Journal of Approximation
 Theory

ELSEVIER

A pair of orthogonal frames ${ }^{\text {Th }}$

Hong Oh Kim ${ }^{\text {a }}$, Rae Young Kim ${ }^{\text {b }}$, Jae Kun Lim ${ }^{\text {c,* }}$, Zuowei Shen ${ }^{\text {d }}$
${ }^{\text {a }}$ Division of Applied Mathematics, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
${ }^{\mathrm{b}}$ Department of Mathematics, Yeungnam University, 214-1 Dae-dong, Gyeongsan-si, Gyeongsangbuk-do 712-749, Republic of Korea
${ }^{\mathrm{c}}$ Department of Applied Mathematics, Hankyong National University, 67 Seokjeong-dong, Anseong-si, Gyeonggi-do 456-749, Republic of Korea
${ }^{\mathrm{d}}$ Department of Mathematics, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Republic of Singapore

Received 2 August 2006; received in revised form 26 October 2006; accepted 18 January 2007
Communicated by Paul Nevai and Amos Ron
Available online 22 February 2007

Abstract

We start with a characterization of a pair of frames to be orthogonal in a shift-invariant space and then give a simple construction of a pair of orthogonal shift-invariant frames. This is applied to obtain a construction of a pair of Gabor orthogonal frames as an example. This is also developed further to obtain constructions of a pair of orthogonal wavelet frames.

© 2007 Elsevier Inc. All rights reserved.
MSC: 42C15; 42C40

Keywords: Orthogonal frames; Frame; Wavelet system; Affine system; Gabor system

1. Introduction

Let X be a (countable) Bessel system for a separable Hilbert space \mathcal{H} over the complex field \mathbb{C}. The synthesis operator $T_{X}: \ell_{2}(X) \rightarrow \mathcal{H}$, which is well-known to be bounded, is defined by

$$
T_{X} a:=\sum_{h \in X} a_{h} h
$$

[^0]for $a=\left(a_{h}\right)_{h \in X}$. The adjoint operator T_{X}^{*} of T_{X}, called the analysis operator, is
$$
T_{X}^{*}: \mathcal{H} \rightarrow \ell_{2}(X) ; \quad T_{X}^{*} f:=(\langle f, h\rangle)_{h \in X} .
$$

Recall that X is a frame for \mathcal{H} if and only $S_{X}:=T_{X} T_{X}^{*}: \mathcal{H} \rightarrow \mathcal{H}$, the frame operator or dual Gramian, is bounded and has a bounded inverse $[4,8]$ and it is a tight frame (with frame bound 1) if and only if S_{X} is the identity operator. The system X is a Riesz system (for $\overline{\operatorname{span}} X$) if and only if its Gramian $G_{X}:=T_{X}^{*} T_{X}$ is bounded and has a bounded inverse; and it is an orthonormal system of \mathcal{H} if and only if G_{X} is the identity operator.

Definition 1.1. Let X and $Y=R X$, where $R: h \rightarrow R h$ is a bijection between X and Y, be two frames for \mathcal{H}. We call X and Y a pair of orthogonal frames for \mathcal{H} if $T_{Y} T_{X}^{*}=0$, i.e., $\sum_{h \in X}\langle f, h\rangle R h=0$ for all $f \in \mathcal{H}$.

Note that the definition is symmetric with respect to X and Y. Orthogonal frames have been studied in [13] and [1]. Various applications of orthogonal frames are also discussed in both papers. We use one of examples from [13] to illustrate some ideas of applications of orthogonal frames. Let X and $Y=R X$ be a given pair of orthogonal frames for \mathcal{H} such that both X and Y are also tight frames with frame bound 1 for \mathcal{H}. Let $f, g \in \mathcal{H}$. Suppose that the data sequence is given as $(\langle f, h\rangle+\langle g, R h\rangle)_{h \in X}$, i.e., the data sequence is given as the sum of samples of two different elements f and g of \mathcal{H}. Then, since

$$
f=\sum_{h \in X}(\langle f, h\rangle+\langle g, R h\rangle) h \quad \text { and } \quad g=\sum_{h \in X}(\langle f, h\rangle+\langle g, R h\rangle) R h
$$

we can recover both f and g from a single sequence $(\langle f, h\rangle+\langle g, R h\rangle)_{h \in X}$. This idea can be used in multiple access communication systems.

For a pair of frames X and $Y=R X$ in \mathcal{H}, we have the following simple characterization of orthogonal frames via their Gramians.

Proposition 1.2. Let X and $Y=R X$ be frames for \mathcal{H} with synthesis operators T_{X} and T_{Y}, respectively. Then, X and Y are a pair of orthogonal frames for \mathcal{H} if and only if $G_{Y} G_{X}=0$.

