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1. INTRODUCTION 

Let A be a Cohen-Macaulay local ring, and let C’(A) be the class of all 
finitely generated A-modules which are of finite projective dimension and of 
codimension at least r. The corresponding Grothendieck group K’(A) has a 
generator [M] for each isomorphic class of modules M in C’(A), with a 
relation CM] = [M’] + [M”] for each exact sequence 

O+M’+M-+M”-+O 

of modules in C’(A). In Section 4, we will show that K’(A) is generated by 
the elements [A/a] defined by the cyclic A-modules which are perfect of 
codimension r. 

If x, )...) x, is an A-regular sequence then the cyclic module A/(x, ,..., x,) is 
perfect of codimension r. For r = 0, I, and 2, the group K’(A) is generated 
by the elements [A/(x,,..., x,)], but this is not so for r = 3. In [2 3, Dutta, 
Hochster, and McLaughlin exhibit a module M which is of finite length 
and finite projective dimension over a Cohen-Macaulay local ring A of 
dimension three, such that M has negative Serre intersection multiplicity 
with an A-module of the form A/p, where p is prime of height one in A. 
Since A/p has zero intersection multiplicity with every module of the form 
A/(x,, x*,x,), it follows that [M] does not belong to the subgroup of 
K3(A) generated by the elements [A/(x,, x2, x3)]. As we will show, there is 
a cyclic module A/a of finite length and finite projective dimension over A, 
such that [M] = [A/a] in K3(A), modulo elements [A/(x,, x2, x3)]. It 
follows that A/a has negative intersection multiplicity with A/p. This fact is 
of interest in geometry. 

We would like to express our thanks to the referee and to Melvin 
Hochster, for their suggestions improving this paper. When this paper was 
first submitted, [2] had not appeared, and we were not aware of the 
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results. The referee did know of these results, and pointed out that the 
method of Section 4 could be used to replace the module A4 of [2] with a 
cyclic module. 

2. PERFECT MODULES 

This section will provide some background. For more detail, the reader 
may consult Serre [4]. 

Let A be a Cohen-Macaulay local ring. The codimension of a nonzero 
finitely generated A-module M is the minimum of the heights of the prime 
ideals of A in the support of M, and it is also the length of every maximal 
A-regular sequence contained in the annihilator of M. The codimension 
and the dimension of M are related by codim(M) + dim(M) = dim(A). If A4 
is of finite projective dimension over A then the projective dimension and 
the depth of M are related by pd(M) +depth(M) =dim(A). We always 
have depth(M) 6 dim(M), equality meaning that M is Cohen-Macaulay. It 
follows that codim(M) < pd(M), with equality if and only if M is 
Cohen-Macaulay and of finite projective dimension. An A-module with 
these last two properties is pe(fect. If .Y, ,..., X, is an A-regular sequence then 
the module A/(.u, ,..., x,) is perfect of codimension r over A. An A-module 
of finite length and finite projective dimension is perfect of codimension 
equal to dim( A ). 

Let 

be an exact sequence of finitely generated A-modules. Localizing at the 
primes of A of heights less than r, we see that codim(M) 2 y if and only if 
codim(M’)>r and codim(M”)>,r. If pd(M’)<r and pd(M”)<r, then 
pd(M) < r. Thus if M’ and M” are perfect of codimension r, so is M. 
Similarly, if M and M” are perfect of codimension r, so is M’. 

THEOREM 2. I. Ever)> module in C’(A) has a ,finite resolution by perfect 
modul~~s qf’ codimension r. 

