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Abstract

We show that a smallest counterexample to the 5-Flow Conjecture of Tutte (every bridgeless

graph has a nowhere-zero 5-flow) must be a cyclically 6-edge-connected cubic graph.
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1. Introduction

A graph admits a nowhere-zero k-flow (k is an integer X2) if its edges can be
oriented and assigned numbers71;y;7ðk � 1Þ so that for every vertex, the sum of
the incoming values equals the sum of the outgoing ones. It is well-known that a
graph with a bridge (1-edge-cut) does not have a nowhere-zero k-flow for any kX2
(see, e.g., [3,11]). The famous 5-Flow Conjecture of Tutte [13] is the statement that
every bridgeless graph has a nowhere-zero 5-flow.
An edge cut of a graph is called cyclic if deleting its edges results in a graph having

at least two cyclic components. A graph is called cyclically k-edge-connected if it has
no cyclic cut of cardinality smaller than k:
It is well-known (see cf. [3]) that a smallest counterexample to the 5-Flow

Conjecture must be a snark which is a cyclically 4-edge-connected cubic graph
without an edge-3-coloring and with girth (the length of the shortest cycle) at least 5.
Furthermore by Celmins [1], this counterexample must be cyclically 5-edge-
connected and have girth at least 7 (see also [3,9]). This result was very interesting
because until recently, no snarks with girth at least 7 were known. Indeed, Jaeger and
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Swart [4] conjectured that such snarks do not exist. In [6] we disproved this
conjecture constructing cyclically 5-edge-connected snarks with arbitrary large girth
(see also [11]).
In this paper we prove that a smallest counterexample to the 5-Flow Conjecture

must be cyclically 6-edge-connected. Furthermore, in an accompanied paper
[10] we have proved that it must have girth at least 9. Since all cyclically
6-edge-connected snarks known until now have girth 6 (see [2,5,7,11,12], such a
counterexample belongs to a class of graphs for which we do not know whether it is
empty.

2. Preliminaries

The graphs considered in this paper are all finite and undirected. Multiple edges
and loops are allowed. If G is a graph, then VðGÞ and EðGÞ denote the sets of
vertices and edges of G; respectively. By a multi-terminal network, briefly a network,
we mean a pair ðG;UÞ where G is a graph and U ¼ ðu1;y; unÞ is an n-tuple of
pairwise distinct vertices of G: If no confusion can occur, we denote by U also the set
fu1;y; ung: The vertices from U and VðGÞ\U are called the outer and inner vertices

of the network ðG;UÞ; respectively. We allow n ¼ 0; i.e., U ¼ |:
We associate with each edge of G two distinct arcs, distinct for distinct edges (see

also [11]). If one of the arcs corresponding to an edge is denoted by x; the other is

denoted by x�1: If the ends of an edge e are the vertices u and v; one of the arcs
corresponding to e is said to be directed from u to v (and the other from v to u). In
particular, a loop corresponds to two distinct arcs both directed from a vertex to
itself. Let DðGÞ denote the set of arcs on G: Then jDðGÞj ¼ 2jEðGÞj: If vAVðGÞ; then
oGðvÞ denotes the set of arcs of G directed from v to VðGÞ\fvg:
If G is a graph and A is an additive abelian group, then an A-chain in G is a

mapping j : DðGÞ-A such that jðx�1Þ ¼ �jðxÞ for every xADðGÞ: Furthermore,
the mapping @j : VðGÞ-A such that

@jðvÞ ¼
X

xAoGðvÞ
jðxÞ ðvAVðGÞÞ

is called the boundary of j: An A-chain j in G is called nowhere-zero if jðxÞa0 for
every xADðGÞ: If ðG;UÞ is a network, then an A-chain j in G is called an A-flow in
ðG;UÞ if @jðvÞ ¼ 0 for every inner vertex v of ðG;UÞ: The following statement is
proved in [8,11].

Lemma 1. If j is an A-flow in a network ðG;UÞ; then
P

uAU@jðuÞ ¼ 0:

By a (nowhere-zero) A-flow in a graph G we mean a (nowhere-zero) A-flow

in the network ðG; |Þ: Our concept of nowhere-zero flows in graphs coincides
with the usual definition of nowhere-zero flows as presented in [3]. By Tutte [13,14], a
graph has a nowhere-zero k-flow if and only if it has a nowhere-zero A-flow for
some Abelian group A of order k: Thus the study of nowhere-zero 5-flows
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is in certain sense equivalent with the study of nowhere-zero Z5-flows. We shall use
this fact and deal only with Z5-flows because they are easier to handle than
integral flows.

