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SUMMARY

Kinesin-1 is a two-headed motor that takes proces-
sive 8-nm hand-over-hand steps and transports
intracellular cargos toward the plus-end of microtu-
bules. Processive motility requires a gating mecha-
nism to coordinate the mechanochemical cycles of
the two heads. Kinesin gating involves neck linker
(NL), a short peptide that interconnects the heads,
but it remains unclear whether gating is facilitated
by the NL orientation or tension. Using optical trap-
ping, wemeasured the force-dependent microtubule
release rate of kinesin monomers under different
nucleotide conditions and pulling geometries. We
find that pulling NL in the backward direction inhibits
nucleotide binding and subsequent release from the
microtubule. This inhibition is independent of the
magnitude of tension (2–8 pN) exerted on NL. Our re-
sults provide evidence that the front head of a kinesin
dimer is gated by the backward orientation of its NL
until the rear head releases from the microtubule.

INTRODUCTION

Kinesin-1 (herein referred to as kinesin) is a dimeric motor that

carries membranous organelles and vesicles toward the syn-

apse in neurons (Hirokawa et al., 2009). Kinesin moves proces-

sively, taking hundreds of 8-nm steps along microtubules

(MTs) before dissociation occurs (Svoboda et al., 1993; Toprak

et al., 2009). The processivity of kinesin-1 results from a coordi-

nated mechanochemical cycle between the two catalytic heads.

Each mechanical step is associated with a single ATP hydrolysis

(Hua et al., 1997; Schnitzer and Block, 1997), which also sug-

gests that the mechanochemical cycles of the heads are coordi-

nated. The heads alternately take a step (in a pattern termed

hand-over-hand stepping) in which the front head remains

bound to the MT as the rear head steps forward (Asbury et al.,

2003; Kaseda et al., 2003; Yildiz et al., 2004). This coordinated
Cell
movement is facilitated by a gating mechanism that keeps the

heads out of phase such that chemical or structural transitions

in one head are inhibited until the partner head proceeds through

its mechanochemical cycle. Two competing models have been

proposed to explain which head is gated during processive

movement. According to the front-head gating model (Klumpp

et al., 2004; Rosenfeld et al., 2003), nucleotide binding to the

front head is inhibited. In the rear-head gating model (Crevel

et al., 2004; Schief et al., 2004), ATP hydrolysis or MT release

in the rear head are accelerated relative to the front head. Both

models are consistent with the stepping of the rear head as the

front head remains bound to an MT during processive motility,

and they are not mutually exclusive.

Studies of kinesin motility have revealed that interhead coor-

dination is mediated through neck linker (NL), a 14 amino acid

peptide that connects each of the kinesin heads to the common

stalk (Asenjo et al., 2006; Block, 2007; Rosenfeld et al., 2001;

Sindelar and Downing, 2010). The principal conformational

change that drives motility is the docking of NL onto the cata-

lytic core of the front head (Rice et al., 1999) upon ATP hydroly-

sis (Milic et al., 2014). In a two-heads-bound (2HB) state, the

heads are separated by 8 nm and the NL of the front head

points backward, whereas the NL of the rear head points for-

ward. As a consequence, intramolecular tension develops be-

tween the heads via NLs (Hyeon and Onuchic, 2007). It remains

unclear whether it is tension on NL (Guydosh and Block, 2006;

Shastry and Hancock, 2010; Yildiz et al., 2008) or the asym-

metric orientations of the NLs (Clancy et al., 2011) that gate

kinesin motility (Figures 1A and S1). In this study, we used

single-molecule optical trapping assays to determine which of

these potential gating mechanisms is responsible for kinesin

processivity.
RESULTS

Force-Dependent Release Rate of Kinesin from MTs
To test the predictions of front- and rear-head gating models, we

pulled on the NL to mimic its orientations in the front and rear

head positions using an optical trap. To exert forces on themotor
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Figure 1. Force-Dependent Release of Ki-

nesin from MTs

(A) Top: schematic of a kinesin dimer in a 2HB

state. The NL (yellow) of the front head is oriented

backward and that of the rear head is oriented

forward. Bottom: orientation of the NLs or tension

between them (black arrows) may prevent ATP

binding to the front head, or accelerate the nucle-

otide hydrolysis and subsequent MT release of the

rear head to facilitate coordinated movement.

