NOTE

A PROOF OF McKEE'S EULERIAN-BIPARTITE CHARACTERIZATION

D.R. WOODALL
Department of Mathematics, University of Nottingham, Nottingham, UK NG7 2RD

Received 1 March 1988
Revised 20 October 1988

Abstract

A proof is given of the result about binary matroids that implies that a connected graph is Eulerian if and only if every edge lies in an odd number of circuits, and a graph is bipartite if and only if every edge lies in an odd number of cocircuits (minimal cutsets). A proof is also given of the result that the edge set of every graph can be expressed as a disjoint union of circuits and cocircuits. No matroid theory is assumed.

1. Preliminaries

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}$ be a finite set. The set 2^{S} of subsets of S forms a vector space over the field GF(2) of two elements, in which the sum of two sets A, B is their Boolean sum or symmetric difference $A+{ }_{2} B$, and scalar multiplication is given by $0 A=\emptyset, 1 A=A$ for each subset A. The singletons ($\left\{s_{1}\right\}, \ldots,\left\{s_{n}\right\}$) of S form a basis for 2^{S}. We can identify each subset A with its characteristic vector, which is its vector of coordinates with respect to this basis. Then the dot product $A \cdot B$ is 0 or 1 according as $|A \cap B|$ is even or odd. If $A \cdot B=0$ then A and B are orthogonal. If W is a subspace of 2^{S} then its orthogonal complement W^{\perp} (the set of all sets orthogonal to everything in W) is a subspace of 2^{S}, and despite the presence of self-orthogonal vectors ($A \cdot A=0$ whenever $|A|$ is even), it is elementary to verify that $\left(W^{\perp}\right)^{\perp}=W$ and $\left(U+_{2} W\right)^{\perp}=U^{\perp} \cap W^{\perp}$. (Note that Chen [1] does not call W and W^{\perp} orthogonal complements unless, in addition, $W+{ }_{2} W^{\perp}=2^{S}$ or (equivalently) $W \cap W^{\perp}=\{\emptyset\}$. We shall not impose this restriction.)
A binary matroid M is a pair (S, W) where S is a finite set and W is a subspace of 2^{S}. Its dual matroid is $M^{*}=\left(S, W^{\perp}\right)$. The minimal non-empty sets in W and W^{\perp} are respectively the circuits and cocircuits of M.
An example is the graphic matroid of a graph $G=(V, E)$, in which $S=E$, circuits have their usual meaning (but regarded as sets of edges), and the cocircuits are the minimal cutsets. (A cutset is a set of edges whose removal increases the number of components in the graph.) We review the theory briefly. Define W to be the set of all Boolean sums of (edge-sets of) circuits in G; W is clearly a subspace of 2^{E}. Define the coboundary operator $\delta: 2^{V} \rightarrow 2^{E}$ by

$$
\delta(X):=\{x y \in E: x \in X, y \in V \backslash X\},
$$

and define $W^{*}:=\operatorname{Im}(\delta)$. The sets $\delta(\{v\})(v \in V)$ are the vertex coboundaries. By elementary graph theory one verifies that a set of edges is a cutset if and only if it contains a non-empty set in W^{*}, so that the minimal non-empty sets in W^{*} are the minimal cutsets. And by graph theory or linear algebra, noting that δ is a linear transformation, one verifies that W^{*} is a subspace of 2^{E}, thet W^{*} is spanned by the vertex coboundaries, and that W and W^{*} are orthogonal complements. Thus (S, W^{*}), the cographic matroid of G, is the dual matroid of (S, W).
In the terminology of simplicial homology (regarding G as a 1 -dimensional simplicial complex if it is simple, and as an appropriate cell complex otherwise), the elements of W and W^{*} are the 1-cycles and 1-coboundaries with coefficients in GF(2). We shall call them cycles and coboundaries respectively; McKee [2] calls them circs and segs.

2. The Eulerian-bipartite characterization

Note that a connected graph $G=(V, E)$ is Eulerian iff E is a cycle, that is, cvery coboundary is even; this occurs iff every cocircuit is even, or, alternatively, iff every vertex coboundary is even; that is, every vertex has even degree. And regardless of connectedness, G is bipartite iff E is a coboundary, that is, every cycle is even, which occurs iff every circuit is even.
The following three theorems are included in [2], and the reformulation of Theorem 3 as Theorem 3' is in [3].

Theorem 1. A connected graph G is Eulerian if and only if each edge lies in an odd number of circuits.

Theorem 2. A graph G is bipartite if and only if each edge lies in an odd number of cocircuits.

Theorem 3. If $M=(S, W)$ is a binary matroid, then $S \in W$ if and only if each element of S lies in an odd number of circuits.

Theorem 3'. If $M=(S, W)$ is a binary matroid, then S is the Boolean sum of some set of circuits iff S is the Boolean sum of the set of all circuits.

Theorems 1 and 2 follow immediately from Theorem 3 applied to the graphic and cographic matroids of G. But the "if" direction in each case is immediate: for example, if each edge of G lies in an odd number of circuits, then E is the Boolean sum of all the circuits, and hence is a cycle. The "only if" direction in Theorem 1 was proved by Toida [4], but his proof does not seem to extend directly to the other theorems. McKee [2] gave a proof of "only if" in Theorem 3.

Unfortunately it is not correct (he overlooked the possibility that some of his even numbers might be zero), although he has shown in [3] how the proof can be repaired. The remainder of this section is devoted to an alternative proof.