3. Simple networks

A network ðG;UÞ; U ¼ ðu1;y; unÞ; is called simple if the vertices u1;y; un have
valency 1. If j is a nowhere-zero Z5-flow in ðG;UÞ; then denote by @jðUÞ the n-tuple
ð@jðu1Þ;y; @jðunÞÞ: By Lemma 1, @jðUÞ belongs to the set

Sn ¼ fðs1;y; snÞ; s1;y; snAZ5 � 0; s1 þ?þ sn ¼ 0g:

For every sASn; denote by FG;UðsÞ the set of nowhere-zero Z5-flows j in ðG;UÞ
satisfying @jðUÞ ¼ s and define FG;UðsÞ ¼ jFG;UðsÞj:
Let P ¼ fQ1;y;Qrg be a partition of the set f1;y; ng: If one of Q1;y;Qr is a

singleton, P is called trivial, otherwise it is called nontrivial. Let Pn denote the set of
nontrivial partitions of f1;y; ng:
If s ¼ ðs1;y; snÞASn; P ¼ fQ1;y;QrgAPn; and

P
iAQj

si ¼ 0 for j ¼ 1;y; r; then

we say that P and s are compatible. (For example, ff1; 2g; f3; 4; 5ggAP5 is
compatible with ð1; 4; 1; 2; 2ÞAS5:)
If jPnj ¼ m; then Pn can be considered as an m-tuple ðPn;1;y;Pn;mÞ: For any

sASn; denote by vnðsÞ the integral vector ðws;1;y; ws;mÞ such that ws;i ¼ 1 ðws;i ¼ 0Þ if
Pn;i is (is not) compatible with s; i ¼ 1;y;m:

Lemma 2. Let ðG;UÞ; U ¼ ðu1;y; unÞ; be a simple network and jPnj ¼ m: Then there

exists an integral vector xG;U ¼ ðx1;y; xmÞ such that for every sASn; FG;UðsÞ ¼Pm
i¼1ws;i 	 xi where ðws;1;y; ws;mÞ ¼ vnðsÞ:

Proof. We can assume that no two outer vertices of ðG;UÞ are joined by
an edge (otherwise subdivide each such edge by a new vertex of valency 2)
and G has no isolated vertex. For such networks we apply induction on
jEðGÞjXn:
If jEðGÞj ¼ n; then G is bipartite with partition sets fu1;y; ung and fv1;y; vrg:

Thus, there exists a partition P ¼ fQ1;y;Qrg of f1;y; ng such that iAQj iff ui is

adjacent to vj (iAf1;y; ng; jAf1;y; rg). If P is trivial (i.e., ðG;UÞ has an inner
vertex of valency 1), then FG;UðsÞ ¼ 0 for every sASn; and we can choose xG;U to be

the zero vector of Qm: If PAPn; then there exists jAf1;y;mg such that P ¼ Pn; j :

Now FG;U ðsÞ ¼ ws; j for every sASn: Thus xG;U equal the jth standard basis vector of

Qm satisfies the assumptions of lemma.
If jEðGÞj4n; then there exists an edge e of G with ends v1; v2eU :
Assume that v1av2: Let G � e and G=e be the graphs arising from G after deleting

and contracting e; respectively. We claim that for every sASn;

FG;UðsÞ ¼ FG=e;UðsÞ � FG�e;UðsÞ: ð1Þ
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Clearly, any jAFG�e;UðsÞ can be considered as a flow from FG=e;U ðsÞ and any
jAFG;UðsÞ can be transformed to exactly one flow from FG=e;UðsÞ: On the other
hand, any jAFG=e;UðsÞ can be considered as a Z5-chain in G � e; which is a nowhere-

zero Z5-flow in the network ðG � e; ðv1; v2; u1;y; unÞÞ; whence by Lemma 1,
@jðv1Þ þ @jðv2Þ ¼ 0: If @jðv1Þ ¼ @jðv2Þ ¼ 0; then j is from FG�e;UðsÞ; otherwise
j can be extended to exactly one flow from FG;UðsÞ: In this way, we get a bijective
mapping from FG=e;UðsÞ to FG;UðsÞ,FG�e;UðsÞ: This implies (1) because

FG;UðsÞ-FG�e;UðsÞ ¼ |:
We have jEðGÞj4jEðG=eÞj; jEðG � eÞj: Thus, by the induction hypothesis, there

are integral vectors xG=e;U ¼ ðx0
1;y; x0

mÞ and xG�e;U ¼ ðx00
1;y; x00

mÞ such that for
every sASn; FG=e;UðsÞ ¼

Pm
i¼1 ws;ix

0
i and FG�e;UðsÞ ¼

Pm
i¼1 ws;ix

00
i ; whence by (1),

FG;UðsÞ ¼ FG=e;U ðsÞ � FG�e;UðsÞ ¼
Pm

i¼1 ws;iðx0
i � x00

i Þ: Thus the vector xG;U ¼
xG=e;U � xG�e;U satisfies the assumptions of lemma.