Proof. Suppose that $T_{Y} T_{X}^{*}=0$. Then $G_{Y} G_{X}=T_{Y}^{*} T_{Y} T_{X}^{*} T_{X}=T_{Y}^{*} 0 T_{X}=0$. Suppose, on the other hand, that $T_{Y}^{*} T_{Y} T_{X}^{*} T_{X}=0$. Then

$$
0=\left(T_{Y} T_{Y}^{*}\right)\left(T_{Y} T_{X}^{*}\right)\left(T_{X} T_{X}^{*}\right)=S_{Y}\left(T_{Y} T_{X}^{*}\right) S_{X}
$$

Since $S_{Y}, T_{Y} T_{X}^{*}$ and S_{X} are bounded operators from \mathcal{H} to \mathcal{H} and since S_{X} and S_{Y} are invertible, $0=T_{Y} T_{X}^{*}$.

The paper is organized as follows: in Section 2, we discuss orthogonal frames in a general shift-invariant subspace of $L_{2}\left(\mathbb{R}^{d}\right)$, and apply the results to construct Gabor orthogonal frames. Section 3 provides a construction of wavelet orthogonal frames.

2. Orthogonal frames in a shift-invariant space

This section is devoted to the orthogonal frames in shift-invariant systems. The major tool used here is the dual Gramian analysis of [9].

2.1. Characterizations of shift-invariant orthogonal frames

We consider orthogonal frames in a shift-invariant subspace of $L_{2}\left(\mathbb{R}^{d}\right)$. Let Φ be a countable subset of $L_{2}\left(\mathbb{R}^{d}\right)$, and $E(\Phi):=\left\{\phi(\cdot-k): k \in \mathbb{Z}^{d}\right\}$. Define

$$
\mathcal{S}(\Phi):=\overline{\operatorname{span}} E(\Phi),
$$

the smallest closed subspace that contains $E(\Phi)$. Throughout the rest of this article, we assume that $E(\Phi)$ is a Bessel sequence for $\mathcal{S}(\Phi)$. This assumption settles most of the convergence issues. The space $\mathcal{S}(\Phi)$ is called the shift-invariant space generated by Φ and Φ a generating set for $\mathcal{S}(\Phi)$. Shift-invariant spaces have been studied extensively in the literature, e.g., [2,3,7,9].

For $\omega \in \mathbb{R}^{d}$ we define the pre-Gramian via

$$
J_{\Phi}(\omega)=(\widehat{\phi}(\omega+\alpha))_{\alpha \in 2 \pi \mathbb{Z}^{d}, \phi \in \Phi}
$$

where $\widehat{\phi}$ is the Fourier transform of ϕ. Note that the domain of the pre-Gramian matrix as an operator is $\ell_{2}(\Phi)$ and its co-domain is $\ell_{2}\left(\mathbb{Z}^{d}\right)$. The pre-Gramian can be regarded as the synthesis operator represented in Fourier domain as it was extensively studied in [9]. In particular, we have (see, e.g., $[9,3]$):

Proposition 2.1. The shift-invariant system $E(\Phi)$ is a frame for $\mathcal{S}(\Phi)$ if and only if $J_{\Phi}(\omega) J_{\Phi}^{*}(\omega)$ is uniformly bounded with uniformly bounded inverse on the range of $J_{\Phi}(\omega)$ for a.e. ω such that $\operatorname{ran} J_{\Phi}(\omega) \neq\{0\}$. In particularly, when $\mathcal{S}(\Phi)=L_{2}\left(\mathbb{R}^{d}\right), E(\Phi)$ is a frame for $L_{2}\left(\mathbb{R}^{d}\right)$ if and only if there are $0<A \leqslant B<\infty$, such that $A I_{\ell_{2}\left(\mathbb{Z}^{d}\right)} \leqslant J_{\Phi}(\omega) J_{\Phi}^{*}(\omega) \leqslant B I_{\ell_{2}\left(\mathbb{Z}^{d}\right)}$ for a.e. $\omega \in \mathbb{R}^{d}$; and it is a tight frame with frame bound 1 for $L_{2}\left(\mathbb{R}^{d}\right)$ if and only if $J_{\Phi}(\omega) J_{\Phi}^{*}(\omega)=I_{\ell_{2}\left(\mathbb{Z}^{d}\right)}$, for a.e. $\omega \in \mathbb{R}^{d}$.

