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It is over 30 years since the regulatory peptide galaninwas discovered by ProfessorMutt and co-workers. Galanin
exerts its effects by binding to three galanin G-protein coupled receptors, namely GAL1R, GAL2R and GAL3R. Each
galanin receptor has a different distribution in the central nervous system and the peripheral nervous system as
well as distinctive signaling pathways, which implicates that the receptors are involved in different biological-
and pathological effects. The delineation of the galaninergic system is however difficult due to a lack of stable,
specific galanin receptor ligands. Herein, a new short GAL2R specific ligand, Ala5-galanin (2–11), is presented.
The galanin (2–11)modified analogue Ala5-galanin (2–11)was tested in 125I-galanin competitive binding studies
for the three galanin receptors and the G-protein coupled receptor signaling properties was tested by the ability
to influence second-messenger molecules like inositol phosphate and cyclic adenosine monophosphate. In addi-
tion, two different label-free real-time assays, namely EnSpire® based on an optical biosensor and xCELLigence®
based on an electric biosensor, were used for evaluating the signaling properties using cell lines with different
levels of receptor expression. Ala5-galanin (2–11) was subsequently found to be a full agonist for GAL2R with
more than 375-fold preference for GAL2R compared to both GAL1R and GAL3R. The single amino acid substitution
of serine to alanine at position 5 in the short ligand galanin (2–11) resulted in a ligand subsequently unable to
bind neither GAL3R nor GAL1R, even at concentrations as high as 0.1 mM.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

It is now over 30 years since the neuropeptide galanin was discov-
ered by ProfessorMutt and colleagues (Tatemoto et al., 1983)when iso-
lating C-terminally amidated peptides from porcine intestine. Galanin
was found to be widely distributed in the central nervous system
(CNS) the peripheral nervous system (PNS) as well as other tissues
(for review see Lang et al., 2015; Webling et al., 2012; Bauer et al.,
2010; Lang and Kofler, 2011). Over the following years, attention has
been drawn to this regulatory peptide due to a wide variety of physio-
logical and pathological conditions where galanin is a part - including
cancer, epilepsy, feeding, nociception and pain (for review see Lang et
inese hamster ovary cells; CNS,
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al., 2015; Webling et al., 2012). Galanin exerts its biological effects by
binding to three G-protein coupled receptors (GPCRs), namely
GAL1–3R. GAL1R and GAL3R are mainly signaling through Gi/o (Smith et
al., 1998) while GAL2R signals through several G proteins and subse-
quently influence multiple intracellular signaling pathways (for review
see Lang et al., 2015). The specific distribution of galanin receptor sub-
types in the brain as well as different binding affinities for galanin frag-
ments indicates different biological effects (O'Donnell et al., 1999; Smith
et al., 1998). One major limitation to delineate the galaninergic system
is the lack of stable, receptor subtype specific ligands. Liu et al. (2001)
presented the first selective galanin ligand, a truncated peptide
consisting of amino acids 2–11 (also called AR-M1896) of full-length
galanin (Table 1) (Liu et al., 2001). The deletion of the first glycine
resulted in loss of affinity for GAL1R (Liu et al., 2001), which has been
used extensively for designing GAL2R selective ligands ever since
(Runesson et al., 2009; Saar et al., 2013a, 2013b; Sollenberg et al.,
2006) (Table 1). The finding that galanin (2–11) also had similar affinity
to GAL3R (Lu et al., 2005a) was a step back, but galanin (2–11) is still
widely used as a non-GAL1R ligand.

Over the years, reports have accumulated that the signaling cascades
of GPCRs are more complex than previously anticipated. In addition to
the different G protein-mediated signaling, several GPCR interacting
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.npep.2016.08.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.npep.2016.08.008
mailto:kristin.webling@neurochem.su.se
http://dx.doi.org/10.1016/j.npep.2016.08.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/npep


Table 1
The amino acid sequences of peptide ligands discussed.

Name Sequence Reference

Rat galanin GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-amide Vrontakis et al. (1987)
Human galanin GWTLNSAGYLLGPHAVGNHRSFSDKNGLTS Schmidt et al. (1991)
Tuna galanin GWTLNAAGYLLGPHGIDGHRTLGDKPGLA-amide Habu et al. (1994)
Human GALP APAHPGRGGWTLNSAGYLLGPVLHLPQMGDQDG

KRETALEILDLWKAIDGLPYSHPPQPS
Ohtaki et al. (1999)

Galanin (2–11)
AR-M1896

WTLNSAGYLL-amide Liu et al. (2001)

Human spexin NWTPQAMLYLKGAQ-amide Mirabeau et al. (2007)
Gal-B2
NAX 5055

(Sar)WTLNSAGYLLGPKKKPalmitoyl K-amide Bulaj et al. (2008)