Assume that v1 ¼ v2; i.e., e is a loop of G: Then every nowhere-zero Z5-flow in
G � e can be extended to exactly four nowhere-zero Z5-flows in G: Thus for every
sASn; FG;UðsÞ ¼ 4 	 FG�e;UðsÞ; whence the vector xG;U ¼ 4xG�e;U satisfies the

assumptions of lemma. &

More details about this topic can be found in [10].
Let A denote the automorphism group of Z5: The elements of A are a0 ¼ id;

a1 ¼ ð1; 2; 4; 3Þ; a2 ¼ ð1; 4Þð2; 3Þ and a3 ¼ ð1; 3; 4; 2Þ: If s ¼ ðs1;y; snÞASn and aAA;
then denote aðsÞ ¼ ðaðs1Þ;y; aðsnÞÞASn: Clearly, vnðsÞ ¼ vnðaðsÞÞ; whence by
Lemma 2, FG;UðsÞ ¼ FG;UðaðsÞÞ for every simple network ðG;UÞ with n outer

vertices.

4. The main result

P5 contains the following partitions (considering the sums i þ 1; i þ 2; i þ 3;
i þ 4 mod 5Þ:

P5;i ¼ ffi; i þ 1g; fi þ 2; i þ 3; i þ 4gg; ði ¼ 1;y; 5Þ;

P5;5þi ¼ ffi; i þ 2g; fi þ 1; i þ 3; i þ 4gg; ði ¼ 1;y; 5Þ;

P5;11 ¼ f1; 2; 3; 4; 5g:

If s ¼ ðs1;y; s5ÞAS5; then define pðsÞ ¼ ðs5; s1; s2; s3; s4Þ: Let ei denote the ith

standard basis vector of Q11:

Theorem 3. Suppose that G is a counterexample to the 5-Flow Conjecture of minimal

order. Then G is a cyclically 6-edge-connected snark.

Proof. By Celmins [1], G is a cyclically 5-edge-connected snark. Suppose that G has
a cyclic 5-edge cut f f1;y; f5g: Then G � f f1;y; f5g has exactly two components G0
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and G00; which are cyclic and bridgeless. For i ¼ 1;y; 5; let v0i and v00i be the end
of fi contained in G0 and G00; respectively. Add to G0 ðG00Þ five vertices
u1;y; u5 ðw1;y;w5Þ and, for i ¼ 1;y; 5; join ui with v0i (wi with v00i ). We get from
G0 ðG00Þ a new graph X ðYÞ: Consider the simple networks ðX ;UÞ; U ¼ ðu1;y; u5Þ;
and ðY ;WÞ; W ¼ ðw1;y;w5Þ:

FX ;UðsÞ; FY ;W ðsÞX0 for every sAS5: If there exists sAS5 such that FX ;UðsÞ;
FY ;W ðsÞ40; then ðX ;UÞ and ðY ;WÞ have nowhere-zero Z5-flows j1 and j2;
respectively, such that @j1ðUÞ ¼ s and @j2ðWÞ ¼ a2ðsÞ (because FY ;W ða2ðsÞÞ ¼
FY ;W ðsÞ40) which can be ‘‘pieced together’’ into a nowhere-zero Z5-flow in

G; a contradiction. Thus FX ;UðsÞ 	 FY ;W ðsÞ ¼ 0 for every sAS5:
By Lemma 2, there exist integers xi and yi; i ¼ 1;y; 11; such that for every sAS5;