Let Φ and $\Psi=R \Phi$, where R is a bijection satisfying $R(\phi(\cdot-k))=(R \phi)(\cdot-k)$, be countable subsets of $L_{2}\left(\mathbb{R}^{d}\right)$. Suppose that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ and that both $E(\Phi)$ and $E(\Psi)$ are frames for $\mathcal{S}(\Phi)$. Then, by definition, $E(\Phi)$ and $E(\Psi)$ are a pair of orthogonal frames for $\mathcal{S}(\Phi)$ if and only if for all $f \in \mathcal{S}(\Phi)$,

$$
S f:=T_{E(\Psi)} T_{E(\Phi)}^{*} f=0 .
$$

We define the mixed dual Gramian (cf. [11]) as

$$
\widetilde{G}(\omega)=J_{\Psi}(\omega) J_{\Phi}^{*}(\omega),
$$

and Gramians as

$$
G_{\Phi}(\omega)=J_{\Phi}^{*}(\omega) J_{\Phi}(\omega) \quad \text { and } \quad G_{\Psi}(\omega)=J_{\Psi}^{*}(\omega) J_{\Psi}(\omega)
$$

Then, it is proven in [11] that for any $f \in L_{2}\left(\mathbb{R}^{d}\right)$

$$
\widehat{(S f})_{\left.\right|_{\omega+\alpha}}=\widetilde{G}(\omega) \hat{f}_{\left.\right|_{\omega+\alpha}},
$$

where $\hat{g}_{\left.\right|_{\omega+\alpha}}$ is the column vector $(\hat{g}(\omega+\gamma))_{\gamma \in 2 \pi \mathbb{Z}^{d}}^{T}$. With this, one can prove easily that $S f=0$ for all $f \in L_{2}\left(\mathbb{R}^{d}\right)$ if and only if $\widetilde{G}(\omega)=0$ for a.e. $\omega \in \mathbb{R}^{d}$. Putting everything together, we have:

Theorem 2.2. Let Φ and $\Psi=R \Phi$ be defined as above. Suppose that $\mathcal{S}(\Phi)=\mathcal{S}(\Psi)$ and that $E(\Phi)$ and $E(\Psi)$ are frames for $\mathcal{S}(\Phi)$. Then, the following are equivalent:
(1) $E(\Phi)$ and $E(\Psi)$ are a pair of orthogonal frames for $\mathcal{S}(\Phi)$;
(2) $J_{\Psi}(\omega) J_{\Phi}^{*}(\omega) J_{\Phi}(\omega)=0$ a.e. $\omega \in \mathbb{R}^{d}$;
(3) $G_{\Psi}(\omega) G_{\Phi}(\omega)=0$ a.e. $\omega \in \mathbb{R}^{d}$.

In particular, when $\mathcal{S}(\Phi)=L_{2}\left(\mathbb{R}^{d}\right), E(\Phi)$ and $E(\Psi)$ are a pair of orthogonal frames if and only if $J_{\Psi}(\omega) J_{\Phi}^{*}(\omega)=0$ for a.e. $\omega \in \mathbb{R}^{d}$.

Proof. For the equivalence of (1) and (2), one notes that $f \in \mathcal{S}(\Phi)$ if and only if the Fourier transform of f can be written as

$$
\hat{f}=\sum_{\phi \in \Phi} \widehat{a}_{\phi} \hat{\phi}
$$

for some $\widehat{a}_{\phi} \in L_{2}\left(\mathbb{T}^{d}\right)$. Moreover,

$$
\hat{f}_{\left.\right|_{\omega+\alpha}}=J_{\Phi}(\omega)\left(\widehat{a}_{\phi}(\omega)\right)_{\phi \in \Phi}^{T}
$$

Hence, Item (1) is equivalent to the statement that for any $f \in S(\Phi)$,

$$
\widehat{(S f})_{\mid \omega+\alpha}=\widetilde{G}(\omega) \hat{f}_{\left.\right|_{\omega+\alpha}}=J_{\Psi}(\omega) J_{\Phi}^{*}(\omega) J_{\Phi}(\omega)\left(\widehat{a}_{\phi}(\omega)\right)_{\phi \in \Phi}^{T}=0,
$$

which is equivalent to Item (2), i.e., $J_{\Psi}(\omega) J_{\Phi}^{*}(\omega) J_{\Phi}(\omega)=0$ a.e. $\omega \in \mathbb{R}^{d}$. Finally, the equivalence of Item (2) and Item (3) follows from the fact that $J_{\Psi}^{*}(\omega)$ has bounded inverse on the range of $J_{\Psi}(\omega)$ for a.e. $\omega \in \mathbb{R}^{d}$ if $E(\Psi)$ is a frame for $S(\Psi)$ by Proposition 2.1 (see [9]).