(B) The NL orientation of the front and rear heads

can be mimicked by pulling a kinesin monomer

from its NL via a short DNA tether using an optical

trap (not to scale).

(C) A trapped bead is oscillated between two

positions 250 nm apart along the MT long axis. (1)

When a monomer binds to the MT, (2) the move-

ment of the bead to the next trap position is

restricted. In this state, the trap exerts a constant

force as a function of bead-trap separation (Dx) on

the motor until it releases from the MT (Dt). (3)

When the monomer releases from the MT (red

arrowhead), the bead resumes following the trap.

(D) Cumulative probability distributions (solid cir-

cles) represent the dwell time data for kinesin

monomers pulled from the head toward the plus-

end in the absence of nucleotide at different force

ranges; n = 200 for each histogram. The release

rates (k1 and k2) at a given force range were

calculated by a two-exponential-decay fit (solid

curves).

(E) A model of the kinesin-MT interaction shows

two distinct binding modes in the apo state. k1 and

k2 represent force-induced release rates from the

weak and strong states, respectively.

See also Figures S1 and S2.
at a specific position, we labeled human kinesin monomers trun-

cated at the C terminus of the NL (hK349) with a 74 bpDNA tether

at the head (Guydosh and Block, 2009) or at NL (see Experi-

mental Procedures). The labeling efficiency of the motors with

a DNA tether was 15% (Figure S2). The other end of the DNA

tether was functionalized with biotin and attached to streptavi-

din-coated polystyrene beads.

TheMT release rate of a headwasmeasured across a range of

forces and nucleotide conditions (Figure 1B). Motor-coated

beads were moved ±125 nm in a square wave pattern on polar-

ity-marked MTs (Figures 1C and S2; Cleary et al., 2014). When a

single kinesin monomer was bound to the MT, it restricted the

movement of the bead to a new position of the trap. As a result,

the trap exerted constant forces ranging from 0.5 pN to 10 pN on

the motor until it released from the MT. Previous kinesin rupture-

force measurements were performed by moving a trapped bead

along MTs under constantly increasing force (Kawaguchi and

Ishiwata, 2001). Our assay better represents the situation in a ki-
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nesin dimer, where the heads are under

constant tension in a 2HB state before

the MTs are released.

To calculate the force-dependent

release rate of kinesin monomers, we

sorted the MT dwell-time data by applied
force. We defined positive and negative forces as forces that

assist and oppose kinesin’s natural direction of motion, respec-

tively. Cumulative frequency distributions of �200 dwells in a

given force range were fit using two exponential decays (Fig-

ure 1D). The data could not be fitted well with a single exponen-

tial decay (p < 0.001, F-test). The MT release rates were defined

as the decay constants of the fit (k1 and k2). The results support a

conventional model in which kinesin has strong and weak bind-

ing modes to the MT surface (Cross, 2004), and suggest that k1
and k2 represent force-induced exit from these weak and strong

binding states, respectively (Figure 1E).

We first established baseline release rates by pulling kinesin

monomers under the nucleotide-free (apo) state. A kinesin motor

has a strong affinity for MTs in the apo state. Figure 2A shows

that NL-pulled kinesins have release properties similar to those

of head-pulled kinesins in the apo state. k1 was an order of

magnitude faster than k2 and represented �60%–80% of the

release events under a wide range of applied forces (Figure S3).



Figure 2. MT Release Rates of Head- and NL-Pulled Kinesins under Different Nucleotide Conditions

(A) Without nucleotide, monomers release in response to external force (left). k1 (middle) and k2 (right) of kinesin monomers pulled from the head and NL increase

with force in both forward (positive forces) and backward directions.

(B) With 1 mM ATP in solution, kinesin can release by force or hydrolysis of the bound nucleotide (left). MT release rates of the head- and NL-pulled kinesins

increase compared with the apo condition.

