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Using SU(3) symmetry to constrain the π B B ′ couplings, assuming SU(3) breaking comes only from one-
loop pion cloud contributions, and using the covariant spectator theory to describe the photon coupling
to the quark core, we show how the experimental masses and magnetic moments of the baryon octet
can be used to constrain the strength of the pion cloud contributions to the octet, and hence the nucleon,
form factors at Q 2 = 0.
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The introduction of SU(3) as a symmetry of strong interaction
provided a systematic organization of the low-lying baryon multi-
plets and also a simple estimate for the baryon octet (containing
the N , Λ, Σ , and Ξ ground state baryons) magnetic moments
in terms of two independent constants associated with the SU(3)
symmetry [1–4]. An extension to SU(3) × SU(2) symmetry [5]
predicted an empirically known relation μn/μp = −2/3, but the
description of the octet baryon magnetic moments was still quali-
tative. The explicit SU(3) flavor symmetry breaking describing the
octet baryon magnetic moments as the sum of the three indepen-
dent quark magnetic moments (additive quark model) that scaled
with the inverse of the respective quark mass, improved the de-
scription of the octet magnetic moments to a precision of 0.22μN

[6] (μN = e
2m is the nuclear magneton, with m the nucleon mass).

We refer to these models (below) as naive quark models (NQM).
The NQM description can be further improved with the addition

of meson cloud corrections motivated by chiral symmetry. Good
examples are the Cloudy Bag Model (CBM) [7–9], and models that
combine constituent quarks with chiral phenomenology [10–14].
Alternatively, meson cloud contributions to the octet magnetic mo-
ments can be calculated from models that use hadronic degrees of
freedom constrained by chiral perturbation theory (χPT), chiral ef-
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fective field theory (χEFT), or Heavy Baryon χPT [15–17]. From
this perspective the loop corrections involving heavy mesons or
intermediate heavy baryons (from the decuplet) are suppressed.
In practice however the convergence of the chiral expansion is
slow [17] and/or involves a fit of several low energy constants
leading to contributions that are very scheme dependent [16,17].
The octet magnetic moments have also been studied in lattice
QCD [18].

Theoretical calculations of pion cloud contributions must be
renormalized, a process that introduces unknown parameters that
can only be determined by fitting the predictions to experimental
data. In this Letter we show that rather simple assumptions about
the structure of the baryon octet can be used to fix the size of the
pion cloud contributions to the octet electromagnetic form factors
at Q 2 = 0. As a consequence, the size of pion cloud contributions
to the nucleon form factors is fixed and it is possible to assess the
many models of the pion cloud that are currently in use.

In order to obtain these results we assume that the baryons
B are composed of three dressed valence quarks with an intrinsic
structure that gives rise to quark form factors and quark anoma-
lous moments. We also assume that the coupling of the pion to
the baryon octet is fixed by SU(3), and that the pion cloud con-
tributions to the baryon masses and magnetic moments are well
described by the lowest order one-loop contributions (which re-
produce the correct lowest order non-analytic behavior from the
π B cut). This latter assumption is supported not only by lead-
ing order chiral perturbation theory, but also by general arguments
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Fig. 1. (Color on line.) Feynman diagrams (with time flowing from right to left)
for the contributions to the octet self-energy (A) and the octet form factors (a)–(d)
coming from a pion with γ μγ 5 coupling. These are written in for the CST with the
internal baryons labeled by the × on-shell.

from dispersion theory that suggest that intermediate states with
the lowest threshold are the most important. This means that con-
tributions from heavy mesons or two-pion loops should be smaller
than the one-pion loop contributions we are considering.

First, consider the baryon mass corrections that come from the
pion self-energy loop shown in Fig. 1(A). Since (/P )2 = P 2 (where
P is the baryon four momentum), the self-energy Σ can be ex-
pressed as a function of /P , and near a baryon pole at P 2 = M2

B ,
the baryon propagator has the form [19]

�(/P ) = 1

M0 − /P + Σ(/P )
= Z B

{
MB + /P

M2
B − P 2

+ R
}
, (1)

where M0 is the undressed mass of the baryon, R is finite at the
pole at P 2 = M2