2.2. Construction of a pair of orthogonal shift-invariant frames from a given shift-invariant frame

Theorem 2.2 can be applied to construct a pair of shift-invariant orthogonal frames from a given shift-invariant frame as stated below.

Theorem 2.3. Suppose that $\Phi:=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{r}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$ where r can be ∞, and that $E(\Phi)$ is a frame for $\mathcal{S}(\Phi)$. Let $U:=\left(U_{1} ; U_{2}\right)$ be a $2 r \times 2 r$ matrix with $L_{2}\left(\mathbb{T}^{d}\right)$ entries satisfying $U^{*}(\omega) U(\omega)=I_{2 r}$ for a.e. $\omega \in \mathbb{R}^{d}$, where U_{1} is the submatrix of the first r columns and U_{2} the remaining r columns. Define $\widehat{\Phi}_{1}:=U_{1} \widehat{\Phi}$, and $\widehat{\Phi}_{2}:=U_{2} \widehat{\Phi}$. Then $E\left(\Phi_{1}\right)$ and $E\left(\Phi_{2}\right)$ are a pair of orthogonal frames for $\mathcal{S}(\Phi)$.

Proof. It is easy to check by the Bessel property of $E(\Phi)$ that $\mathcal{S}(\Phi)=\mathcal{S}\left(\Phi_{1}\right)=\mathcal{S}\left(\Phi_{2}\right)$ with each of Φ_{1} and Φ_{2} consists of $2 r$ elements of $L_{2}\left(\mathbb{R}^{d}\right)$. Furthermore, it is direct to check that

$$
J_{\Phi_{1}}(\omega)=J_{\Phi}(\omega) U_{1}^{T}(\omega) \quad \text { and } \quad J_{\Phi_{2}}(\omega)=J_{\Phi}(\omega) U_{2}^{T}(\omega)
$$

Moreover, $\operatorname{ran} J_{\Phi_{1}}(\omega)=\operatorname{ran} J_{\Phi}(\omega)$ a.e., since $U_{1}^{T}(\omega): \ell_{2}\left(\Phi_{1}\right) \rightarrow \ell_{2}(\Phi)$ is onto by $U^{T}(\omega)\left(U^{T}(\omega)\right)^{*}=I_{2 r}$ for a.e. $\omega \in \mathbb{T}^{d}$. Moreover,

$$
\begin{aligned}
J_{\Phi_{1}}(\omega) J_{\Phi_{1}}^{*}(\omega) & =J_{\Phi}(\omega) U_{1}^{T}(\omega)\left(J_{\Phi}(\omega) U_{1}^{T}(\omega)\right)^{*}=J_{\Phi}(\omega)\left(U_{1}^{*}(\omega) U_{1}(\omega)\right)^{T} J_{\Phi}^{*}(\omega) \\
& =J_{\Phi}(\omega) I_{r} J_{\Phi}^{*}(\omega)=J_{\Phi}(\omega) J_{\Phi}^{*}(\omega)
\end{aligned}
$$

Hence, $E\left(\Phi_{1}\right)$ is a frame for $\mathcal{S}\left(\Phi_{1}\right)=\mathcal{S}(\Phi)$ by Proposition 2.1. Similarly, $E\left(\Phi_{2}\right)$ forms a frame for $\mathcal{S}\left(\Phi_{2}\right)=\mathcal{S}(\Phi)$ as well. It remains to show that $E\left(\Phi_{1}\right)$ and $E\left(\Phi_{2}\right)$ form a pair of orthogonal frames for $\mathcal{S}(\Phi)$. Indeed, this follows from the fact that, for a.e. $\omega \in \mathbb{R}^{d}$,

$$
\begin{aligned}
G_{\Phi_{1}}(\omega) G_{\Phi_{2}}(\omega) & =J_{\Phi_{1}}^{*}(\omega) J_{\Phi_{1}}(\omega) J_{\Phi_{2}}^{*}(\omega) J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}^{*}(\omega) J_{\Phi}(\omega) U_{1}^{T}(\omega)\left(U_{2}^{T}(\omega)\right)^{*} J_{\Phi}^{*}(\omega) J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}^{*}(\omega) J_{\Phi}(\omega) U_{1}^{T}(\omega)\left(U_{2}^{*}(\omega)\right)^{T} J_{\Phi}^{*}(\omega) J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}^{*}(\omega) J_{\Phi}(\omega)\left(U_{2}^{*}(\omega) U_{1}(\omega)\right)^{T} J_{\Phi}^{*}(\omega) J_{\Phi_{2}}(\omega) \\
& =J_{\Phi_{1}}^{*}(\omega) J_{\Phi}(\omega) 0 J_{\Phi}^{*}(\omega) J_{\Phi_{2}}(\omega)=0
\end{aligned}
$$

and Theorem 2.2.
Finally, we note that there are many choices of U. One of the easiest choices of U is a constant $2 r \times 2 r$ unitary matrix.