Prmj: Let M be a module in C’(A). If pd(M) d r then M is perfect of 
codimension r, and we are done. If pd(M) > r, choose an A-regular 
sequence .Y, ,..., s, in the annihilator of M and let B= A/(x, ,..., x,). Then M 
is a finitely generated B-module, and for some n there is an exact sequence 

O-M’+B”-+M-+O. 
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As an A-module, B” is perfect of codimension r, and M’ is a module in 
C”(A) with pd(M’) < pd(M). 1 

It follows that K’(A) is generated by the elements [&I], with M perfect 
of codimension r. The group F?‘(A) is generated by the element [A], 
because the perfect modules of codimension zero over A are the free 
modules of finite rank. Localizing at a minimal prime of A shows that 
P(A) is free on [A]. 

3. CODIMENSION ONE 

In this section we will see that K’(A) is generated by the elements 
[A/(x)], with x regular on A. The basic result, Theorem 3.1, may be 
deduced from general results of Bass [ 11, but we will give an elementary 
argument. 

If M is a perfect module of codimension one over a Cohen-Macaulay 
local ring A, then M has a resolution 

Considering c( as an n x n matrix, we essentially want to reduce it to upper 
triangular form, using row and column operations. To apply a row 
operation to z is to replace c( by /5x, where /? is the result of applying the 
given row operation to the II x n identity matric. The effect of the row 
operation on M = Coker(n) is expressed in the exact sequence 

0 4 Ker(a) -+ Ker(/lcc) -S Ker(/?) 
(*) 

+ Coker(cc) ---& Coker(ficr) + Coker(fi) + 0. 

Adding a multiple of one row of c1 to another is an invertible operation, 
and does not change Coker(cl). Multiplication of a row of c( by an element 
.Y of A replaces a by pcl, where 

P= 

. . 0 
1 

X 

1 
0 . . 
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The cokernel of b is isomorphic to A/(X). If .Y is regular on A then 
Ker(B) = 0, and 

0 --f Coker(a) + Coker(fia) --f A/(.x) --f 0 

is exact. Column operations behave in a similar fashion. 

THEOREM 3.1. Let M he peyfkt qf codimension one over A, and let 

he exact. Then det(a) is regular on A and [M] = [A/(det(a))] in K’(A). 

Prooj. This is clear if n = 1, so assume n > 1. Choose x in the 
annihilator of M regular on A. Multiplication by x maps A” into the image 
of X, so there exists y: A” -+ A” such that I’J = xl,,. Thus det(cc) det(y) = x”, 
and it follows that det(z) is regular on A. The relation cry = xl, implies that 
.Y belongs to the ideal generated by the elements a,, ,..., a,,, of the first row 
of c(. Using invertible column operations, we reduce to the case that a,, is 
regular on A. Let p, ,..., p,,? be the minimal primes of A. If a,, is contained 
in none of these primes, we are done. Otherwise, let pi be the first of the 
primes which contains a,, . Since x is not in p,, some element a,i of the first 
row of M is not in p,. Choose c in p, n ... npim ,, c not in p,, and add to 
the first column of CI the jth column multiplied by c. The new element 
a,, + ca,, is not in any of the primes p, ,..., pi. Continuing, we eventually get 
a,, regular on A. We have not changed Coker(cr) or det(cr). 

With a,, regular on A, we reduce to the case that the remaining elements 
of the first column of u are zero. Multiply the second row of a by a,, , 
replacing c( by 8~. Since 

0 -+ Coker(a) + Coker@) + A/(a,,) + 0 

is exact, we have [Coker(a)] = [Coker(j?a)] - [A/(a,,)] in K’(A). Also, 
since det(&x) = a,, det(cr), the sequence 

0 + A/(det(cc)) + A/(det(&)) -+ A/(a,,) -+ 0 

is exact, and [A/(det(cc))] = [A/(det(@))] - [A/(a,,)] in K’(A). Hence 
[Coker(cc)] = [A/(det(cr))] will follow from [Coker(@x)] = [A/(det(Ba))]. 
Subtracting a multiple of the first row of 8~ from the second, we make the 
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first element of the second row of j?~ equal to zero. Continuing, we even- 
tually get x in the form 