B , and

MB = M0 + Σ0

Z−1
B = 1 − Σ ′

0 = 1 − dΣ(/P )

d/P

∣∣∣∣
/P=MB

, (2)

with Σ0 = Σ(MB). The self-energy diagram at the pole can be
written Σ0 = G0B B0, where G0B is a factor depending on the cou-
pling of the pion to the baryon B , and B0 is the value of the Feyn-
man integral (with the couplings removed) at the mass MB ; we
assume this integral to be very weakly dependent on the baryon
mass and approximately the same for all baryons in the octet. Note
that the couplings G0B , through their dependence on the quantum
numbers of the baryons (including strangeness), account indirectly
for the differences in the masses of the strange and non-strange
constituent quarks [20,21]. Using this picture the size of Σ de-
pends primarily on the SU(3) dependence of the π B B ′ coupling
constants, summarized in Table 1 [1,22]. Note the definition of
the quantities βΣ = 4(1 − α)2, βΛ = 4

3 α2, and βΞ = (1 − 2α)2,
to be used later. Incorporating the overall factor of g2 into the
definition of B0 gives the mass splittings summarized in Table 2.
Adjusting the three parameters M0, B0, and α to give a best fit
to the average masses MN = 939.0, MΛ = 1115.7, MΣ = 1192.4,
and MΞ = 1318.1 (in MeV) gives the parameters M0 = 1393.2,
B0 = −148.9 (in MeV), and α = 0.6943. Only the value of α will
Table 1
Pion–baryon couplings in SU(3). Here ξπ and ξΣ are the isospin-one polarization
vectors of the π and Σ , τ i are the isospin-1/2 matrices, and Ji are the isospin-one
matrices. For the diagonal operators, the isospin wave function of the initial and
final baryon have been suppressed.

π B B ′ Oπ B B ′ gπ B B ′

π N N gπ NN (ξ∗
π · τ ) g

πΞΞ gπΞΞ (ξ∗
π · τ ) g(1 − 2α)

πΛΣ gπΛΣ(ξ∗
π · ξΣ ) 2√

3
gα

πΣΣ gπΣΣ(ξ∗
π · J) 2g(1 − α)

Table 2
Contributions of the one pion-loop to the baryon self-energies. Here α = D/(F + D)

is the SU(3) mixing parameter.

B G0B

N
∑

λ(ξπλ · τ )(ξ∗
πλ · τ ) = 3

Ξ (1 − 2α)2 ∑
λ(ξπλ · τ )(ξ∗

πλ · τ ) = 3βΞ

Λ 4
3 α2 ∑

λμ(ξπλ · ξΣμ)(ξ∗
πλ · ξ∗

Σμ) = 4α2 = 3βΛ

Σ 4(1 − α)2 ∑
λ(ξπλ · J)(ξ∗

πλ · J) + 4
3 α2 ∑

λ(ξπλ · ξΣμ)(ξ∗
πλ · ξ∗

Σμ) = 2βΣ + βΛ

be needed below; note that it is close to the 0.6 expected from
SU(6).

Next, turn to the electromagnetic form factors of the octet. In
the language of the covariant spectator theory (CST), the interac-
tion of a photon with the octet, at the one-pion loop level, is the
sum of the six Feynman diagrams shown in Fig. 1(a)–(d). Briefly,
these are (a) interaction with the quark core (denoted Jμ0B ), (b) in-
teraction with the pion (denoted Jμπ ), and finally the sum of the
four diagrams (c1), (c2), (d1) and (d2), all describing the interac-
tions of the quark core dressed by the pion bubble and denoted
collectively by Jμγ B . Explicitly, the total current is

JμB = Z B
[

Jμ0B + Jμπ + Jμγ B

]
, (3)

where Z B is the renormalization constant of Eq. (2) which pre-
serves the baryon charge (discussed below).

As the octet members are spin-1/2 particles their current JμB
can be written

JμB = e

{
F1B

(
Q 2)γ μ + F2B

(
Q 2) iσμνqμ

2MB

}
, (4)

where F1B(0) = eB is the baryon charge (in units of the proton
charge e) and F2B(0) = κB the baryon anomalous moment. The
spin-flip matrix element of this current is proportional to the mag-
netic moment. For example, defining the baryon spinor in the
usual way

u(P, s) =
√

E P + MB

2MB

(
1

σ ·P
E P +MB

)
χs, (5)

where E B =
√

M2
B + P2 and χs is the two-component spinor with

spin projection s in the ẑ direction, the spin-flip matrix element of
the current in the Breit frame with q = qz ẑ in the z direction is

lim
qz→0

1

qz
ū

(
1

2
q,+

)
J x

B u

(
−1

2
q,−

)
= (eB + κB)

e

2MB
, (6)

showing that μB = eB + κB is the magnetic moment, in natu-
ral baryon units of e/(2MB). Experimental magnetic moments are
reported of nuclear magnetons; conversion to these units gives
μB = (eB + κB) m

MB
.