2.3. Construction of a pair of Gabor orthogonal frames

The constructions given above can be applied to the Gabor system to obtain a pair of orthogonal Gabor frames, since it is shift-invariant. Let $G:=\left\{g_{1}, g_{2}, \ldots, g_{\gamma}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$, where γ is a positive integer, and

$$
\Phi:=\left\{M^{l} g_{j}: l \in \mathbb{Z}^{d}, 1 \leqslant j \leqslant \gamma\right\}
$$

where $M^{t} f(x):=e^{i t \cdot x} f(x)$ is the modulation operator for $t \in \mathbb{R}^{d}$. Then $E(\Phi)$ is equivalent to a Gabor system generated by G [12]. Note that, in general, the shift operator and modulation operator can be chosen to be any d-dimensional lattice instead of \mathbb{Z}^{d}. For simplicity, we assume that both the shift lattice and the modulation lattice are \mathbb{Z}^{d}. However, the discussion here can be carried out similarly for more general shift and modulation lattices.

Suppose that $E(\Phi)$ is a frame for its closed linear span. Let $V:=\left(V_{1} ; V_{2}\right)$ be a $2 \gamma \times 2 \gamma$ constant unitary matrix, where V_{1} is the submatrix formed by the first γ columns of V and V_{2} by the remaining γ columns of V. We show that the Gabor systems generated by $G_{1}:=V_{1} G$ and $G_{2}:=V_{2} G$ are orthogonal frames by Theorem 2.3.

Let U_{1} be the block diagonal (infinite) matrix of size $\left(\mathbb{Z}^{d} \times\{1,2, \ldots, 2 \gamma\}\right) \times\left(\mathbb{Z}^{d} \times\{1,2, \ldots, \gamma\}\right)$ such that

$$
\text { the }(l, j)\left(l^{\prime}, j^{\prime}\right) \text { th entry of } U_{1}= \begin{cases}0 & \text { if } l \neq l^{\prime} \\ \left(V_{1}\right)_{j, j^{\prime}} & \text { if } l=l^{\prime}\end{cases}
$$

Similarly, one can define a block diagonal matrix U_{2} by V_{2}. Then, the matrix $U:=\left(U_{1} ; U_{2}\right)$ is unitary. Furthermore, the Gabor system generated by $V_{1} G$ is $E\left(\Phi_{1}\right)$ satisfying $\Phi_{1}:=U_{1} \Phi$ and the Gabor system generated by $V_{2} G$ is $E\left(\Phi_{2}\right)$ satisfying $\Phi_{2}:=U_{2} \Phi$. Since U is a constant matrix, $\widehat{\Phi}_{i}=U_{i} \widehat{\Phi}_{i}$ for $i=1,2$. Hence $E\left(\Phi_{1}\right)$ and $E\left(\Phi_{2}\right)$ are a pair of orthogonal Gabor frames by Theorem 2.3.

3. Orthogonal wavelet frames

This section is devoted to construction of a pair of orthogonal wavelet frames. Let $\Psi:=$ $\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$, where r is a positive integer, and s an integer-valued invertible
$d \times d$ matrix such that s^{-1} is contractive. Define a unitary dilation operator D on $L_{2}\left(\mathbb{R}^{d}\right)$ via

$$
D: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}\right): f \mapsto|\operatorname{det} s|^{1 / 2} f(s \cdot)
$$

Then, the following collection is called a wavelet (or affine) system generated by Ψ :

$$
\begin{equation*}
X(\Psi):=\left\{D^{j} E^{k} \psi_{l}: j \in \mathbb{Z}, k \in \mathbb{Z}^{d}, 1 \leqslant l \leqslant r\right\} \tag{3.1}
\end{equation*}
$$

where $E^{k} f:=f(\cdot-k)$.
The wavelet system is not shift-invariant. To apply Theorem 2.3, one needs to use the quasiaffine system $X^{\mathrm{q}}(\Psi)$, i.e., the smallest shift-invariant system containing $X(\Psi)$. Then, applying an approach similar to that in [11], one can obtain that two wavelet frame systems $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are a pair of orthogonal frames if and only if the mixed dual Gramian of the corresponding quasi-affine systems $X^{\mathrm{q}}(\Psi)$ and $X^{\mathrm{q}}\left(\Psi_{2}\right)$ are zero almost everywhere. This is exactly what has been obtained by Weber in [13], with a different approach, as given below:

