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Abstract

In the control systems literature, it is well known that a separation principle holdslocally for nonlinear control
systems, when exponential feedback stabilizers and exponential observers are used. In this paper, we present a
counterexample to show that the global separation principle need not hold for nonlinear control systems. Our
example demonstrates that global stability might be lostwhen an exponential observer is introduced into the
nonlinear feedback loop associated with an exponentially stabilizing feedback control law.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In the control systems literature, it is well known that in the case of a linear system, theseparation
principle assures that an estimate of the state may be used in lieu of the state provided that the error
between the estimate and the actual state decays exponentially [1]. As far as feedback stabilization
of nonlinear control systems is concerned, a similarseparation principle holds locally around a state
equilibrium [2,3]. In this paper, webasically establish that the global separation principle need not be
true for nonlinear control systems. Explicitly, we present a counterexample to show that global stability
might be lost when an exponential observer is introduced into the feedback loop of the nonlinear control
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system. Our discrete-time example is similar to the results of Glad [4] for continuous-time nonlinear
control systems.

2. Main result

In this section, we present our new counterexample for the global separation principle for discrete-
time nonlinear control systems.

Consider the scalar discrete-time nonlinear control system described by

xk+1 = xk + x3
k + uk, (1)

wherex ∈ R is thestate, andu ∈ R is theinput of the nonlinear control system. It is easy to see that the
system (1) is globally exponentially stabilizable. Indeed, the feedback control law

uk = −xk − x3
k (2)

globally exponentially stabilizes the nonlinear plant (1) with the closed-loop dynamics

xk+1 = 0. (3)

Note that the closed-loop dynamics (3) is globally exponentially stable.
Now, we assume that the statex is replaced by an estimatez from a nonlinear observer. Let the

estimation errore be defined by

e � x − z.

Then the observer-based feedback control law is given by

uk = −zk − z3
k = −(xk − ek) − (xk − ek)

3. (4)

Assume that the observer errore decays exponentially according to the dynamics

ek+1 = αek, (0 < α < 1). (5)

Note that the observer-based control law (4) leads to

xk+1 = xk + x3
k − (xk − ek) − (xk − ek)

3

or

xk+1 = 3xkek(xk − ek) + ek + e3
k .

Consider the composite dynamics

xk+1 = 3xkek(xk − ek) + ek + e3
k ,

ek+1 = αek .
(6)

Next, consider the quantity

µ = xe.

Then we have

µk+1 = 3αµk(µk − e2
k) + αe2

k + αe4
k . (7)
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Define the set

Ma �
{
(x, e) ∈ R2 : x > 0, 0 < e ≤ a, µ ≥ a2 + 1

3α

}
.

We claim that the setMa is invariant under the flow of the composite system (6). This can be seen
easily from an induction argument.

Let (x0, e0) ∈ Ma. Assume that(xk, ek) ∈ Ma for some non-negative integral value ofk. We shall
establish that(xk+1, ek+1) ∈ Ma as well.

By the induction hypothesis, it follows that

xk > 0, 0 < ek ≤ a and µk ≥ a2 + 1

3α
. (8)

To show that(xk+1, ek+1) ∈ Ma , we must show that

xk+1 > 0, 0 < ek+1 ≤ a and µk+1 ≥ a2 + 1

3α
. (9)

Now, by (8), it follows thatxk > 0 andµk = xkek ≥ a2 + 1
3α

. Hence, we have

xk ≥ a2 + 1
3α

ek
.

Therefore,

xk − ek ≥ a2 + 1
3α

ek
− ek = a2 + 1

3α
− e2

k

ek
> 0

as 0< ek ≤ a.
Sincexk − ek > 0, xk > 0 andek > 0, it is immediate from the dynamics (6) that

xk+1 = 3xkek(xk − ek) + ek + e3
k > 0.

Next, asek+1 = αek with 0 < α < 1 and 0< ek ≤ a, it is immediate that

0 < ek+1 ≤ a.

Finally, asµk > 0, it follows that

µk+1

µk
= 3α(µk − e2

k) + αe2
k + αe4

k

µk

≥ 3α(µk − e2
k)

≥ 3α(µk − a2)

≥ 1

where, in the last inequality, we have used the induction hypothesis (8), which states thatµk ≥ a2 + 1
3α

.
Hence, it follows that

µk+1 ≥ µk ≥ a2 + 1

3α
.

Thus, (9) is proved. By induction, it follows that(xk, ek) ∈ Ma for all positive integral values ofk, if
(x0, e0) ∈ Ma . Hence,Ma is an invariant set under the flow of the composite system (6).
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Thus, all the solutions(xk, ek) starting in Ma will remain in Ma for all values of time. Since the error
dynamicsek+1 = αek is globally exponentially stable, we know that

ek → 0 exponentially ask → ∞ for all e0 ∈ R.

Note also that

µk = xkek ≥ a2 + 1

3α
> a2.

Hence, if(x0, e0) ∈ Ma , then it is immediate thatxk → ∞ ask → ∞. Sincethis holds for anya > 0,
we conclude that the system (6) fails to beglobally stable even if the initial observation errore0 is
arbitrarily small. We note, however, that the closed-loop control system is locally exponentially stable as
the linearization matrix of the composite system (6) at (x, e) = (0, 0) is given by

A =
[
0 1
0 α

]

which has the eigenvalues 0 andα both of which are inside the open unit disc|λ| < 1 of the complex
plane.

Our example essentially illustrates that global stability might be lost evenwhen we use an exponential
observer with arbitrarily small exponential decay. Hence, the global separation principle need not hold
for nonlinear control systems.
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