Let $M=(S, W)$ be a binary matroid, $d, e \in S$ and $f \notin S$. The result of merging d and e into a new element f is the system $\left(S_{1}, W_{1}\right)$ defined as follows: $S_{1}:=$ $(S \backslash\{d, e\}) \cup\{f\}$, and, if $C \subseteq S \cap S_{1}$, then

$$
\begin{aligned}
C \in W_{1} & \Leftrightarrow C \in W \\
C \cup\{f\} \in W_{1} & \Leftrightarrow C \cup\{d, e\} \in W
\end{aligned}
$$

It is easy to see that W_{1} is a subspace of $2^{S_{1}}$, so that (S_{1}, W_{1}) is a binary matroid, which we shall denote by the cumbersome but descriptive terminology $M(d e \rightarrow f)$. Moreover, $S_{1} \in W_{1}$ if and only if $S \in W$.

We shall prove by induction on $|S|$ that if $S \in W$ then each element e of S lies in an odd number of circuits. If $|S|=1$ then S is the unique circuit and the result is immediate; so suppose $|S|>1$. Given e in S, assume $\{e\}$ is not a circuit (otherwise the result is obvious), and choose a cocircuit D containing e. For cach d in $D \backslash\{e\}$, let $c(d, e)$ denote the number of circuits containing f in the matroid $M(d e \rightarrow f)$. By the induction hypothesis we may suppose that $c(d, e)$ is odd. But $|D|$ is even since $S \in W$, and so $|D \backslash\{e\}|$ is odd, whence $\Sigma:=\sum_{d \in D \backslash\{e\}} c(d, e)$ is odd.

Now, C is a circuit containing f in $M(d e \rightarrow f)$ iff $C^{\prime}:=(C \backslash\{f\}) \cup\{d, e\}$ is either a circuit in M containing d and e, or a disjoint union $C_{1} \cup C_{2}$ of two circuits where $d \in C_{1}, e \in C_{2}$ and $C^{\prime} \backslash\{d, e\}$ contains no circuit. The result will follow if we can show that every circuit in M containing e makes an odd contribution to Σ, and every set of the form $C_{1} \cup C_{2}$ makes an even contribution.
The first of these is easy, since every circuit in M has even intersection with D, and so cvery circuit containing e contains an odd number of elements of $D \backslash\{e\}$, and so contributes 1 to $c(d, e)$ for an odd number of choices of d. To prove the second statement, let $C^{\prime}=C_{1} \cup C_{2}$ as described above. This is the only representation of C^{\prime} as the disjoint union of two circuits, since if $C^{\prime}=C_{1}^{\prime} \cup C_{2}^{\prime}$ is a different representation with $e \in C_{2}^{\prime}$ (w.l.o.g.) and $C_{1} \neq C_{1}^{\prime}$, then either C_{1}^{\prime} or $C_{1}+{ }_{2} C_{1}^{\prime}$ is a non-empty element of W contained in $C^{\prime} \backslash\{d, e\}$, which contradicts the fact that $C^{\prime} \backslash\{d, e\}$ contains no circuit. But C_{1} has even intersection with D, and so C^{\prime} contributes 1 to $c(d, e)$ for an even number of choices of d.

It follows that the number of circuits of M containing e has the same parity as Σ, which we have seen is odd, and the proof is complete.

3. Edge-decompositions

I am greatly indebted to McKee [3] for drawing my attention to the following result, which appears in both [1] and [5]; it seems unrelatcd to McKee's
characterization, but I include it here because it follows easily from the definitions in Section 1.

Theorem 4. Let $G=(V, E)$ be a graph. Then:
(a) E is the disjoint union of a cycle C and a coboundary D. (Possibly C or $D=\emptyset$.)
(b) E is a disjoint union of circuits and cocircuits.
(c) V is the disjoint union of two sets X and Y (one of which may be empty) such that the two induced subgraphs $\langle X\rangle$ and $\langle Y\rangle$ have all degrees even.

Proof. We prove that (a), (b) and (c) are equivalent, and then prove (a). (a) $\Leftrightarrow(\mathrm{b})$ because obviously every cycle is a disjoint union of circuits and every coboundary is a disjoint union of cocircuits (allowing \emptyset as the empty union). (a) \Leftrightarrow (c) by the definition of coboundary. Since $C+{ }_{2} D=E$ if and only if $C \cup D=E$ and $C \cap D=\emptyset$, (a) follows immediately from:

Theorem 5. If $M=(S, W)$ is a binary matroid, then $S \in W+{ }_{2} W^{\perp}$.
Proof. If $A \in W^{\perp} \cap W$, then $S \cdot A=A \cdot A=0$. Since A was arbitrary, $S \in$ $\left(W^{\perp} \cap W\right)^{\perp}=W+{ }_{2} W^{\perp}$.

References

[1] W.-K. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math. 20 (1971) 526-529.
[2] T.A. McKee, Recharacterizing Eulerian: intimations of new duality, Discrete Math. 51 (1984) 237-242.
[3] T.A. McKee, Personal communication.
[4] S. Toida, Properties of an Euler graph, J. Franklin Inst. 295 (1973) 343-345.
[5] T.W. Williams and L.M. Maxwell, The decomposition of a graph and the introduction of a new class of subgraphs, SIAM J. Appl. Math. 20 (1971) 385-389.

