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Abstract

We start with a characterization of a pair of frames to be orthogonal in a shift-invariant space and then give
a simple construction of a pair of orthogonal shift-invariant frames. This is applied to obtain a construction
of a pair of Gabor orthogonal frames as an example. This is also developed further to obtain constructions
of a pair of orthogonal wavelet frames.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a (countable) Bessel system for a separable Hilbert space H over the complex field
C. The synthesis operator TX : �2(X) → H, which is well-known to be bounded, is defined by

TXa :=
∑
h∈X

ahh
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for a = (ah)h∈X. The adjoint operator T ∗
X of TX, called the analysis operator, is

T ∗
X : H → �2(X); T ∗

Xf := (〈f, h〉)h∈X.

Recall that X is a frame for H if and only SX := TXT ∗
X : H → H, the frame operator or dual

Gramian, is bounded and has a bounded inverse [4,8] and it is a tight frame (with frame bound
1) if and only if SX is the identity operator. The system X is a Riesz system (for span X) if and
only if its Gramian GX := T ∗

XTX is bounded and has a bounded inverse; and it is an orthonormal
system of H if and only if GX is the identity operator.

Definition 1.1. Let X and Y = RX, where R : h → Rh is a bijection between X and Y ,
be two frames for H. We call X and Y a pair of orthogonal frames for H if TY T ∗

X = 0, i.e.,∑
h∈X〈f, h〉Rh = 0 for all f ∈ H.

Note that the definition is symmetric with respect to X and Y . Orthogonal frames have been
studied in [13] and [1]. Various applications of orthogonal frames are also discussed in both
papers. We use one of examples from [13] to illustrate some ideas of applications of orthogonal
frames. Let X and Y = RX be a given pair of orthogonal frames for H such that both X and Y

are also tight frames with frame bound 1 for H. Let f, g ∈ H. Suppose that the data sequence
is given as (〈f, h〉 + 〈g, Rh〉)h∈X, i.e., the data sequence is given as the sum of samples of two
different elements f and g of H. Then, since

f =
∑
h∈X

(〈f, h〉 + 〈g, Rh〉)h and g =
∑
h∈X

(〈f, h〉 + 〈g, Rh〉)Rh

we can recover both f and g from a single sequence (〈f, h〉 + 〈g, Rh〉)h∈X. This idea can be used
in multiple access communication systems.

For a pair of frames X and Y = RX in H, we have the following simple characterization of
orthogonal frames via their Gramians.

Proposition 1.2. Let X and Y = RX be frames for H with synthesis operators TX and TY ,
respectively. Then, X and Y are a pair of orthogonal frames for H if and only if GY GX = 0.

Proof. Suppose that TY T ∗
X = 0. Then GY GX = T ∗

Y TY T ∗
XTX = T ∗

Y 0TX = 0. Suppose, on the
other hand, that T ∗

Y TY T ∗
XTX = 0. Then

0 = (TY T ∗
Y )(TY T ∗

X)(TXT ∗
X) = SY (TY T ∗

X)SX.

Since SY , TY T ∗
X and SX are bounded operators from H to H and since SX and SY are invertible,

0 = TY T ∗
X. �

The paper is organized as follows: in Section 2, we discuss orthogonal frames in a general
shift-invariant subspace of L2(R

d), and apply the results to construct Gabor orthogonal frames.
Section 3 provides a construction of wavelet orthogonal frames.

2. Orthogonal frames in a shift-invariant space

This section is devoted to the orthogonal frames in shift-invariant systems. The major tool used
here is the dual Gramian analysis of [9].
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2.1. Characterizations of shift-invariant orthogonal frames

We consider orthogonal frames in a shift-invariant subspace of L2(R
d). Let � be a countable

subset of L2(R
d), and E(�) := {�(· − k) : k ∈ Zd}. Define

S(�) := span E(�),

the smallest closed subspace that contains E(�). Throughout the rest of this article, we assume
that E(�) is a Bessel sequence for S(�). This assumption settles most of the convergence issues.
The space S(�) is called the shift-invariant space generated by � and � a generating set for
S(�). Shift-invariant spaces have been studied extensively in the literature, e.g., [2,3,7,9].