Proposition 3.1 (Weber [13]). Let $\Psi_{1}:=\left\{\psi_{1}^{(1)}, \psi_{2}^{(1)}, \ldots, \psi_{r}^{(1)}\right\}$ and $\Psi_{2}:=\left\{\psi_{1}^{(2)}, \psi_{2}^{(2)}, \ldots, \psi_{r}^{(2)}\right\}$. Suppose that $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are frames for $L_{2}\left(\mathbb{R}^{d}\right)$. $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are a pair of orthogonal frames for $L_{2}\left(\mathbb{R}^{d}\right)$ if and only if the following two equations are satisfied a.e.:

$$
\begin{align*}
& \sum_{i=1}^{r} \sum_{j \geqslant 0} \widehat{\psi_{i}^{(2)}}\left(s^{* j} \omega\right) \widehat{\psi_{i}^{(1)}}\left(s^{* j}(\omega+q)\right)=0, \quad q \in 2 \pi \mathbb{Z}^{d} \backslash 2 \pi s^{*} \mathbb{Z}^{d} ; \tag{3.2}\\
& \sum_{i=1}^{r} \sum_{j \in \mathbb{Z}^{d}} \widehat{\psi_{i}^{(2)}}\left(s^{* j} \omega\right) \widehat{\psi_{i}^{(1)}}\left(s^{* j} \omega\right)=0 . \tag{3.3}
\end{align*}
$$

We remark here that the double sums in Eqs. (3.2) and (3.3) are the entries of the mixed dual Gramian of the affine systems generated by Ψ_{1} and Ψ_{2} [11].

Applying the above result of Weber, one can construct a pair of orthogonal wavelet frames easily.

Theorem 3.2. Let $\Psi:=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right\} \subset L_{2}\left(\mathbb{R}^{d}\right)$ for some positive integer r. Suppose that $X(\Psi)$ is a frame for $L_{2}\left(\mathbb{R}^{d}\right)$. Let $V:=\left(V_{1} ; V_{2}\right)$ be a $2 r \times 2 r$ constant unitary matrix, where V_{1} denotes the submatrix formed by the first r columns of V and V_{2} the last r columns of V. Then $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are a pair of orthogonal frames for $L_{2}\left(\mathbb{R}^{d}\right)$, where $\Psi_{1}:=V_{1} \Psi$ and $\Psi_{2}:=V_{2} \Psi$.

Proof. Note that $\widehat{\Psi}_{1}:=V_{1} \widehat{\Psi}$ and $\widehat{\Psi}_{2}:=V_{2} \widehat{\Psi}$ since V is a constant matrix. Direct calculations of the dual Gramians of $X^{\mathrm{q}}\left(\Psi_{1}\right)$ and $X^{\mathrm{q}}\left(\Psi_{2}\right)$, similar to what we do in the remaining part of the proof, show that $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are frames for $L_{2}\left(\mathbb{R}^{d}\right)$ by using the dual Gramian characterization of frames in [10, Corollary 5.7].

We now show that the wavelet systems generated by Ψ_{1} and Ψ_{2} are a pair of orthogonal frames for $L_{2}\left(\mathbb{R}^{d}\right)$. Since $X(\Psi)$ is assumed to be a frame, the double sums converge absolutely a.e. We apply Theorem 3.1 to $\Psi_{1}:=\left\{\psi_{1}^{(1)}, \psi_{2}^{(1)}, \ldots, \psi_{2 r}^{(1)}\right\}$ and $\Psi_{2}:=\left\{\psi_{1}^{(2)}, \psi_{2}^{(2)}, \ldots, \psi_{2 r}^{(2)}\right\}$.

Let $V=\left(v_{i j}\right)_{1 \leqslant i, j \leqslant 2 r}$. For a fixed $q \in 2 \pi \mathbb{Z}^{d} \backslash 2 \pi s^{*} \mathbb{Z}^{d}$, we have