(C) At 1 mM ADP, kinesin can release from MTs by force or ADP binding (left). NL-pulled kinesins show a slower release under backward forces. Error bars

represent 95% confidence intervals.

See also Figures S3 and S4.
In head- and NL-pulled motors, k1 and k2 were less than 30 s�1

and 3 s�1, respectively, at low forces (±1.4 pN) and gradually

increased with load in both forward (MT plus-end) and backward

(MT minus-end) directions. At high forces, k1 and k2 were on the

order of 100 s�1 and 10 s�1, respectively. Release under positive

forces was �20% faster through a wide range of applied forces,

consistent with a weak net preference of kinesin to release to-

ward its natural direction of motion under load (Uemura et al.,

2002). This preference is in contrast to cytoplasmic dynein,

which prefers to release toward the minus-end in a force-depen-

dent manner, whereas the release toward the plus-end is slow

and force independent (Cleary et al., 2014).
Cell
Tension on the NL Is Not Critical for Nucleotide
Hydrolysis
We next tested gating models based on the NL orientation and

tension by pulling monomers from the NL and the head under

different nucleotide conditions. To test the rear-head gating

model, we measured release rates at saturating (1 mM) ATP. Un-

der this condition, kinesin can release from theMT due to tension

exerted by the trap either in the apo state or in different nucleo-

tide states following hydrolysis of the bound ATP. If ATP hydro-

lysis at the rear head were accelerated in a 2HB state (Hancock

and Howard, 1999), kinesin monomers would release faster

when NL is pulled in the forward direction. Figure 2B shows
Reports 10, 1967–1973, March 31, 2015 ª2015 The Authors 1969



Figure 3. Nucleotide Binding to a Kinesin

Head Is Inhibited when the NL is Oriented

Backward

(A) The k1 values of the apo condition were sub-

tracted from that of 1 mM ADP to calculate the

nucleotide-binding induced MT release rate from

the weakly bound state. k1-ADP–k1-apo of NL-pulled

kinesins was 35 s�1 at �1.5 pN and decreased to

�0 s�1 at higher negative forces.

(B) The k2 values of the apo condition were sub-

tracted from that of 1 mM ADP to calculate

the nucleotide-binding induced MT release rate

from the strongly bound state. k2-ADP–k2-apo of

NL-pulled kinesins remained nearly constant

at 3.0 s�1 under negative forces, whereas k2-ADP–

k2-apo of head-pulled kinesins increased from

3.4 s�1 at �1.8 pN to 14.2 s�1 at �6.7 pN.
that k1 and k2 were nearly symmetric between positive and nega-

tive forces. The increase in k1 and k2 was �1.5-fold steeper in

1 mM ATP compared with the apo condition, consistent with

faster detachment of kinesin monomers fromMT in the presence

of nucleotide (Figure S4). NL and head-pulled kinesin have

similar release rates, indicating that nucleotide hydrolysis of

the rear head is not accelerated when NL is pulled forward.

These results disfavor the rear-head gating model.

We found that k1 and k2 were significantly accelerated by ATP

addition at low (±1.4 pN) forces. Unlike the apo condition, in

which k1 and k2 approached to near 0 s�1, in 1 mM ATP k1 and

k2 were 60 s�1 and 5 s�1 for head-pulled motors and 42 s�1

and 7 s�1 for NL-pulled motors, respectively. Although the k1
values at low forces agree well with the rapid MT detachment

measured in bulk (50 s�1 in ATP and 70 s�1 in ADP; Hancock

and Howard, 1999), k2 is more consistent with a slow release

(3–5 s�1) of the monomer-coated beads from MTs (Hackney,

2002) in unloaded conditions. The discrepancy between the pre-

vious measurements could be explained by the fact that bulk

measurements reflect the average release rate, whereas bead-

release assays are unable to detect fast MT-bead interactions

due to limited temporal resolution. In contrast to the apo condi-

tion, the probability of fast and slow release events was nearly

equal under a wide range of forces (Figure S3), presumably

due to the changes in kinesin’s affinity to MT as a function of

its nucleotide state.

