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Abstract

We show that for every finite, simply connected CW complexX, and for any fieldK,
depthH∗(ΩX,K)6 eK(X). In fact, we prove the same result under a weaker assumption, namely
X is a simply connected CW complex of finite type with non-zero evaluation map. This is a strong
improvement of the depth theorem which states that depthH∗(ΩX,K) 6 cat(X).  1999 Elsevier
Science B.V. All rights reserved.
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0. Introduction

Throughout this paper, we deal with two numerical invariants which minorate the
Lusternik–Schnirelmann category ofX. The Lusternik–Schnirelmann category ofX,
cat(X), is the least integerm such thatX has an open cover bym + 1 open sets, each
contractible withinX.

The first one, called the Toomer’s invariant, is defined as follows [19]. LetX be a
1-connected topological space. The spaceΩX of pointed Moore loops onX is a
topological monoid. If we denote byBΩX the classifying space for the Moore loops onX,
thenX is homotopy equivalent toBΩX. Moreover, for any fieldK, the natural filtration
onBΩX induced by the inclusion

(ΩX)∗n =
n︷ ︸︸ ︷

ΩX ∗ · · · ∗ΩX ↪→ BΩX
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yields a converging spectral sequence(Er , dr), called the Milnor–Moore spectral se-
quence [15–17]:

E2
p,q = TorH∗(ΩX)p,q (K,K)⇒Hp+q(X,K).

The Toomer’s invariant is:

eK(X)= sup
{
p |E∞p,∗ 6= 0

}
and [19]:

eK(X)6 cat(X) for any field K.

To define the second invariant, called the depth, consider the cocommutative Hopf algebra
H∗(ΩX,K) and let us denote by Ext the derived functor of graded Hom. In [3] the authors
introduced the following invariant:

depthH∗(ΩX,K)= inf
{
p | Extp,∗H∗(ΩX,K)

(
K,H∗(ΩX,K)

) 6= 0
}

and proved that

depthH∗(ΩX,K)6 cat(X). (0.1)

The invariant depthH∗(ΩX,K) is essential in the study of the structure of the Hopf
algebraH∗(ΩX,K) as developed in [6,7,9,10].

The result of this paper reads:
For a large class of spaces and for any fieldK,

depthH∗(ΩX,K)6 eK(X)

thus providing us with an easy computable upper bound for the depth in all known
examples. To be more precise, we consider the degree zero linear map

evX :ExtC∗(X;K)
(
K,C∗(X;K))→H ∗(X,K),

defined for any pointed space [4], and called the evaluation map. Here,C∗(X;K) denotes
the singular cochains algebra of the spaceX augmented by

ε :C∗(X;K)→C∗(base point;K)→K,

andExt denotes the functor differential Ext [17].
Topological interpretations of the evaluation map are given in [18,12]. A convenient

construction will be performed in Section 1.3.

Theorem. LetX be a simply connected pointed space such that eachHi(X,K) is finite-
dimensional. Assume that the evaluation map:

evC∗(X,K) :ExtC∗(X,K)
(
K,C∗(X,K)

)→H ∗(X,K)

is non-zero. Then

depthH∗(ΩX,K)6 eK(X). (0.2)
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From the definition it results that the image ofevX is contained in the socle ofH ∗(X;K),
i.e., the subspace ofH ∗(X;K) of cohomology classesα such thatβα = 0 for any
β ∈ H̃ (X;K). In [4, Proposition 1.6] the authors have proved that for every pointed
spaceX, the spaceX = Y ∪α en, with en homologically nontrivial inHn(X,K), has non-
zero evaluation map. In particular, relation (0.2) holds for any finite, simply connected CW
complex.

We do not know at present whether there exists a space with finite L.–S. category and
zero evaluation map. Since there exist spacesX with eQ(X) < cat(X) [14,5] the inequality
(0.2) in our theorem is an improvement of (0.1).

In (0.2), both strict inequality and equality can occur since

depthH∗(ΩCPn,Q)= 1 while eQ(CPn)= n, and

depthH∗
(
ΩSp(5)/SU(5),Q

)= eQ(Sp(5)/SU(5)
)= 3.

