of neurodegenerative disease repair [4]. The identified
correlation of GSCs with iPSCs was higher than the correlation of
GSCs with ESCs, supporting recent literature indicating that iPSCs
are likely to be more tumorigenic than ESCs [2].

Pathway analysis identified that GSCs express a gene signature
typically associated with migrating cells and the interaction of stem
cells with their niche: axon guidance, adherens junction, focal
adhesion, regulation of actin cytoskeleton and leukocyte trans-
endothelial migration. With the exception of axon guidance, these
pathways were also identified as the top-most dysregulated path-
ways in leukemic cells in the only other study directly comparing
cancer stem cells to somatic adult stem cells [33]. Thus, CSCs of
different origin may have common features. A growing number of
studies on stem cell related cancers are being performed. It is
important to be able to determine the underlying molecular
phenotype of CSCs, in particular, to determine if there are common
molecular events between cancer stem cell studies. To facilitate
such comparisons, we have made the data generated by this study
available within a specialized resource for stem- and cancer stem
cell signatures that is structured to facilitate discovery of common
and unique pathway utilization between signatures [20].

The Wnt- and Hedgehog-pathway genes, as well as Notch-
regulated targets showed altered expression in GSCs. These three
pathways are important regulators of adult NSCs [1,26,31], and
Hedgehog- and Notch- signaling have additionally been suggested
to be involved in regulating GSCs [7,11]. Here, we have identified
and characterized canonical Wnt-pathway dysregulation in GSCs.

Within the Wnt-pathway we identified significant downregula-
tion of SFRP1 and upregulation of FZD receptors (FZD 2, 3 and 7)
in GSCs. Active β-catenin was only present in GSCs. A primary trait
of GSCs is that they form spheres and proliferate much more
efficiently than ahNSCs [49]. This ability to form spheres corre-
lates with clinical outcome [27]. We found that re-establishing
SFRP1-inhibition in GSCs decreases both proliferation and sphere
forming ability. In contrast, SFRP1-stimulation did not interfere
with proliferation of ahNSCs. These findings are in keeping with
effects observed earlier in normal HSCs [36] and ESCs [23].

Our study provides evidence substantiating the clinical rele-
vance of CSCs in solid tumors and gives critical insights into the
similarities and differences between adult normal and malignant
stem cell populations. The results may be used for the develop-
ment of targeted therapies and as tools for assessing the impact of
therapy on the GSC population.
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