$$
\begin{align*}
& \sum_{i=1}^{2 r} \sum_{j \geqslant 0} \widehat{\psi_{i}^{(1)}}\left(s^{* j} \omega\right) \widehat{\psi_{i}^{(2)}}\left(s^{* j}(\omega+q)\right) \\
& =\sum_{i=1}^{2 r} \sum_{j \geqslant 0} \sum_{l=1}^{r} \overline{v_{i, l}} \overline{\psi_{l}}\left(s^{* j} \omega\right) \sum_{l^{\prime}=1}^{r} v_{i, r+l^{\prime}} \widehat{\psi_{l^{\prime}}}\left(s^{* j}(\omega+q)\right) \\
& =\sum_{j \geqslant 0} \sum_{l=1}^{r} \widehat{\widehat{\psi}_{l}}\left(s^{* j} \omega\right) \sum_{l^{\prime}=1}^{r} \widehat{\psi_{l^{\prime}}}\left(s^{* j}(\omega+q)\right) \sum_{i=1}^{2 r} \overline{v_{i, l}} v_{i, r+l^{\prime}} \\
& =\sum_{j \geqslant 0} \sum_{l=1}^{r} \widehat{\psi_{l}}\left(s^{* j} \omega\right) \sum_{l^{\prime}=1}^{r} \widehat{\psi_{l^{\prime}}}\left(s^{* j}(\omega+q)\right) 0=0, \tag{3.4}
\end{align*}
$$

where we used the orthogonality of the columns of V. A similar calculation shows that Eq. (3.3) also holds. Hence Ψ_{1} and Ψ_{2} generate a pair of orthogonal frames by Proposition 3.1.

When the wavelet tight frame system $X(\Psi)$ is constructed from a multiresolution analysis based on the unitary extension principle (UEP) of [10], one can construct a pair of orthogonal tight frames from the same multiresolution analysis as we describe below.

We first give a brief discussion here on the UEP for the one variable case with trigonometric polynomial masks, while the more general version and comprehensive discussions of the UEP can be found in [5] and [10].

Let $\phi \in L_{2}(\mathbb{R})$ be a refinable function, i.e., $\widehat{\phi}(2 \xi)=\widehat{a}_{0}(\xi) \widehat{\phi}(\xi)$, where \widehat{a}_{0} is a trigonometric polynomial called the refinement mask of $\phi \in L_{2}(\mathbb{R})$ satisfying $\widehat{a}_{0}(0)=1$, and let $\widehat{a}_{j}, j=$ $1,2, \ldots, r$, be a set of trigonometric polynomials called the wavelet masks. The column vector $\overrightarrow{\hat{a}}=\left(\widehat{a}_{0}, \widehat{a}_{1}, \ldots, \widehat{a}_{r}\right)^{T}$ is called the refinement-wavelet mask. Let

$$
A(\omega)=\left(\begin{array}{cc}
\widehat{a}_{0}(\omega) & \widehat{a}_{0}(\omega+\pi) \\
\widehat{a}_{1}(\omega) & \widehat{a}_{1}(\omega+\pi) \\
\vdots & \vdots \\
\widehat{a}_{r}(\omega) & \widehat{a}_{r}(\omega+\pi)
\end{array}\right)=(\overrightarrow{\vec{a}}(\omega), \overrightarrow{\widehat{a}}(\omega+\pi))
$$

Suppose that

$$
A^{*}(\omega) A(\omega)=I
$$

for a.e. $\omega \in[-\pi, \pi]$. If we define $\Psi:=\left\{\psi_{1}, \psi_{2}, \ldots, \psi_{r}\right\} \subset L_{2}(\mathbb{R})$ by

$$
\widehat{\psi}_{l}(2 \xi):=\widehat{a}_{j}(\xi) \widehat{\phi}(\xi), \quad l=1,2, \ldots, r
$$

then the UEP asserts that $X(\Psi)$ is a tight frame for $L_{2}(\mathbb{R})$.
By using the UEP the construction of compactly supported tight wavelet frames becomes painless. For example, it is easy to obtain compactly supported symmetric spline tight wavelet frames as shown in [10] and [5].

Next, we briefly describe how to obtain a pair of compactly supported orthogonal tight frames from a given compactly supported tight frame system $X(\Psi)$ constructed via the UEP. The main
idea of this construction is from a paper by Bhatt et al. [1] where orthogonal wavelet tight frames are constructed from orthogonal wavelets.

Let $V(\omega):=\left(V_{1}(\omega) ; V_{2}(\omega)\right)=\left(v_{i, j}(\omega)\right)$ be a $2 r \times 2 r$ unitary matrix with π periodic trigonometric polynomial entries, where V_{1} denotes the submatrix formed by the first r columns of V and V_{2} the last r columns of V. Let

$$
U_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & V_{1}
\end{array}\right) ; \quad U_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & V_{2}
\end{array}\right) .
$$

Define two new sets of the refinement-wavelet masks from \vec{a} by

$$
\overrightarrow{\widehat{a}}_{1}=U_{1} \overrightarrow{\hat{a}} ; \quad \overrightarrow{\widehat{a}}_{2}=U_{2} \overrightarrow{\vec{a}}
$$