We denote the cup-length ofX (i.e., the maximal length of a non-zero cup-product in
H ∗(X,K)) by cupK(X). By Lemma 2.1, cupK(X) 6 eK(X); however, (0.2) may not be
strengthened to

depthH∗(ΩX,K)6 cupK(X) (0.3)

since cupQ(Sp(5)/SU(5)) = 2 < depthH∗(ΩSp(5)/SU(5),Q) = 3. For formal spaces
(0.3) is true since cupK(X)= eK(X) in this case [13].

The first step in the proof is a reduction to a problem in differential algebra. According
to [13] there is a quasi-isomorphism of the form:

φ :
(
T (V ), d

) '→ (
C∗(X,K), d

)
in which T (V ) denotes the tensor algebra on the graded vector spaceV . The DG algebra
(T (V ), d) is called the “free model” of the spaceX. This model can be chosen “minimal”
so that filtration “by wordlength” yields a spectral sequence:

E2= Ext(T (V ),d2)

(
K, (T (V ), d2)

)H⇒ Ext(T (V ),d)
(
K, (T (V ), d)

)
.

We conclude, in proving that depth is determined at theE2 level and the Tommer’s invariant
at theE∞ level.

This paper is organized as follows. Section 1 contains conventions and basic definitions.
The theorem is proved in Section 2. In the last section we show how to readeK(X) from a
free model(T (V ), d) of X and thus completing the proof.

1. Differential Ext and the evaluation map

1.1. Conventions

All vector spaces are defined over a fixed fieldK and the unadorned⊗ and Hom
mean with respect toK. Gradations are written either as superscripts or as subscripts,
with the conventionV k = V−k . If x is an object in a graded space, its degree is denoted
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by |x|. Differential graded algebras (DGAs)R are assumed to be either of the formR∗
(R<0 = 0) or R∗ (R<0 = 0) with differential d of upper (respectively lower) degree 1
(respectively−1). Following Moore, we denote the underlying graded algebra byR]. If R
is a DGA, a (left)R-module Mis a Z-graded module,M], together with a differential
in M] of upper (respectively lower) degree 1 (respectively−1) satisfying d(r.m) =
dr.m + (−1)|r |r.dm. A morphismof R-modulesf :M→N is aK-linear map of some
degree|f | such thatf (r.m) = (−1)|f ||r |r.f (m) and f (dm) = (−1)|f |df (m). A DGA
morphism (or a morphism ofR-modules) inducing a homology isomorphism is called a

quasi-isomorphism. In either case, we indicate this property by
'→.

1.2. Semi-free modules and differentialExt

We set out the basic definitions and results we need from differential homological
algebra. Proofs use standard techniques, and are omitted. (The reader is referred to [2,
11].)

An R-module isR-free if it is free as anR]-module on a basis of cycles, and we call it
R-semi-freeif it is the increasing union of submodules 0= F−1⊂ F0⊂ · · · such that each
Fi/Fi−1 isR-free.

Lemma 1.1. LetR be a DGA and suppose M is anR-module. Then there exists a quasi-

isomorphismP
'→M from anR-semi-free moduleP .

Definition 1.2. A quasi-isomorphismP
'→ M of R-modules is called anR-semi-free

resolutionof M if P isR-semi-free.

Definition 1.3. If M and N are rightR-modules and ifP
'→ M is any R-semi-free

resolution, then

ExtR(M,N)=H
(
HomR(P,N),D

)
.

(HomR((P,dP ), (N,dN)) is made into a differential graded module byDf = dN ◦ f −
(−1)|f |f ◦ dP .)

This definition is independent of the choice ofP as proved by the next result.

Lemma 1.4 [11, Proposition 2.4].Suppose
(i) ϕ : (B,d)→ (A,d) is a quasi-isomorphism between two DGAs,
(ii) f : (P, d)→ (Q,d) is a quasi-isomorphism from a(B,d)-semi-free modules to an

(A,d)-semi-free module satisfyingf (b.x)= ϕ(b)f (x),
(iii) g : (M,d) → (N,d) is a quasi-isomorphism from a(B,d)-module to (A,d)-

module satisfyingg(ϕ(b)y)= b.g(y), then

Homϕ(f, g) : HomA(Q,M)→HomB(P,N), α 7→ g ◦ α ◦ f,
is a quasi-isomorphism.
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Remark 1.5. In particular, letR
'→ S be a quasi-isomorphism of augmentedK-DGAs.