For � ∈ Rd we define the pre-Gramian via

J�(�) =
(
�̂(� + �)

)
�∈2�Zd ,�∈�

,

where �̂ is the Fourier transform of �. Note that the domain of the pre-Gramian matrix as an
operator is �2(�) and its co-domain is �2(Z

d). The pre-Gramian can be regarded as the synthesis
operator represented in Fourier domain as it was extensively studied in [9]. In particular, we have
(see, e.g., [9,3]):

Proposition 2.1. The shift-invariant system E(�) is a frame for S(�) if and only if J�(�)J ∗
�(�)

is uniformly bounded with uniformly bounded inverse on the range of J�(�) for a.e. � such that
ran J�(�) �= {0}. In particularly, when S(�) = L2(R

d), E(�) is a frame for L2(R
d) if and only

if there are 0 < A�B < ∞, such that AI
�2(Z

d )
�J�(�)J ∗

�(�)�BI
�2(Z

d )
for a.e. � ∈ Rd ; and

it is a tight frame with frame bound 1 for L2(R
d) if and only if J�(�)J ∗

�(�) = I
�2(Z

d )
, for a.e.

� ∈ Rd .

Let � and � = R�, where R is a bijection satisfying R(�(·−k)) = (R�)(·−k), be countable
subsets of L2(R

d). Suppose that S(�) = S(�) and that both E(�) and E(�) are frames for
S(�). Then, by definition, E(�) and E(�) are a pair of orthogonal frames for S(�) if and only
if for all f ∈ S(�),

Sf := TE(�)T
∗
E(�)f = 0.

We define the mixed dual Gramian (cf. [11]) as

G̃(�) = J�(�)J ∗
�(�),

and Gramians as

G�(�) = J ∗
�(�)J�(�) and G�(�) = J ∗

�(�)J�(�).

Then, it is proven in [11] that for any f ∈ L2(R
d)

(̂Sf )|�+�
= G̃(�)f̂|�+� ,

where ĝ|�+� is the column vector (ĝ(� + �))T
�∈2�Zd . With this, one can prove easily that Sf = 0

for all f ∈ L2(R
d) if and only if G̃(�) = 0 for a.e. � ∈ Rd . Putting everything together, we

have:
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Theorem 2.2. Let � and � = R� be defined as above. Suppose that S(�) = S(�) and that
E(�) and E(�) are frames for S(�). Then, the following are equivalent:

(1) E(�) and E(�) are a pair of orthogonal frames for S(�);
(2) J�(�)J ∗

�(�)J�(�) = 0 a.e. � ∈ Rd ;
(3) G�(�)G�(�) = 0 a.e. � ∈ Rd .

In particular, when S(�) = L2(R
d), E(�) and E(�) are a pair of orthogonal frames if and only

if J�(�)J ∗
�(�) = 0 for a.e. � ∈ Rd .

Proof. For the equivalence of (1) and (2), one notes that f ∈ S(�) if and only if the Fourier
transform of f can be written as

f̂ =
∑
�∈�

â��̂

for some â� ∈ L2(T
d). Moreover,

f̂|�+� = J�(�)(̂a�(�))T�∈�.

Hence, Item (1) is equivalent to the statement that for any f ∈ S(�),

(̂Sf )|�+�
= G̃(�)f̂|�+� = J�(�)J ∗

�(�)J�(�)(̂a�(�))T�∈� = 0,

which is equivalent to Item (2), i.e., J�(�)J ∗
�(�)J�(�) = 0 a.e. � ∈ Rd . Finally, the equivalence

of Item (2) and Item (3) follows from the fact that J ∗
�(�) has bounded inverse on the range of

J�(�) for a.e. � ∈ Rd if E(�) is a frame for S(�) by Proposition 2.1 (see [9]). �

2.2. Construction of a pair of orthogonal shift-invariant frames from a given shift-invariant
frame

Theorem 2.2 can be applied to construct a pair of shift-invariant orthogonal frames from a given
shift-invariant frame as stated below.