To describe the interaction with the quark core, correspond-
ing to the current Jμ , we use the CST quark model introduced
0B
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Table 3
Flavor wave functions for quarks 1 and 2 in symmetric and antisymmetric configurations and the corresponding matrix elements j S and j A .

B |MS 〉 |M A〉 j S
1 j A

1 j S
2 j A

2

p 1√
3

[ 1√
2
(ud + du)u − √

2uud
] 1√

2
(ud − du)u 0 2

3
2
9 (κu − κd) 2

3 κu

n − 1√
3

[ 1√
2
(ud + du)d − √

2ddu
] 1√

2
(ud − du)d 1

3 − 1
3

1
9 (4κu − κd) − 1

3 κd

Σ+ 1√
3

[ 1√
2
(us + su)u − √

2uus
] 1√

2
(us − su)u 0 2

3
2
9 (κu − κs)

2
3 κu

Σ0 1√
12

[(sd + ds)u + (su + us)d − 2(ud + du)s] 1
2 [(ds − sd)u + (us − su)d] − 1

6
1
6

1
18 (2κu − κd − 4κs)

1
3

(
κu − 1

2 κd
)

Σ− 1√
3

[ 1√
2
(sd + ds)d − √

2dds
] 1√

2
(ds − sd)d − 1

3 − 1
3 − 1

9 (κd + 2κs) − 1
3 κd

Λ0 1
2 [(ds + sd)u − (us + su)d] 1√

12
[(sd − ds)u − (su − us)d + 2(ud − du)s] 1

6 − 1
6

1
6 (2κu − κd) 1

18 (2κu − κd − 4κs)

Ξ0 − 1√
3

[ 1√
2
(us + su)s − √

2ssu
] 1√

2
(us − su)s 1

3 − 1
3

1
9 (4κu − κs) − 1

3 κs

Ξ− − 1√
3

[ 1√
2
(ds + sd)s − √

2ssd
] 1√

2
(ds − sd)s − 1

3 − 1
3 − 1

9 (2κd + κs) − 1
3 κs
in Refs. [23,24]. In this model a baryon is a system of three con-
stituent quarks, one of which is off-shell. In the leading approxi-
mation the photon couples to the off-shell quark, leaving the two
on-shell quarks (which are treated as a single on-shell “di-quark”
with a fixed effective mass) to be spectators. The expression for
the core current becomes

Jμ0B = 3e
∑
Λ

∫
k

Ψ B(P+,k) jμq ΨB(P−,k)

→ e

{
eBγ

μ + κ0B
iσμνqν

2MB

} (
as Q 2 → 0

)
, (7)

where P+ (P−) are the final (initial) baryon momenta, respectively,
k is the diquark momentum, ΨB is the baryon wave function with
quark 3 off-shell (by convention), eB is the charge of the baryon,
and κ0B is the bare (i.e. undressed by the pion cloud) anomalous
moment of the baryon. The total wave function is symmetric; con-
tributions from terms with quarks 1 and 2 off-shell equal that from
quark 3 off-shell, and are accounted for by the factor of 3. The co-
variant integral is over the three momentum k of the spectator
diquark (its fourth component fixed by the on-shell condition, see
Ref. [23]) and the sum is over the four states Λ = {s, λ} of the
diquark, where s is the scalar (spin 0) state of the diquark, and
λ = {0,±} are the three polarization states of the vector diquark.
The current operator for the off-shell quark (3, by convention) is

jμq = j1q
(

Q 2)γ μ + j2q
(

Q 2) iσμνqν

2m

→ eqγ
μ +

(
κq

MB

m

)
iσμνqν

2MB

(
as Q 2 → 0

)
, (8)

where the second line displays the consequence of defining the
quark anomalous moments in nuclear magnetons, as we have done
in previous work. The functions jiq (i = 1,2) define the Dirac and
Pauli constituent quark form factors as operators acting in the quark
flavor state q = u,d, s. The explicit form for jiq was defined in
Ref. [24].