FX ;UðsÞ ¼
P11

i¼1ws;ixi and FY ;W ðsÞ ¼
P11

i¼1ws;iyi where ðws;1;y; ws;11Þ ¼ v5ðsÞ:
Now FX ;Uð1; 1; 1; 1; 1Þ ¼ x11 and FY ;W ð1; 1; 1; 1; 1Þ ¼ y11: Thus x11; y11X0 and

x11 	 y11 ¼ 0: Without loss of generality we can assume x11 ¼ 0:
Suppose that xiX0 for every i ¼ 1;y; 10: If x1 ¼ ? ¼ x11 ¼ 0; then FX ;UðsÞ ¼ 0

for every sAS5: Identify u1 with u2 and u3 with u4; u5 in X and suppress the
vertex of valency 2. The resulting cubic graph is bridgeless, has order smaller
than G; and does not have a nowhere-zero 5-flow (otherwise FX ;UðsÞ40
for some sAS5), which contradicts the minimality of G: Hence at least one xi must
be positive. We can choose the ordering of edges f1;y; f5 so that x140: Thus
FX ;UðsÞ40 and FY ;W ðsÞ ¼ 0 if sAS5 and v5ðsÞ has first coordinate 1. Then
identifying w1 with w2 and w3 with w4;w5 in Y and suppressing the vertex of
valency 2 we get a bridgeless cubic graph without a nowhere-zero 5-flow and of order
smaller than G; a contradiction.
Therefore at least one xi is negative. We can choose the ordering of edges f1;y; f5

so that x1o0: Consider

p1 ¼ ð1; 4; 1; 2; 2Þ; v5ðp1Þ ¼ e11 þ e1 þ e2;

p2 ¼ ð1; 4; 2; 1; 2Þ; v5ðp2Þ ¼ e11 þ e1 þ e7;

p3 ¼ ð1; 4; 2; 2; 1Þ; v5ðp3Þ ¼ e11 þ e1 þ e10;

p4 ¼ ð4; 1; 1; 2; 2Þ; v5ðp4Þ ¼ e11 þ e1 þ e6;

p5 ¼ ð4; 1; 2; 1; 2Þ; v5ðp5Þ ¼ e11 þ e1 þ e9;

p6 ¼ ð4; 1; 2; 2; 1Þ; v5ðp6Þ ¼ e11 þ e1 þ e5: ð2Þ

Since FX ;UðpiÞX0 for i ¼ 1;y; 6; we have x2; x5; x6; x7; x9;x10X� x1 � x11 ¼
�x140: If one of x3; x4; x8 is negative, we can choose the ordering of edges

f3; f4; f5 so that x3o0: For i ¼ 1;y; 6; replacing pi with p2ðpiÞ in (2) and using the
fact that FG;Uðp2ðpiÞÞX0; we get x2; x4; x6; x7; x8; x9X� x3 � x11 ¼ �x340: Thus,
without abuse of generality, we can assume that exactly one of the following cases
occurs:

(i) x1o0; x2; x5; x6; x7; x9; x10X� x1; and x3; x4; x8X0;
(ii) x1; x3o0; x2; x5; x6; x7; x9; x10X� x1; and x2; x4; x6; x7; x8; x9X� x3:
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Let S be the set of permutations ðs1; s2; s3; s4; s5Þ of 1; 1; 1; 3; 4: S is a proper subset
of S5 (for instance ð1; 1; 1; 1; 1Þ and ð1; 1; 2; 2; 4Þ belong to S5 but not to S). We claim
that FX ;UðsÞ40 for every sAS:
Let s ¼ ðs1;y; s5ÞAS: Then v5ðsÞ ¼ ea þ eb þ ec þ e11 and FX ;U ðsÞ ¼ xa þ xb þ xc

where a; b; c are pairwise distinct elements from f1;y; 10g such that partitions
P5;a;P5;b;P5;c are of the form ffi1; i2g; fi3; i4; i5gg where si1 þ si2 ¼ 0:
If a ¼ 1; i.e., s1 þ s2 ¼ 0; then b; cef3; 4; 8g (otherwise at least one of the sums

s3 þ s4; s4 þ s5; s3 þ s5 equals 0, whence at least one of s5; s3; s4 is 0, a contradiction).
Since x2; x5; x6; x7; x9; x10X� x1; we have xa þ xb þ xcX� x140:
Let a; b; ca1 and case (i) occur. Then f3; 4; 8gafa; b; cg (otherwise s3 þ s4 ¼

s4 þ s5 ¼ s3 þ s5 ¼ 0; whence s3 ¼ s4 ¼ s5 ¼ 0; a contradiction). Thus xa; xb; xc are
nonnegative integers and at least one of them is positive, whence xa þ xb þ xc40:
Let a; b; ca1 and case (ii) occur. If 3Afa; b; cg; then we can choose the ordering of

edges f1;y; f5 so that we get the case a ¼ 1: If 3efa; b; cg; then xa; xb; xc are positive,
and so is xa þ xb þ xc:
Therefore for every sAS; FX ;UðsÞ40 and FY ;W ðsÞ ¼ 0: Consider

p7 ¼ ð4; 3; 1; 1; 1Þ; v5ðp7Þ ¼ e11 þ e5 þ e6 þ e9;

p8 ¼ ð4; 1; 3; 1; 1Þ; v5ðp8Þ ¼ e11 þ e5 þ e1 þ e9;

p9 ¼ ð4; 1; 1; 3; 1Þ; v5ðp9Þ ¼ e11 þ e5 þ e1 þ e6: ð3Þ
Since p7; p8; p9AS; we have