Theorem 2.3. Suppose that � := {�1, �2, . . . ,�r} ⊂ L2(R
d) where r can be ∞, and that E(�)

is a frame for S(�). Let U := (U1; U2) be a 2r × 2r matrix with L2(T
d) entries satisfying

U∗(�)U(�) = I2r for a.e. � ∈ Rd , where U1 is the submatrix of the first r columns and U2 the
remaining r columns. Define �̂1 := U1�̂, and �̂2 := U2�̂. Then E(�1) and E(�2) are a pair of
orthogonal frames for S(�).

Proof. It is easy to check by the Bessel property of E(�) that S(�) = S(�1) = S(�2) with
each of �1 and �2 consists of 2r elements of L2(R

d). Furthermore, it is direct to check that

J�1(�) = J�(�)UT
1 (�) and J�2(�) = J�(�)UT

2 (�).

Moreover, ran J�1(�) = ran J�(�) a.e., since UT
1 (�) : �2(�1) → �2(�) is onto by

UT (�)(UT (�))∗ = I2r for a.e. � ∈ Td . Moreover,

J�1(�)J ∗
�1

(�) = J�(�)UT
1 (�)(J�(�)UT

1 (�))∗ = J�(�)(U∗
1 (�)U1(�))T J ∗

�(�)

= J�(�)IrJ
∗
�(�) = J�(�)J ∗

�(�).
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Hence, E(�1) is a frame for S(�1) = S(�) by Proposition 2.1. Similarly, E(�2) forms a frame
for S(�2) = S(�) as well. It remains to show that E(�1) and E(�2) form a pair of orthogonal
frames for S(�). Indeed, this follows from the fact that, for a.e. � ∈ Rd ,

G�1(�)G�2(�) = J ∗
�1

(�)J�1(�)J ∗
�2

(�)J�2(�)

= J ∗
�1

(�)J�(�)UT
1 (�)(UT

2 (�))∗J ∗
�(�)J�2(�)

= J ∗
�1

(�)J�(�)UT
1 (�)(U∗

2 (�))T J ∗
�(�)J�2(�)

= J ∗
�1

(�)J�(�)(U∗
2 (�)U1(�))T J ∗

�(�)J�2(�)

= J ∗
�1

(�)J�(�)0J ∗
�(�)J�2(�) = 0

and Theorem 2.2. �

Finally, we note that there are many choices of U . One of the easiest choices of U is a constant
2r × 2r unitary matrix.

2.3. Construction of a pair of Gabor orthogonal frames

The constructions given above can be applied to the Gabor system to obtain a pair of orthogonal
Gabor frames, since it is shift-invariant. Let G := {g1, g2, . . . , g�} ⊂ L2(R

d), where � is a positive
integer, and

� := {Mlgj : l ∈ Zd , 1�j ��},
where Mtf (x) := eit ·xf (x) is the modulation operator for t ∈ Rd . Then E(�) is equivalent
to a Gabor system generated by G [12]. Note that, in general, the shift operator and modulation
operator can be chosen to be any d-dimensional lattice instead of Zd . For simplicity, we assume
that both the shift lattice and the modulation lattice are Zd . However, the discussion here can be
carried out similarly for more general shift and modulation lattices.

Suppose that E(�) is a frame for its closed linear span. Let V := (V1; V2) be a 2� × 2�
constant unitary matrix, where V1 is the submatrix formed by the first � columns of V and V2 by
the remaining � columns of V . We show that the Gabor systems generated by G1 := V1G and
G2 := V2G are orthogonal frames by Theorem 2.3.

Let U1 be the block diagonal (infinite) matrix of size (Zd ×{1, 2, . . . , 2�})×(Zd ×{1, 2, . . . , �})
such that

the (l, j)(l′, j ′)th entry of U1 =
{

0 if l �= l′,
(V1)j,j ′ if l = l′.

Similarly, one can define a block diagonal matrix U2 by V2. Then, the matrix U := (U1; U2)

is unitary. Furthermore, the Gabor system generated by V1G is E(�1) satisfying �1 := U1�
and the Gabor system generated by V2G is E(�2) satisfying �2 := U2�. Since U is a constant
matrix, �̂i = Ui�̂i for i = 1, 2. Hence E(�1) and E(�2) are a pair of orthogonal Gabor frames
by Theorem 2.3.