Then we can identifyExtR(K,R) with ExtS(K, S) via the isomorphisms:

ExtR(K,R)
∼=→ ExtR(K, S)

∼=← ExtS(K, S).

1.3. The evaluation map

Now consider an augmentedK-DGA R =R∗. A natural map

ExtR(K,R)→H(R) (1.1)

compatible with the identifications of Remark 1.5 is defined as follows: Choose anR-

semi-free resolutionP
'→K and letz ∈ P be a cycle representing 1. Define a chain map

HomR(P,R)→R by f 7→f (z) and pass to homology to get (1.1).

Definition 1.6 [4].The map (1.1)ExtR(K,R)→H(R) is called theevaluation mapof R
and is denoted byevR . The evaluation map of a pointed topological space is the evaluation
map of the DGAC∗(X,K).

2. Proof of the theorem

Theorem. LetX be a simply connected CW complex such that eachHi(X,K) is finite-
dimensional. Assume that the evaluation map:

evC∗(X,K) :ExtC∗(X,K)
(
K,C∗(X,K)

)→H ∗(X,K)

is non-zero. ThendepthH∗(ΩX,K)6 eK(X).

Proof. (i) The first step in the proof is a reduction to a problem in differential algebra.
LetC∗(X,K) be the DGA of singular cochains onX. According to [13], there is a DGA-
quasi-isomorphism of the form:

φ :
(
T (V ), d

) '→ (
C∗(X,K), d

)
(2.1)

in whichT (V ) denotes the tensor algebra on the graded vector spaceV =⊕j>2V
j .

Moreover, we may suppose that eachV j has finite dimension andT (V ) is minimal, i.e.
d :V→T>2(V ) whereT k(V )= V ⊗k . Write d = d2+ d3+ · · · with dk :V→T k(V ).

In view of Remark 1.5,

Ext(T (V ),d)
(
K, (T (V ), d)

)∼= ExtC∗(X,K)
(
K,C∗(X,K)

)
and

evC∗(X,K) :ExtC∗(X,K)
(
K,C∗(X,K)

)→H ∗(X,K)

coincide with

ev:Ext(T (V ),d)
(
K, (T (V ), d)

)→H
(
T (V ), d)

)
.
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(ii) In this step, we define a spectral sequence(Er ,Dr) in which

E2= Ext(T (V ),d2)

(
K, (T (V ), d2)

)
and converging toExt(T (V ),d)(K, (T (V ), d)).

This spectral sequence is the key point of the proof. Depth is determined at theE2-level,
as proved in step (iii) and the Toomer’s invariant at theE∞-level as proved in step (v).

The canonical acyclic closure of(T (V ), d) is a right(T (V ), d)-semi-free module(
(K⊕ sV )⊗ T (V ), δ),

wheresV is the suspension ofV defined by(sV )k = V k+1. The degree one isomorphism

s :V
∼=→ sV extends to the isomorphisms :T +(V )

∼=→ sV ⊗ T (V ) given byv1⊗ v2⊗ · · ·
⊗ vk 7→ sv1⊗ (v2⊗ · · · ⊗ vk).

A differential in (K⊕ sV )⊗ T (V ) is defined by:

δ(sv⊗ a)= 1⊗ va − s(dv).a − (−1)|v|sv⊗ da, v ∈ V, a ∈ T (V ). (2.2)

Then filterA=HomT (V )((K⊕ sV )⊗ T (V ),T (V )) by

Fp =
{
f ∈A | f ((K⊕ sV )⊗ T m(V ))⊂ T>m+p(V ), m> 0

}
.

Note thatFp+1⊂ Fp , F 0=A and the differentialD in A respects the filtration (D(f )=
d ◦ f − (−1)|f |f ◦ δ). Furthermore, sinceT (V ) is minimal,DFp ⊂ Fp+1. Therefore, in
the resulting spectral sequence(Ei,Di) converging to

Ext(T (V ),d)
(
K, (T (V ), d)

)
,

we haveD0= 0 and

D1(f )= d2 ◦ f − (−1)|f |f ◦ δ2,
where

δi : (K⊕ sV )⊗ T m(V )→(K⊕ sV )⊗ T m+i−1(V ).