The corresponding wavelets are defined via its Fourier transform as $\widehat{\Psi}_{1}:=V_{1} \widehat{\Psi}$ and $\widehat{\Psi}_{2}:=V_{2} \widehat{\Psi}$ with their wavelet masks given above. It is easy to check that both entries in the column vectors Ψ_{1} and Ψ_{2} are compactly supported. Let

$$
A_{1}(\omega)=\left(\overrightarrow{\widehat{a}}_{1}(\omega) ; \overrightarrow{\widehat{a}}_{1}(\omega+\pi)\right) ; \quad A_{2}(\omega)=\left(\overrightarrow{\widehat{a}}_{2}(\omega) ; \overrightarrow{\widehat{a}}_{2}(\omega+\pi)\right) .
$$

Then, it is easy to see

$$
A_{1}=U_{1} A ; \quad A_{2}=U_{2} A
$$

since each entry of U_{1} and U_{2} is π periodic. This leads to

$$
A_{1}^{*}(\omega) A_{1}(\omega)=I ; \quad A_{2}^{*}(\omega) A_{2}(\omega)=I
$$

for all $\omega \in[-\pi, \pi]$. Hence, both $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are tight frames by the UEP (see also e.g., [6]).

Let B_{1} and B_{2} be the matrices generated by A_{1} and A_{2}, respectively, by removing the first rows of them. Then, it is clear that

$$
B_{1}^{*}(\omega) B_{2}(\omega)=0,
$$

for all $\omega \in[-\pi, \pi]$. This asserts that $X\left(\Psi_{1}\right)$ and $X\left(\Psi_{2}\right)$ are a pair of orthogonal frames by Theorem 2.1.1 of [1] whose proof was obtained by a computation similar to Eq. (3.4). In fact, Theorem 2.1.1 of [1] can also be proved via a method similar to the proof of the mixed UEP in [11]. Finally, we remark that this construction can be modified to more general cases, e.g., one may start with two different tight frames instead of starting with one tight frame $X(\Psi)$.

Acknowledgment

The authors thank two anonymous referees for their careful and valuable suggestions which greatly helped to improve this article.

References

[1] C. Bhatt, B. D. Johnson, E. Weber, Orthogonal wavelet frames and vector valued wavelet transforms, preprint.
[2] C. de Boor, R. DeVore, A. Ron, The structure of finitely generated shift-invariant spaces in $L_{2}\left(\mathbb{R}^{d}\right)$, J. Funct. Anal. 119 (1994) 37-78.
[3] M. Bownik, The structure of shift-invariant subspaces of $L^{2}\left(\mathbb{R}^{n}\right)$, J. Funct. Anal. 177 (2000) 283-309.
[4] O. Christensen, Frames and pseudo-inverses, J. Math. Anal. Appl. 195 (1995) 401-414.
[5] I. Daubechies, B. Han, A. Ron, Z. Shen, Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003) 1-46.
[6] S.S. Goh, Z.Y. Lim, Z. Shen, Symmetric and antisymmetric tight wavelet frames, Appl. Comput. Harmon. Anal. 20 (2006) 411-421.
[7] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York, 1964.
[8] J.R. Holub, Pre-frame operators, Besselian frames and near-Riesz bases in Hilbert spaces, Proc. Amer. Math. Soc. 122 (1994) 779-785.
[9] A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_{2}\left(\mathbb{R}^{d}\right)$, Canad. J. Math. 47 (1995) 1051-1094.
[10] A. Ron, Z. Shen, Affine systems in $L_{2}\left(\mathbb{R}^{d}\right)$: the analysis of the analysis operator, J. Funct. Anal. 148 (1997) 408-447.
[11] A. Ron, Z. Shen, Affine systems in $L_{2}\left(\mathbb{R}^{d}\right)$ II: dual systems, J. Fourier Anal. Appl. 3 (1997) 617-637.
[12] A. Ron, Z. Shen, Weyl-Heisenberg frames and Riesz bases in $L_{2}\left(\mathbb{R}^{d}\right)$, Duke Math. J. 89 (1997) 237-282.
[13] E. Weber, Orthogonal frames of translates, Appl. Comput. Harmon. Anal. 17 (2004) 69-90.

[^0]: ${ }^{2}$ This work was supported by several grants at the National University of Singapore. The first-named author was supported by KOSEF(NC36490).

 * Corresponding author. Fax: +82316705474.

 E-mail addresses: hkim@amath.kaist.ac.kr (H.O. Kim), rykim@ynu.ac.kr (R.Y. Kim), jaekun@hknu.ac.kr (J.K. Lim), matzuows@nus.edu.sg (Z. Shen).