The diagram 

0 --f A --t A” -+ A” ‘-+O 

commutes. and 

0 -+ A/(a,, ) -+ Coker(r) + Coker(a’) -+ 0 

is exact. Hence [Coker(cr)] = [A/(u,, )] + [Coker(lx’)]. Since det(cr) = 
a,, det(a’), we have also [A/(det(a))] = [A/(u,,)] + [A/(det(x’))]. Induc- 
tively, [Coker(cc’)] = [A/(det(x’))], so [Coker(a)] = [A/(det(n))]. I 

It follows that K’(A) is generated by the elements [A/(x)] with x regular 
on A. 

4. CYCLIC MODULES 

In codimension I > 1, the exact sequence (*) of the last section still has a 
role to play. It may be used to reduce the number of generators of a perfect 
module. 

LEMMA 4.1. Let M he the cokernel of u map CC: A” -+ A”, and let xl ,..., x, 
be an A-regular sequence in the annihilator of M. Assuming r d m, there is an 
exact sequence 

0 -+ M -+ N--f A/(x, ,..., x,) --, 0, 

where N is the cokernei of a map pa: A” + AmPrc’. 
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Pro@: Let p: A”’ --t A”’ ’ + ’ be the map with matrix 

i- s, (j... 0 "' x,. 0 (j 0 1 0 .o ." '. 0 1 

i 

> 

the direct sum of the row matrix (x, ... x,) with the (m-r) x (m-r) iden- 
tity matrix. The claim is that the kernel of fl is contained in the image of c(, 
so that the connecting homomorphism in the sequence (*) of Section 3 is 
zero. Since X, ,..., x,. annihilate M, there are maps y,: A” -+ A” such that 
“‘r’, = s, 1 ,,, , for j= l,..., r. If e, ,..., e, are the first r elements of the natural 
basis of A”‘, then for 1 d i <j< r, the elements cc(y,(e,) - r,(e,)) = x,e, - x,e, 
of the image of r generate the kernel of p. It follows that 

0 + Coker(a) --f Coker(@) -+ Coker(/?) + 0 

is exact, and this is the sequence of the lemma. 1 

The restriction r 6 m is not serious, since we can always increase m. If M 
is perfect of codimension r, so is N, and N has r - 1 fewer generators than 
M. In codimension r > !, we can reduce to a cyclic module N by assuming 
at the outset that m = k(r - 1) + 1 for some k. Thus A4 can be embedded in 
a cyclic module N in such a way that N/M has a filtration with quotients of 
the form A/(x, ,..., x,), where X, ,..., x, is an A-regular sequence in the 
annihilator of M. Therefore. 

THEOREM 4.2. For every r B 0, the group K’(A) is generated by the 
elements [A/a], where Ala is peyfect of codimension r. 

5. CODIMENSION Two 

In this section, we will see that K2(A) is generated by the elements 
[A/(x,, xZ)], where xi and x2 form an A-regular sequence. This fact was 
known at least to Hochster, who gave a partial proof in [3]. But the 
method of the previous section leads to a proof which is quite simple. 

LEMMA 5.1. Let a = (y, ,..., y,,) be an ideal of a Cohen-Macaulay local 
ring A, and suppose that Ala is of codimension r over A. Then r d n, and 
a = (xl ,..., x,, ), where x , ,..., x, form an A-regular sequence. 
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Proqf: If r = 0, there is nothing to do, so assume r > 0. Then a contains 
a regular element. As in the proof of 3.1, we can use invertible operations 
on the row (~3, ... y,,) and replace J, by a regular element x,. Let 
B= A/(x,), and let b = a/(.~,). Then b = (j2 ,..., j,,), and B/b z A/a is of 
codimension r - 1 over B. Inductively, r - 1 < n - 1, and we can suppose 
that b = (-YZ ,..., .U,,), where .Yr ,..., .U, is a B-regular sequence. Lifting Sz ,..., I,, 
to elements x2 ,..., x,, of A, we have a = (.Y, ,..., x,,), and the sequence x, ,..., x, 
is A-regular. 1 

THEOREM 5.2. The group K’(A) is generuteci /I)% the elements 
[A/(-r,, s,)], where x, und .Y, ,fbrm a regular sequence on A. 