0 ¼ FY ;W ðp7Þ � FY ;W ðp8Þ ¼ y6 � y1;

0 ¼ FY ;W ðp7Þ � FY ;W ðp9Þ ¼ y9 � y1;

0 ¼ FY ;W ðp8Þ � FY ;W ðp9Þ ¼ y9 � y6: ð4Þ

Therefore y1 ¼ y6 ¼ y9: For i ¼ 1; 2; 3; 4; replacing p7; p8; p9 with piðp7Þ; piðp8Þ;
piðp9Þ; respectively, in (3) and (4) we get y2 ¼ y7 ¼ y10; y3 ¼ y8 ¼ y6; y4 ¼ y9 ¼ y7;
y5 ¼ y10 ¼ y8; whence y1 ¼ ? ¼ y10: Furthermore, FX ;Uð1; 1; 2; 2; 4Þ ¼ x5 þ x10 þ
x1140 in both cases (i) and (ii). Thus 0 ¼ FY ;W ð1; 1; 2; 2; 4Þ ¼ y5 þ y10 þ y11 and

0 ¼ FY ;W ð1; 1; 1; 3; 4Þ � FY ;W ð1; 1; 2; 2; 4Þ ¼ y8: Therefore y1 ¼ ? ¼ y11 ¼ 0 and we
get a smaller counterexample in a similar way as in the case x1 ¼ ? ¼ x11 ¼ 0: This
proves the statement. &

5. Concluding remarks

If nAf2; 3g; then Pn contains exactly one partition and vnðsÞ ¼ ð1Þ for every sASn:
Thus, by Lemma 2, FG;UðsÞ ¼ FG;Uðs0Þ for every s; s0ASn and every simple network

ðG;UÞ with n outer vertices. This implies that a smallest counterexample to the 5-
flow conjecture must be cyclically 4-edge-connected (see also [3]).
Since the results of Celmins [1] are not published, we also sketch a proof of

the statement that a smallest counterexample to the 5-flow conjecture has no cyclic
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4-edge cut. Otherwise in a similar way as in Theorem 3 construct simple networks
ðX ;UÞ; U ¼ ðu1;y; u4Þ; and ðY ;WÞ; W ¼ ðw1;y;w4Þ; which satisfy FX ;UðsÞ;
FY ;W ðsÞX0 and FX ;UðsÞ 	 FY ;W ðsÞ ¼ 0 for every sAS4: P4 contains partitions

P4;1 ¼ ff1; 2g; f3; 4gg; P4;2 ¼ ff2; 3g; f4; 1gg; P4;3 ¼ ff1; 3g; f2; 4gg; and P4;4 ¼
ff1; 2; 3; 4gg: By Lemma 2, there exist integers x1;y;x4 and y1;y; y4 such that

for every sAS4; FX ;U ðsÞ ¼
P4

i¼1ws;ixi and FY ;W ðsÞ ¼
P4

i¼1ws;iyi where ðws;1;y; ws;4Þ ¼
v4ðsÞ: Since FX ;Uð1; 1; 1; 2Þ ¼ x4 and FY ;W ð1; 1; 1; 2Þ ¼ y4; we have x4; y4X0 and

x4 	 y4 ¼ 0: Suppose that x4 ¼ 0: Then FX ;Uð1; 4; 2; 3Þ ¼ x1X0; FX ;Uð1; 2; 3; 4Þ ¼
x2X0; FX ;Uð1; 2; 4; 3Þ ¼ x3X0: If x1 ¼ ? ¼ x4 ¼ 0; then identifying u1 ðu3Þ with
u2 ðu4Þ in X and suppressing the vertices of valency 2, we get a smaller counter-
example. Therefore, at least one xi must be positive and without loss of generality
we can assume that x140: Then FX ;UðsÞ40 and FY ;W ðsÞ ¼ 0 if v4ðsÞ has first
coordinate 1 (sAS4). Thus identifying w1 ðw3Þ with w2 ðw4Þ in Y and suppressing
the vertices of valency 2 we get a smaller counterexample, concluding the proof.
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