Optimally small sumsets in general Abelian groups

Alain Plagne

Centre de Mathématiques Laurent Schwartz, UMR 7640 du CNRS, École polytechnique,
91128 Palaiseau cedex, France

Received 15 June 2005; accepted 1 September 2005
Available online 24 October 2005

Abstract

When G is a finite Abelian group, a formula for the μ_G function in terms of the divisors of $|G|$ was already known. In this short paper, we show how a simple argument allows us to extend this formula to all Abelian groups.

\copyright 2005 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a finite group and r, s be two positive integers $\leq |G|$. We define $\mu_G(r, s)$ as the minimal cardinality of a (Minkowski) sumset $A + B = \{a + b, a \in A, b \in B\}$ with $A, B \subset G$ and $|A| = r, |B| = s$. The study of μ_G is classical in additive number theory (see [4,5] for a general introduction to this field).

It is known that if G is a finite Abelian group, then

$$\mu_G(r, s) = \min_{d|G} \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d. \quad (1)$$

This type of formula was introduced by the author in [6]. In that paper, (1) is proved to hold in the case of p-groups (the case of $\mathbb{Z}/p\mathbb{Z}$ reduces to the Cauchy–Davenport theorem [1,2]). It was then generalized to finite Abelian groups in [3].

E-mail address: plagne@math.polytechnique.fr.
Recently François Hennecart, in Saint-Étienne, asked whether a similar formula holds in the case of general Abelian groups (not only finite ones).

It is the aim of this Note to provide such a formula.

Theorem. Let G be any Abelian group. Then for any integers r, s satisfying $1 \leq r, s \leq |G|$, we have

$$
\mu_G(r, s) = \min_{d \in D} \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d,
$$

where D is the set of integers that are the cardinality of a finite subgroup of G.

The proof is direct, short and elementary (having (1) at hand).

2. The proof

Let us fix the positive integers $1 \leq r, s \leq |G|$. We choose some pair of sets $A, B \subset G$, $|A| = r$, $|B| = s$ in which the quantity $\mu_G(r, s)$ is attained. We consider the subgroup of G generated by A and B, say $H = \langle A \cup B \rangle$. We clearly have $|A + B| = \mu_G(r, s) = \mu_H(r, s)$ since $H \leq G$ and the definition of the μ-functions imply $|A + B| = \mu_G(r, s) \leq \mu_H(r, s) \leq |A + B|$. Since H is a finite type Abelian group, by the general structure theorem, it is isomorphic to $\mathbb{Z}^k \times T$ where k is some nonnegative integer and T is a finite product of cyclic groups. Without loss of generality, we shall assume $H = \mathbb{Z}^k \times T$.

For any positive integer p, denote by π_p the canonical projection from $H = \mathbb{Z}^k \times T$ onto $(\mathbb{Z}/p\mathbb{Z})^k \times T$. Clearly, if p is large enough, we have $|\pi_p(A)| = |A|$, $|\pi_p(B)| = |B|$ and $|\pi_p(A) + \pi_p(B)| = |\pi_p(A + B)| = |A + B|$ (this is in some sense a “cyclification principle” in contrast to the so-called rectification principle). It follows that for p large enough,

$$
\mu_H(r, s) = |A + B| = |\pi_p(A) + \pi_p(B)| \geq \mu_{(\mathbb{Z}/p\mathbb{Z})^k \times T}(r, s).
$$

We apply this formula with p a prime larger than $\mu_H(r, s) + 1$. By (1), we obtain

$$
\mu_H(r, s) \geq \min_{d | p^k | T} \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d.
$$

Let d_0 be a divisor of $p^k | T|$ in which the minimum in the right-hand side of this inequality is attained, then p cannot divide d_0 otherwise

$$
p - 1 \geq \mu_H(r, s) \geq \left(\left\lceil \frac{r}{d_0} \right\rceil + \left\lceil \frac{s}{d_0} \right\rceil - 1 \right) d_0 \geq d_0 \geq p,
$$

a contradiction. Therefore, we finally get

$$
\mu_G(r, s) = \mu_H(r, s) \geq \min_{d | |T|} \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d \geq \min_{d \in D} \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d,
$$

(2)
because any divisor of $|T|$ is the cardinality of a finite subgroup of T and thus of G.

Let now $d \in D$. By definition, there is some finite subgroup, say V, of G with $|V| = d$. Since V is a subgroup of G, $\mu_G(r, s) \leq \mu_V(r, s)$. Now using (1) for V, we obtain

$$\mu_G(r, s) \leq \min_{k|d} \left(\left\lceil \frac{r}{k} \right\rceil + \left\lceil \frac{s}{k} \right\rceil - 1 \right) k \leq \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d.$$

Since this is valid for any $d \in D$, we finally obtain

$$\mu_G(r, s) \leq \min_{d \in D} \left(\left\lceil \frac{r}{d} \right\rceil + \left\lceil \frac{s}{d} \right\rceil - 1 \right) d,$$

which implies, with (2), the Theorem.

References