3. Orthogonal wavelet frames

This section is devoted to construction of a pair of orthogonal wavelet frames. Let � :=
{�1, �2, . . . ,�r} ⊂ L2(R

d), where r is a positive integer, and s an integer-valued invertible
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d × d matrix such that s−1 is contractive. Define a unitary dilation operator D on L2(R
d) via

D : L2(R
d) → L2(R

d) : f �→ | det s|1/2f (s·).

Then, the following collection is called a wavelet (or affine) system generated by �:

X(�) := {DjEk�l : j ∈ Z, k ∈ Zd , 1� l�r}, (3.1)

where Ekf := f (· − k).
The wavelet system is not shift-invariant. To apply Theorem 2.3, one needs to use the quasi-

affine system Xq(�), i.e., the smallest shift-invariant system containing X(�). Then, applying
an approach similar to that in [11], one can obtain that two wavelet frame systems X(�1) and
X(�2) are a pair of orthogonal frames if and only if the mixed dual Gramian of the corresponding
quasi-affine systems Xq(�) and Xq(�2) are zero almost everywhere. This is exactly what has
been obtained by Weber in [13], with a different approach, as given below:

Proposition 3.1 (Weber [13]). Let�1 := {�(1)
1 , �(1)

2 , . . . ,�(1)
r }and�2 := {�(2)

1 , �(2)
2 , . . . ,�(2)

r }.
Suppose that X(�1) and X(�2) are frames for L2(R

d). X(�1) and X(�2) are a pair of orthog-
onal frames for L2(R

d) if and only if the following two equations are satisfied a.e.:

r∑
i=1

∑
j �0

�̂(2)
i (s∗j�)�̂(1)

i

(
s∗j (� + q)

)
= 0, q ∈ 2�Zd \ 2�s∗Zd; (3.2)

r∑
i=1

∑
j∈Zd

�̂(2)
i (s∗j�)�̂(1)

i (s∗j�) = 0. (3.3)

We remark here that the double sums in Eqs. (3.2) and (3.3) are the entries of the mixed dual
Gramian of the affine systems generated by �1 and �2 [11].

Applying the above result of Weber, one can construct a pair of orthogonal wavelet frames
easily.

Theorem 3.2. Let � := {�1, �2, . . . ,�r} ⊂ L2(R
d) for some positive integer r. Suppose that

X(�) is a frame for L2(R
d). Let V := (V1; V2) be a 2r × 2r constant unitary matrix, where

V1 denotes the submatrix formed by the first r columns of V and V2 the last r columns of V.
Then X(�1) and X(�2) are a pair of orthogonal frames for L2(R

d), where �1 := V1� and
�2 := V2�.

Proof. Note that �̂1 := V1�̂ and �̂2 := V2�̂ since V is a constant matrix. Direct calculations of
the dual Gramians of Xq(�1) and Xq(�2), similar to what we do in the remaining part of the proof,
show that X(�1) and X(�2) are frames for L2(R

d) by using the dual Gramian characterization
of frames in [10, Corollary 5.7].

We now show that the wavelet systems generated by �1 and �2 are a pair of orthogonal
frames for L2(R

d). Since X(�) is assumed to be a frame, the double sums converge absolutely
a.e. We apply Theorem 3.1 to �1 := {�(1)

1 , �(1)
2 , . . . ,�(1)

2r } and �2 := {�(2)
1 , �(2)

2 , . . . ,�(2)
2r }.
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Let V = (vij )1� i,j �2r . For a fixed q ∈ 2�Zd \ 2�s∗Zd , we have

2r∑
i=1

∑
j �0

�̂(1)
i (s∗j�)�̂(2)

i

(
s∗j (�+q)

)

=
2r∑

i=1

∑
j �0

r∑
l=1

vi,l�̂l (s
∗j�)

r∑
l′=1

vi,r+l′ �̂l′
(
s∗j (�+q)

)

=
∑
j �0

r∑
l=1

�̂l (s
∗j�)

r∑
l′=1

�̂l′
(
s∗j (�+q)