The quark wave functions of the baryon octet are SU(3) gener-
alizations of the nucleon S-state wave functions used in Ref. [23]:

ΨB(P ,k) = 1√
2

{
φ0

S |M A〉 + φ1
S |M S〉

}
ψ(P ,k), (9)

where |M A〉 and |M S 〉 are flavor wave functions antisymmetric and
symmetric in quarks 1 and 2, and φX

S (X = 0,1) are wave func-
tions with quarks 1 and 2 in a spin-0 state (antisymmetric) and
a spin-1 (symmetric) state, respectively. The function ψ(P ,k) is a
scalar wave function of (P − k)2 properly normalized to one. The
states |M A〉 and |M S 〉 are presented in Table 3. The spin states in
their nonrelativistic form with their relativistic generalization [23]:
φ0
S = 1√

2
(↑↓ − ↓↑)χs → u(P , s),

φ1
S = − 1√

3
σ · ε∗χs → − 1√

3
γ5/ε∗u(P , s), (10)

where ε is a covariant spin-1 polarization vector describing the
spin of the (12) diquark pair, in the fixed axis basis [25], and the
Dirac spinor u(P , s) carries the spin of the third spectator quark
(see Refs. [23,25] for details).

Since the wave functions (9) are direct products of spin and
flavor wave functions, we can separate the spin part from the fla-
vor part using the flavor matrix elements of the quark current (8),
j A and j S , defined by

j A
i = 〈M A | jiq|M A〉, j S

i = 〈M S | jiq|M S〉. (11)

The explicit form for the coefficients j A
i and j S

i is presented in Ta-
ble 3. The baryon charge eB and bare anomalous moment κ0B can
then be calculated using the results of Ref. [23] with convenient
replacement of the coefficients ji :

eB = 3

2

(
j A
1 + j S

1

)
,

κ0B =
(

3

2
j A
2 − 1

2
j S
2

)
MB

m
− 2 j S

1 . (12)

Next we look at the contributions from the pion loop diagrams
Fig. 1(b)–(d). These diagrams can be written in the following form

Jμπ = e

(
B1γ

μ + B2
iσμνqν

2MB

)
Gπ B , (13)

Jμγ B = e

(
C1γ

μ + C2
iσμνqν

2MB

)
GeB

+ e

(
D1γ

μ + D2
iσμνqν

2MB

)
Gκ B , (14)

where the coefficients Bi , Ci , and Di are assumed to be inde-
pendent of the baryon mass, and the GxB are coefficients which
depend on each family of baryons in the octet and are calculated
from the SU(3) couplings given in Table 1. The Bi are the sum of
the contributions of diagrams (b) and (di) [which have the same
SU(3) structure as (b)], the Ci are the contributions of the charge
term eBγ

μ in the bare current (7) contributing to diagrams (ci),
and the Di are the contributions of the undressed anomalous mo-
ment terms proportional to κ0B .

The use of the factor 1/(2MB) to normalize the σμνqν terms
in Eqs. (13) and (14) can be justified by looking at the detailed
Feynman integral for Fig. 1(b). Omitting the overall factor Gπ B , this
integral becomes
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Table 4
Values of Gπ B computed from Table 1 and diagram 1(b).

B Gπ B

N −i
∑

λ′λ(τ · ξπλ′ )(τ · ξ∗
πλ)(ξ∗

πλ′ × ξπλ)3 = 2τ3

Λ − 4
3 iα2 ∑

λ′λμ(ξπλ′ · ξ∗
Σμ)(ξ∗

πλ · ξΣμ)(ξ∗
πλ′ × ξπλ)3 = 0

Σ −4i(1 − α)2 ∑
λλ′ (ξπλ′ · J)(ξ∗

πλ · J)(ξ∗
πλ′ × ξπλ)3

− 4
3 iα2 ∑

λλ′ (ξ∗
Σμ′ · ξπλ′ )(ξΣμ · ξ∗

πλ)(ξ∗
πλ′ × ξπλ)3

= (4(1 − α)2 + 4
3 α2)J3 ≡ (βΣ + βΛ)J3

Ξ −(1 − 2α)2 i
∑

λ′λ(τ · ξπλ′ )(τ · ξ∗
πλ)(ξ∗

πλ′ × ξπλ)3

= 2(1 − 2α)2τ3 = 2βΞτ3

〈
J x
π

〉 = eū

(
1

2
q,+

)∫
k

(P+ + P− − 2k)x(MB − /k)