Proof: We begin with any module M which is perfect of codimension 
two over A, and choose a resolution 

Using Lemma 4.1, we reduce to 

O-+A” ‘+A”& A+A/a-+O. 

In K’(,4), [M] = [A/a], modulo elements [A/(x,, xl)]. By 5.1, we can 
assume that a = (x, .x2.. x,,), where x, and .Y? form an A-regular sequence. 
If n = 2, we are done. If n > 2, inject the Koszul complex defined by x, and 
x2 into the complex resolving A/a, and form the exact sequence of com- 
plexes 

O-A 
( 2’. ) ‘1 , A? (Y, .x2, +A-0 

I I’ I 
I 

O-A” ’ - A” & A-O 

I I 
77 

I 
0-Q - A”- 2 - 0. 

The map 1 is the injection into the first two coordinate positions of A”, and 
7c is the projection from the last n - 2. The homology of the quotient com- 
plex is a/(x,, .x2) in degree one, and zero in degree two, because the 
homology exact sequence is 

O-,a/(x,,x,)+A/(x,,x,)+A/a-+O. 
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The module a/(.~,, .Y?) is perfect of codimension two, and 
[A/a] = [A/(.\-, , sz)] - [a/(x,, x1)] in K’(A). From the diagram we see 
that a/(x,, .v7) has a resolution 

O-+A-+A” ‘+A” 2+a/(x,,.Y,)~0. 

We are back at the point of beginning, but with n replaced by n - 1. m 

The theorem has a consequence worth mentioning. The inclusion of 
C?+‘(A) in C”(A) defines a group homomorphism K’+‘(A)+K(A). If A 
is regular, then C’(A) is the class of all finitely generated A-modules of 
codimension at least r, and the theory of associated primes shows that 

K’+‘(A)+K’(A)+Z’(A)+O 

is exact, where Z”(A) is the free abelian group on the primes on height r of 
A. By 5.2, the map K’(A) + K’(A) is the zero map, because 

0 + A/(-y, 1 ” ) A/(s,)~A/(.u,,x,)~O 

is an exact sequence of modules in C”(A), and [A/(x,, x2)] =0 in K’(A). 
Thus K’(A) is free on the primes of height one of A. 

6. CODIMENSION THREE 

In [Z], Dutta, Hochster, and McLaughlin exhibit a module M which is 
of finite length and finite projective dimension over a Cohen-Macaulay 
local ring A of dimension three, such that the Serre intersection multiplicity 

x(M Alp) = c ( -1 )‘lengtWq’(M A/P)) 

satisfies )I(M, A/p) = -1. Here, p is a prime of height one of A. As the 
authors point out, it follows immediately that [M] cannot belong to the 
subgroup of K3(A) generated by the elements [A/(x,, x2,x,)], where 
x,, .Y>, and .Y~ form an A-regular sequence. For x(A/(x,, x2, x,), A/p)=O. 
Hence K’(A) is not generated by the elements [A/(x,, x2, xx)]. 

It follows from Lemma 4.1 that M may be embedded in a cyclic module 
A/a, also of finite length and finite projective dimension over A, such that 
CM1 = CA/al in K”(A), modulo elements [A/(x,, x2, x3)]. Hence 
X(A/a, A/p) = - 1. The cyclic module A/a is far from unique. Beginning 
with the module M* of [2], and using the construction of Lemma 4.1 
twice, we get a cyclic module A/a such that the ideal a has 16 generators. 
The length of a cyclic module obtained in this way seems to be 
unreasonably large. A direct construction, as in [2], may give a better 
result. 
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