ADP Binding Is Inhibited by Backward Orientation
of the NL
We next tested the force-dependent MT release of kinesin

monomers from the MT in ADP. Kinesin interacts weakly with

the MT in the ADP state (Uemura et al., 2002), and an unbound

head must release its ADP before MT attachment occurs

(Hackney, 1994). Therefore, MT-bound monomers release

from the MT either by external tension in the apo state or in

the ADP-bound state. Previous unbinding force measurements

on a kinesin dimer in ADP conditions indicated that kinesin’s

affinity for ADP is enhanced by external load exerted on kinesin

along the direction of motility and is weakened by backward

load (Uemura and Ishiwata, 2003). However, the nucleotide

binding rate, not the dissociation constant, is critical for

the front-head gating mechanism, because kinesin is gated at
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both limited and saturating nucleotide concentrations (Guy-

dosh and Block, 2006; Toprak et al., 2009). In addition, these

experiments did not distinguish between ADP binding to the

front and rear heads, because the dimers sample both 1HB

and 2HB states in ADP.

The front-head gating model predicts that a head is unable to

bind to a nucleotide when a kinesin monomer is pulled backward

from its NL. We measured the effect of nucleotide binding to a

kinesin head in both front and rear head orientations of the NL

using the trap assay at saturating (1 mM) ADP. In head-pulled ki-

nesins, addition of 1 mM ADP resulted in a �1.5-fold increase in

k1 and k2 under both positive and negative forces compared with

the apo condition (Figure 2C); k1 and k2 were 72 s�1 and 7 s�1,

respectively, at ±1.8 pN. The increase in both rates as a function

of applied forcewas comparable to that of 1mMATP (Figure 2B).

Remarkably, we observed a clear asymmetry in the release rates

when kinesin was pulled from its NL. Under positive forces, both

k1 and k2 were similar to those of head-pulled motors. However,

k1 and k2 of NL-pulled motors were significantly lower than the

corresponding rates of head-pulled motors over a wide range

of negative forces.

To estimate the degree to which negative forces exerted on

NL slow down the release rate upon ADP binding, we subtracted

k1 and k2 values in 1 mM ADP from those of the apo condition

(see Experimental Procedures, Figure 3). In contrast to the previ-

ously proposed enhancement of ADP binding affinity to kinesin

under forward load (Uemura and Ishiwata, 2003), we observed

that k1-ADP–k1-apo and k2-ADP–k2-apo were within 20% of those

of the head-pulled condition when NL is pulled forward (Figures

3A and 3B). Therefore, the increase in k1-ADP–k1-apo and k2-ADP–

k2-apo under positive forces is due to faster release of the motors

in the ADP-bound state under increased load, not to increased

ADP binding affinity in the forward orientation of NL.

When NL is pulled backward, nucleotide-dependent release

of kinesin occurs at a significantly slower rate than when it is

pulled from the head (Figures 3A and 3B). k1-ADP–k1-apo of

NL-pulled kinesins was 35 s�1 at �1.5 pN and decreased

abruptly to 0 ± 5 s�1 (mean ± SD) at higher negative forces.

k1-ADP–k1-apo of head-pulled kinesins remained constant at

45 ± 2 s�1 under all negative forces. Furthermore, k2-ADP–k2-apo
of NL-pulled kinesins remained largely constant at 3.0 ±

0.5 s�1 from �1.5 pN to �7.3 pN, whereas k2-ADP–k2-apo of
s



Figure 4. Front-Head Gating Model for Kinesin

(1) In the ATP waiting state, the rear head is ADP bound and weakly interacting

with MT. (2) ATP binding to the front head triggers NL docking, which pulls the

rear head forward. (3) The unbound head releases ADP and rebinds MT ahead

of its partner head. (3 and 4) In the 2HB state, the NL of the front head (red) is

oriented backward and ATP binding to this head is inhibited until the rear head

hydrolyzes ATP and releases from the MT.
head-pulled kinesins increased from 3.4 s�1 at �1.8 pN to

14.2 s�1 at �6.7 pN. We concluded that the reduction in the

nucleotide-dependent MT release of NL-pulled kinesins is inde-

pendent of the magnitude of tension from �1.5 to �7 pN.