D(k+,k−)
u

(
−1

2
q,−

)

= e

{∫
k

2k2
x

D(k+,k−)

}
ū

(
1

2
q,+

)
γ xu

(
1

2
q,−

)

= (B1 + B2)
eqz

2MB
, (15)

where D is a denominator that depends on the details of the pion
propagators and the structure of the current (but depends only
on k2

x , leading to the simplification in the second line) and the
integral over k is the covariant CST volume integral used previ-
ously [23]. Our normalization has lead to a result consistent with
Eq. (13), and examination of the integral in curly brackets shows
that it is only weakly dependent of the baryon mass, leading to the
conclusion that the Bi are also. We assume that similar arguments
work for the coefficients Ci and Di .

Returning to the calculation, we calculate the factors Gπ B by
summing over all possible isospin states of the intermediate pi-
ons using Table 1 and the isospin structure for the coupling of the
photon to the pion

jπ = −i
(
ξ∗
πλ′ × ξπλ

)
3, (16)

where λ (λ′) is the isospin polarization of the incoming (outgo-
ing) pion. Absorbing the factor of g2 into the B ’s, the results are
reported in Table 4.

To compute the coefficients GzB (where z is either e or κ ) it is
convenient to introduce a general operator decomposition for the
bare hadronic currents. For the N and Ξ isospin doublets, we will
use the standard isoscalar-isovector notation

zB = 1

2

(
zs

B + zv
Bτ3

)
, (17)

where es
N = ev

N = 1, es
Ξ = −ev

Ξ = −1. The Σ is isovector, which we
will decompose into three states according to

zΣ = z0
Σ 1 + 1

2

(
z1
Σ J3 + z2

Σ J2
3

)
, (18)

where J3 is the third component of the isospin-one operator. With
this notation,

z0
Σ = zΣ0 ,

z1
Σ = zΣ+ − zΣ− ,

z2
Σ = zΣ+ + zΣ− − 2zΣ0 , (19)

where e0
Σ = e2

Σ = 0 and e1
Σ = 2. The coefficients are computed in

Table 5. Note that eΛ = 0.
Table 5
Values of GzB computed from Table 1 and diagram 1(b). In each expression, the
sum over pion polarizations has been carried out.

B GzB

N τ i 1
2 (zs

N + zv
Nτ3)τ i = 1

2 (3zs
N − zv

Nτ3)

Λ 4
3 α2 Tr{z0

Σ 1 + 1
2 (z1

Σ J3 + z2
Σ J2

3)} = βΛ(3z0
Σ + z2

Σ)

Σ 4(1 − α)2Ji{z0
Σ 1 + 1

2 (z1
Σ J3 + z2

Σ J2
3)}Ji + 4

3 α2 zΛ1

= (βΣ (2z0
Σ + z2

Σ) + βΛzΛ)1 + 1
2 βΣ(z1

Σ J3 − z2
Σ J2

3)

Ξ (1 − 2α)2τ i 1
2 (zs

Ξ + zv
Ξτ3)τ i = βΞ

1
2 (3zs

Ξ − zv
Ξτ3)

We now are in a position to write down the 16 equations that
describe the charge (only 4 are independent) and magnetic mo-
ments of the 8 baryons. We start with the equation for the nucleon
charge

1

2
(1 + τ3) = ZN

{
1

2
(1 + τ3) + 2B1τ3 + 1

2
C1(3 − τ3)

+ 1

2
D1

(
3κ s

0N − τ3κ
v
0N

)}
, (20)

and note that charge conservation requires that

D1 = 0, B1 = C1. (21)

The CST gives precisely these constraints (as must any model that
satisfies current conservation). These conditions, which hold for all
the baryons in the octet, are the necessary and sufficient condi-
tions that insure the charge of all the baryons is conserved. The
renormalization constant that follows,

ZN = (1 + 3B1)
−1 (22)

can also be derived from Eq. (2) [it can be shown that the coeffi-
cients multiplying B1 in the renormalization factors Z B are identi-
cal to the G0B derived in Table 2]. Hence the additional renormal-
ization constants are

ZΞ = [1 + 3βΞ B1]−1,

ZΣ = [
1 + (2βΣ + βΛ)B1

]−1
,

ZΛ = [1 + 3βΛB1]−1. (23)