) 2r∑
i=1

vi,lvi,r+l′

=
∑
j �0

r∑
l=1

�̂l (s
∗j�)

r∑
l′=1

�̂l′
(
s∗j (� + q)

)
0 = 0,

(3.4)

where we used the orthogonality of the columns of V . A similar calculation shows that Eq. (3.3)
also holds. Hence �1 and �2 generate a pair of orthogonal frames by Proposition 3.1. �

When the wavelet tight frame system X(�) is constructed from a multiresolution analysis
based on the unitary extension principle (UEP) of [10], one can construct a pair of orthogonal
tight frames from the same multiresolution analysis as we describe below.

We first give a brief discussion here on the UEP for the one variable case with trigonometric
polynomial masks, while the more general version and comprehensive discussions of the UEP
can be found in [5] and [10].

Let � ∈ L2(R) be a refinable function, i.e., �̂(2�) = â0(�)�̂(�), where â0 is a trigonometric
polynomial called the refinement mask of � ∈ L2(R) satisfying â0(0) = 1, and let âj , j =
1, 2, . . . , r , be a set of trigonometric polynomials called the wavelet masks. The column vector
�̂a = (̂a0, â1, . . . , âr )

T is called the refinement–wavelet mask. Let

A(�) =

⎛
⎜⎜⎜⎝

â0(�) â0(� + �)

â1(�) â1(� + �)
...

...

âr (�) âr (� + �)

⎞
⎟⎟⎟⎠ = (�̂a(�), �̂a(� + �)).

Suppose that

A∗(�)A(�) = I

for a.e. � ∈ [−�, �]. If we define � := {�1, �2, . . . ,�r} ⊂ L2(R) by

�̂l (2�) := âj (�)�̂(�), l = 1, 2, . . . , r,

then the UEP asserts that X(�) is a tight frame for L2(R).
By using the UEP the construction of compactly supported tight wavelet frames becomes

painless. For example, it is easy to obtain compactly supported symmetric spline tight wavelet
frames as shown in [10] and [5].

Next, we briefly describe how to obtain a pair of compactly supported orthogonal tight frames
from a given compactly supported tight frame system X(�) constructed via the UEP. The main
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idea of this construction is from a paper by Bhatt et al. [1] where orthogonal wavelet tight frames
are constructed from orthogonal wavelets.

Let V (�) := (V1(�); V2(�)) = (vi,j (�)) be a 2r × 2r unitary matrix with � periodic trigono-
metric polynomial entries, where V1 denotes the submatrix formed by the first r columns of V

and V2 the last r columns of V . Let

U1 =
(

1 0
0 V1

)
; U2 =

(
1 0
0 V2

)
.

Define two new sets of the refinement–wavelet masks from �̂a by

�̂a1 = U1 �̂a; �̂a2 = U2 �̂a.

The corresponding wavelets are defined via its Fourier transform as �̂1 := V1�̂ and �̂2 := V2�̂
with their wavelet masks given above. It is easy to check that both entries in the column vectors
�1 and �2 are compactly supported. Let

A1(�) = (�̂a1(�); �̂a1(� + �)); A2(�) = (�̂a2(�); �̂a2(� + �)).

Then, it is easy to see

A1 = U1A; A2 = U2A,

since each entry of U1 and U2 is � periodic. This leads to

A∗
1(�)A1(�) = I ; A∗

2(�)A2(�) = I

for all � ∈ [−�, �]. Hence, both X(�1) and X(�2) are tight frames by the UEP (see also e.g.,
[6]).

Let B1 and B2 be the matrices generated by A1 and A2, respectively, by removing the first rows
of them. Then, it is clear that

B∗
1 (�)B2(�) = 0,

for all � ∈ [−�, �]. This asserts that X(�1) and X(�2) are a pair of orthogonal frames by
Theorem 2.1.1 of [1] whose proof was obtained by a computation similar to Eq. (3.4). In fact,
Theorem 2.1.1 of [1] can also be proved via a method similar to the proof of the mixed UEP in
[11]. Finally, we remark that this construction can be modified to more general cases, e.g., one
may start with two different tight frames instead of starting with one tight frame X(�).
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