DISCUSSION

Our results strongly support the front-head gating model (Fig-

ure 4) for coordination of the processive motility of a kinesin

dimer. When kinesin waits for an ATP molecule, the front head

remains tightly attached and the rear head is either weakly inter-

acting with or unbound from the MT. ATP binding to the front

head triggers NL docking, moving the rear head toward its

next tubulin-binding site in the plus-end direction. Kinesin

motility is gated when both heads are attached to the MT. In

this state, the NL of the rear head orients forward and is free to

dock, but the NL of the front head is restricted from docking

because it is oriented backward by the trailing head. The rear

head remains attached to the MT until it releases the phosphate,

which triggers subsequent MT release (Milic et al., 2014). This is

the rate-limiting step in kinesin’s ATPase cycle (Ma and Taylor,

1997), and the processivity would end prematurely if the front

head were to bind and hydrolyze ATP during this process. As a

result, the rear head hydrolyzes ATP and releases the inorganic

phosphate while the front head remains strongly attached to

the MT. Consistent with this scheme, our results show that pull-

ing NL in the backward direction greatly reduces the nucleotide-

binding-induced detachment rate of a head from MT. At high

negative forces, k1-ADP–k1-apo of head-pulled motors was 4-fold

faster than that of NL-pulled motors. In addition, k2-ADP–k2-apo
of head-pulled kinesins was at 45 ± 2 s�1, whereas that of NL-

pulled kinesins remained constant at 0 ± 5 s�1. The observed

reduction in k1 agrees with the estimation that ATP unbinding
Cell
to the front head is 6-fold faster than that to the rear head of a

walking kinesin dimer (Clancy et al., 2011).

Kinesin heads experience up to 15 pN tension in a 2HB state

(Hyeon and Onuchic, 2007). When tension between the heads

is reduced by extending NLs, the rear head binds strongly to

an MT in the ATP-waiting state (Clancy et al., 2011), and as a

result, kinesin loses its ability to convert ATP hydrolysis to a me-

chanical step and undergoes futile cycles of ATP hydrolysis (Yil-

diz et al., 2008). Although high intramolecular tension is crucial

for the energetic efficiency of the kinesin motor, our results

show that it is not critical for the interhead coordination. Nucleo-

tide binding to a head can be inhibited at backward tensions as

low as 2 pN and is independent of the magnitude of tension ex-

erted on the NL (Figure 3). Based on this result, we propose that

kinesin gating is facilitated by the backward orientation of NL of

the front head. This gating mechanism does not require substan-

tial tension between the heads and is mainly facilitated by re-

stricting the NL of the front head to orient backward by the

rear head in a 2HB state. Consistent with our model, kinesin

maintains its gating mechanism with reduced tension on NLs

(Clancy et al., 2011).

A possible clue for how ATP binding to the front head may be

suppressed by the inability of its NL to dock onto the catalytic

core comes from structural studies (Kikkawa et al., 2001; Rice

et al., 1999; Sindelar and Downing, 2010). The kinesin motor

domain contains two hydrophobic pockets on opposite sides,

known as the ‘‘switch pocket’’ and the ‘‘docking pocket,’’ that

facilitate nucleotide binding and NL docking, respectively (Sin-

delar, 2011). ATP binding to the switch pocket triggers opening

of the docking pocket and leads to NL docking. When the rear

head is strongly attached to the MT, it prevents forward exten-

sion of the NL of the front head and occupation of its docking

pocket. Under this conformation, the switch pocket remains

closed and ATP binding to the front head is disfavored because

the nucleotide sensing loops cannot interact with g-phosphate

of ATP (Sindelar, 2011).