Moreover, one sees immediately from the expression ofδ thatδ2 is obtained by replacing
d by d2 in (2.2). Thus,

E2= Ext(T (V ),d2)

(
K,
(
T (V ), d2

))
(2.3)

as a bigraded vector space (i.e.,Ext inherits a natural bigrading from the filtration by
wordlength inT (V )). Indeed, the bigrading ofExt is induced from the bigrading of

Mp,q = (((K⊕ sV )⊗ T p(V ))p+q, δ2), bideg(δ2)= (1,0), and

Np,q = (((T p(V ))p+q, d2
)
, bideg(d2)= (1,0).

(iii) The next step consists in reading depthH∗(ΩX,K) at theE2 level. Firstly, observe
that(T (V ), d2) is the (reduced) cobar construction on a graded coalgebraC =K⊕sV with
comultiplication given byd2 :V→V ⊗ V . The dual algebraR = (K⊕ sV )∨ is exactly
H∗(ΩX,K) [13, Proposition A.8].
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Moreover, the argument of [4, Proposition 2.1] establishes:

Extp,qR (K,R)= Extp,q
(T (V ),d2)

(
K, (T (V ), d2)

)
. (2.4)

Therefore,

depthH∗(ΩX,K)= inf
{
p |Ep,q2 6= 0

}
. (2.5)

(iv) We admit for the moment:

Lemma 2.1. eK(X) is the maximal integerk such that some nontrivial class in
H ∗((T (V ), d)) is represented by a cocycle inT>k(V ).

(v) To end the proof recall that, by assumption, the evaluation map

ev:Ext(T (V ),d)
(
K, (T (V ), d)

)→H
(
T (V ), d

)
is not trivial. Thus, there exist

α ∈ T (V ) and f ∈HomT (V )
(
(K⊕ sV )⊗ T (V ),T (V ))

such that

[α] 6= 0 and ev([f ])= [α],([α] ∈H ∗(X) and [f ] ∈ Ext(T (V ),d)
(
K, (T (V ), d)

))
.

Assume thatα ∈ T>l (V ). Using the above lemma, one sees thate(X)> l.
Finally, observe that[f ] yields a non-zero class inEl,∗∞ , henceEl,∗2 6= 0. Therefore, by

(2.5),

depthH∗(ΩX,K)6 l 6 eK(X). 2

3. Proof of Lemma 2.1

This next proposition, together with the definition ofe(X), given in the introduction,
proves Lemma 2.1.

Proposition 3.1. Let(T (V ), d) be a minimal model of the simply connected spaceX. Then
the Milnor–Moore spectral sequence forX can be identified fromE2 on with the spectral
sequence arising from the filtration ofT (V ) by the idealsT>j (V ).

Proof. Recall from the introduction that there is a standard spectral sequence converging
to H ∗(X) (usually the dual, homology spectral sequence is considered) due to Milnor
and Moore [15–17]. One description [19] is to form the bar constructionBC∗(X) [17,
8] on the singular cochains forX and then form the cobar construction [1,8] on this
differential coalgebra to obtain a differential algebraΩBC∗(X). If W = B+(C∗(X)) is
the augmentation ideal thenΩBC∗(X) is the tensor algebraT (s−1W). Filtering by the
idealsT>p(s−1W) yields the spectral sequence.
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Moreover, any homomorphismφ :A1→A2 of augmented DGAs yields a Milnor–Moore
spectral sequence homomorphism, which is an isomorphism fromE1 on if φ is a quism [8,
Proposition 2.10]. Applying this to (2.1):

φ : (T (V ), d)
'→ (C∗(X,K), d),

we may thus replaceC∗(X) by a minimal model(T (V ), d) of X to compute the Milnor–
Moore spectral sequence.

On the other hand, the projectionB+(T (V ))→T +(V )→V extends to a DGA homo-
morphismΩBT (V )→T (V ). If we filter (T (V ), d) by the idealsT>j (V ) then this homo-
morphism is obviously filtration preserving, and it turns out that it gives a spectral sequence
isomorphism fromE2 on. 2
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