Knowing that the model treats the charges correctly, we now
turn to the 8 remaining equations for the magnetic moments. The
equations for the anomalous moments (in natural baryon units)
are:

κp = ZN
[
κ0p + D2(κ0p + 2κ0n) + 2B2 + C2

]
,

κn = ZN
[
κ0n + D2(2κ0p + κ0n) − 2B2 + 2C2

]
,

κΛ = ZΛ

{
κ0Λ + βΛD2(κ0Σ+ + κ0Σ0 + κ0Σ−)

}
,

κΣ+ = ZΣ

{
κ0Σ+ + D2

[
βΣ(κ0Σ+ + κ0Σ0) + βΛκ0Λ

]
+ βΣ(B2 + C2) + βΛB2

}
,

κΣ0 = ZΣ

{
κ0Σ0 + D2

[
βΣ(κ0Σ+ + κ0Σ−) + βΛκ0Λ

]}
,

κΣ− = ZΣ

{
κ0Σ− + D2

[
βΣ(κ0Σ0 + κ0Σ−) + βΛκ0Λ

]
− βΣ(B2 + C2) − βΛB2

}
,

κΞ0 = ZΞ

[
κ0Ξ0 + βΞ D2(κ0Ξ0 + 2κ0Ξ−) + 2βΞ(B2 − C2)

]
,

κΞ− = ZΞ

[
κ0Ξ− + βΞ D2(2κ0Ξ0 + κ0Ξ−) − βΞ(2B2 + C2)

]
.

(24)
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Table 6
Results for the magnetic moments of the baryon octet in nuclear magnetons. The third column is the prediction with no pion cloud, κs = 1.462, and κu = 1.778, κd = 1.915
fixed to give the correct proton, neutron and Ω− moments [23,24]. The forth column is the result of the naive quark model with nucleon and Λ magnetic moments used
as input [6]. The fifth column is the predictions of the Cloudy Bag Model [8]. The 6th–8th and 10th columns are our predictions (μbest

B ) together with the decomposition
defined in Eq. (27) and the ratio R B for the dressed moments, with α fixed at 0.6943 and the other coefficients given in the text by Eqs. (25)–(26). Column 9 gives the
experimental magnetic moments with their errors [26].

B μ0B = (eB + κ0B ) m
MB

μnoπ
0B μNQM

B μCBM
B Z Bμ0B Z BδμB μbest

B μexp R B

p 8
9 κu + 1

9 κd + 1 2.793 2.793 2.74 1.664 1.129 2.793 2.793 40%

n − 2
9 κu − 4

9 κd − 2
3 −1.913 −1.913 −1.96 −1.106 −0.807 −1.913 −1.913 42%

Σ+ 8
9 κu + 1

9 κs + m
MΣ

2.530 2.674 2.58 1.971 0.491 2.462 2.45(2) 20%

Σ0 4
9 κu − 2

9 κd + 1
9 κs + 1

3
m

MΣ
0.790 0.791 0.61 0.634 −0.011 0.623 – −2%

Σ− − 4
9 κd + 1

9 κs − 1
3

m
MΣ

−0.951 −1.092 −1.35 −0.702 −0.513 −1.215 −1.16(3) 42%

Λ0 − 1
3 κs − 1

3
m

MΛ
−0.768 −0.613 −0.57 −0.516 −0.099 −0.615 −0.613(4) 16%

Ξ0 − 2
9 κu − 4

9 κs − 2
3

m
MΞ

−1.520 −1.435 −1.27 −1.393 0.138 −1.255 −1.250(14) −11%

Ξ− 1
9 κd − 4

9 κs − 1
3

m
MΞ

−0.674 −0.493 −0.61 −0.606 −0.141 −0.747 −0.65(3) 19%
The charge factor eB must be added to each of these to get the to-
tal magnetic moment, and to convert to nuclear magnetons each
equation is multiplied by m/MB . The “bare” magnetic moments,
assembled from the quark moments as shown Eq. (12), are tabu-
lated in Table 6.

The eight Eqs. (24) and the results for the bare magnetic mo-
ments in terms of the quark anomalous moments and the quark
charges, found in Table 6, give the eight baryon magnetic mo-
ments (seven of which are measured) in terms of six parameters:
the quark anomalous moments κu and κd and the four pion cloud
constants B1, B2, C2, D2 (α = 0.6943 was determined from the
self-energies). We use the strange quark anomalous moment, κs ,
fixed previously from our study of the Ω− magnetic moment [24].
(Noting that the Ω has no pion cloud, that work fixed κs us-
ing only the quark core and ignored contributions from K meson
loops, as we do here.)