Our results have broader implications for understanding the

communication between the heads of a dimeric motor during

processive motility. The nucleotide hydrolysis of the catalytic

core drives the conformational change of a mechanical element

(referred to as a lever arm in myosins, a linker in dyneins, and an

NL in kinesins). These mechanical elements sense intramolecu-

lar tension in a 2HB state. A tension-sensing mechanism has

been shown to affect nucleotide binding to myosin-V heads

(Dunn et al., 2010) and inhibit ATP-dependent MT release of

cytoplasmic dynein (Cleary et al., 2014). These observations

suggest that tension sensing and asymmetric conformations of

these structures in the front and rear heads of a walking dimer

play a major role in achieving processivity.

EXPERIMENTAL PROCEDURES

Preparation and Labeling of Kinesin Constructs

The hK349 construct contains the entire motor domain, NL, and a short region

of the neck coiled coil. To label the kinesin head with biotin maleimide, the

E215C mutation was inserted into a cysteine-light kinesin construct (hK349-

E215C-CLM). To label the distal end of the NL, HaloTag (HT, a 26 kDa protein

tag) was inserted into the C terminus (hK349-HT). Kinesin monomers were ex-

pressed in E. coli and purified by affinity chromatography.
Reports 10, 1967–1973, March 31, 2015 ª2015 The Authors 1971



To label hK349-E215C-CLM with DNA at the head, we used a 74 bp DNA

tether modified with biotin and a free amine at opposite ends. A 40-fold excess

of amine to sulfhydryl crosslinker (Sulfo-SMCC) was incubated with the DNA

solution for 90 min at 37�C. DNA-SMCC was reacted with hK349-E215C-

CLM at a 1:1 ratio for 2 hr at 4�C. This surface-exposed residue was chosen

for the DNA attachment point because it is a solvent-exposed residue located

at the back side of the motor domain and is distal from regions known to be

critical for motility, such as the NL, nucleotide binding cleft, and MT binding

surface. The E215C mutation has no detectable effect on kinesin motility

and force production (Mori et al., 2007; Tomishige et al., 2006; Yildiz et al.,

2004, 2008). To label K349-HT monomers with DNA, the free amine at the

50-end of the DNA tether was conjugated with a 40-fold excess of HT-succini-

midyl ester ligand at room temperature for 6 hr. The DNA-HT ligand was re-

acted with K349-HT for 5 hr at 4�C. Motors were purified by an MT bind-

and-release assay to remove excess DNA.

Optical Trapping Assay

DNA-labeled kinesin monomers were diluted in BRBC (BRB80 [80 mM PIPES

(pH 6.8), 1 mM MgCl2, 1 mM EGTA, 2 mM DTT] with 2.5 mg/ml casein) and

incubated with 860 nm streptavidin-coated polystyrene beads. The residual

ATP in kinesin solution was removed by pelleting and resuspending the beads

in BRBC. To deplete the residual ATP, 0.5 U/ml apyrase was added for the apo

condition, and 2 U/ml hexokinase and 0.4% glucose were added for the ADP

condition.

Trapped beads were positioned over a Cy5-labeled axoneme, oscillated

±125 nm along the axoneme in a square wave pattern, and held for 0.375 s

in each position. MT polarity was determined with the use of Alexa488-labeled

S. cerevisiae cytoplasmic dyneins, which decorate the minus-end of MTs. The

traces of the bead and trap centers were recorded at 5 kHz. Because the bead

was moved within the linear range of the trap (±150 nm), the force exerted on a

motor during a binding event was calculated by multiplying the trap stiffness

(0.045 pN/nm) by the bead-trap separation.

Data Analysis

MT binding events were determined with the use of a custom step-finding al-

gorithm written in MATLAB (The MathWorks) (Cleary et al., 2014). Rare

(�10%) multiple-step release events and events with a dwell time of

<2.5 ms were discarded from the data analysis. Data consisting of applied

force and dwell time were sorted by force and binned every 150–300 data

points under different pulling geometries and nucleotide conditions. The cu-

mulative distribution of the force-induced MT release data was fitted to the

sum of two exponentials in MATLAB. Because the forces in apo and ADP

conditions do not perfectly match, subtraction of the rates at each force value

was performed by linear interpolation between the adjacent data points in

Origin (Origin Labs).

A comprehensive list of the methods, reagents, and statistics is provided in

Supplemental Experimental Procedures.
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