Our best fit is shown in Table 6. To obtain this fit we minimized
χ2 using the experimental errors listed, except for the proton and
neutron, which were assigned an experimental error of 0.0001,
about 1000 times larger than the actual errors. Only two of the
magnetic moments are significantly outside the (redefined for the
nucleons) experimental errors: the Σ− (about 2 standard devia-
tions) and Ξ− (about 3 standard deviations) and these two have
the largest experimental errors. For the anomalous magnetic mo-
ments we obtain

κu = 1.929, κd = 1.911. (25)

Compared to Ref. [23], the pion cloud contributions increased κu

by about 8%, bringing it very close to κd (which is almost un-
changed). The pion cloud coefficients determined by the fit are:

B1 = 0.2531, B2 = 0.5648,

C2 = −0.06599, D2 = −0.08321. (26)

The main point of this Letter is that our fit has constrained the
size and structure of the pion cloud contributions to the octet
moments, and hence the size of pion cloud contributions to the nu-
cleon form factors. We emphasize that such constraints are essential
since any calculation of the pion cloud is undetermined up to
some number of renormalization constants which can only be de-
termined by fitting experimental data.

Table 6 also compares our best fit to three other models, two
without a pion cloud. The predictions of the “bare” moments
(given analytically in the second column) are fit with two param-
eters (κu and κd) and have a maximum deviation of 0.27μN ; the
naive quark model reported in Ref. [6] has a maximum deviation
Table 7
Model calculations of pion cloud contributions to the nucleon magnetic moments.
The χPT results ([16,17], labeled with a ∗) also include contributions from heavier
mesons.

μp μn

χPT [16]* −1.901 1.291
χPT [17]* −0.85 0.63
CBM [9] 1.5 −0.9
Miller [27] 0.32 −0.38
Cloet [28] 0.24 −0.40

This work 1.129 −0.807

of 0.22μN , and the cloudy bag calculation of Ref. [8] has a maxi-
mum deviation of 0.19μN . Our maximum deviation is 0.10μN .

The description of the ratio r = μΞ−/μΛ has been a longstand-
ing problem for SU(6) constituent quark models, where r < 1 if
mu < ms . Models without a pion cloud, such as those of Refs. [23,
24] and the NQM [6], suffer from this limitation. The experimental
value is r � 1.06 > 1, and both the Cloudy Bag Model [8] and our
new results give r > 1.

To give a measure of the size of the pion cloud contributions to
each baryon, we decompose the magnetic moment into two terms

μbest
B = Z B [μ0B + δμB ]. (27)

Table 6 shows the separate contributions Z Bμ0B and Z BδμB , as
well as the ratio R B = Z BδμB/μbest

B . The pion cloud corrections to
the nucleon and Σ− moments (as measured by R B ) are all about
40%, with the corrections to the other moments much smaller. For
comparison, Table 7 shows the size of pion cloud contributions for
a number of recent models of the nucleon form factors. Our re-
sults for the neutron correction are close the Cloudy Bag Model of
Ref. [9], but our proton correction is almost 40% smaller. The other
calculations are either too small or of the opposite sign.

We close this Letter with a brief comment about the fit to
the magnetic moments and the reliability of our estimate (26)
of the pion cloud coefficients. It is natural to ask (as we did)
why we cannot obtain a better fit to the seven known magnetic
moments with six parameters. To study this we allowed the sev-
enth (α) to vary from the value determined by the fits to the
baryon masses (0.6943). We found three minima at α = 0.2523,
0.6948, and 1.3153. The minima at 0.25 and 1.3 both gave es-
sentially perfect fits to all of the magnetic moments, with pion
cloud coefficients several times larger (at α � 0.25) or very small
(at α � 1.3). The other minimum, at almost the same point deter-
mined by our fit to the masses, gives the (not so perfect) fit shown
in Table 6. We conclude that (i) the determination of the coeffi-
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cients (26) is strongly dependent on the physical constraint that α
be near 0.6, as favored by SU(6) and our fit to the baryon octet
masses, and (ii) the same value of α (almost) provides both the
best fit to the masses and the best (local) fit to the magnetic mo-
ments.
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