M1145 RGRGNWTLNSAGYLLGPVLPPPALALA-amide Runesson et al. (2009)
M1153 RGRGNWTLNSAGYLLGPK(ε-NH-C(O)X)-amide Saar et al. (2011)
M1160 RGRGNWLNSAGYLLGPVLPPPALALA-amide Saar et al. (2013b)
NAX 409-9 Metcalf et al. (2015)

Ala5-galanin (2–11) WTLNAAGYLL-amide

Sar = sarcosine; X =\\CH(NH2)\\CH2\\CH2\\COOH.
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proteins (GIP) have been described (Xiao et al., 2010) (for review see
Jacobson, 2015; Shukla et al., 2014; Khoury et al., 2014; Luttrell et al.,
2015; Walther and Ferguson, 2015). Activated β-arrestins have been
shown to trigger a second wave of cell signaling (Ferrie et al., 2013)
alongside a third wave of GPCR signaling from internalized receptors
in endosomes (Irannejad et al., 2013; Irannejad and von Zastrow,
2014; Tsvetanova et al., 2015), which adds to the complexity of GPCR
signaling.

These findings highlight that measuring a single secondmessenger to
evaluate the signaling property for GPCRs that signal through multiple
pathways as inadequate to show the true biological response (for review
see Hall and Lefkowitz, 2002; Kenakin, 2009; Zhang and Xie, 2012).

However, to evaluate second-messengers from all known signaling
pathways of certain GPCRs would be time-consuming and difficult due
to biased ligands.

Since GPCR activation leads to cytoskeletal-guided transport of
molecules and subsequent changes in cell adhesion and morphological
re-arrangements, new real-time label free techniques have been devel-
oped to evaluate the sum of cellular events of activated GPCRs (for re-
view see Grundmann and Kostenis, 2015; Ke et al., 2015; Lee, 2009;
Nayler et al., 2010; Peters and Scott, 2009; Scott and Peters, 2010;
Zhang and Xie, 2012). The sumof these cellular events gives a combined
biological responsemeasured in real timeby these label-free techniques
as either changes in wavelength due to mass redistribution of the cells
(optical biosensor) or measuring changes in impedance due to cell ad-
hesion changes on electrodes (an electric biosensor).

In this study, two real-time label free techniques, one based on opti-
cal techniques and one based on impedancewere used alongside classi-
cal signaling measurements, i.e. cyclic adenosine monophosphate
(cAMP) measurements and inositol phosphate (IP) turnover, to evalu-
ate the signaling property of ligands and receptors.

Here we present a new short galanin receptor 2 subtype specific li-
gand, Ala5-galanin (2–11), with no detectable binding to neither
human GAL1R nor human GAL3R (for sequence see Table 1). Two classi-
cal signalingmethods, IP turnover and cAMPassay, are also compared to
two different real-time label-free assays for GPCR signaling, for both
Ala5-galanin (2–11) and full-length galanin.

2. Materials and methods

2.1. Peptide design

Galanin (1–15) is highly conserved among species (for review see
Langel and Bartfai, 1998) which implicates the N-terminus to be impor-
tant for receptor binding. The removal of the first glycine along with
omission of galanin 12–29/30 of galanin has been shown to produce a
non-GAL1R-ligand (Liu et al., 2001; Lu et al., 2005b).

The design of Ala5-galanin (2–11), with the amino acid sequence
WTLNAAGYLL-amide (see Table 1),was based on the short galanin frag-
ment galanin (2–11) but with a single amino acid substitution where
serine at position five was changed to alanine. Alanine instead of serine
at position six in full-length galanin is found in yellowfin tuna (Habu et
al., 1994).

2.2. Peptide synthesis

The peptides were synthesized in a stepwise manner using small
scale (0.1 mmol) 9-fluorenylmethyloxycarbonyl (Fmoc) solid-phase
peptide synthesis strategy on an automated Syro multipeptide synthe-
sizer (MultiSynTech, GmbH, Witten, Germany) using p-
methylbenzhydrylamine (MBHA) resin (Iris Biotech GmbH,
Marktredwitz, Germany), which generated a C-terminally amidated
peptide after final cleavage. Fmoc amino acids (Iris Biotech GmbH,
Marktredwitz, Germany) were coupled as hydroxybenzotriazole
(HOBt) esters. The peptideswere cleaved from the resin using a solution
of 95% trifluoroacetic acid (TFA), 2.5% triisopropylsilane (TIS) and 2.5%
H2O for 3 h. The peptides were subsequently purified by reverse-
phaseHPLC (Nucleosil 120-3C-18 column), freeze-dried and the correct
molecular weight was determined by matrix assisted laser desorption
ionization time-of-flight mass spectrometry (Voyager-DE STR, Applied
Biosystems, Foster City, CA, USA). The freeze-dried peptideswere stored
at−20 °C until used.

2.3. Cell culture

Boweshumanmelanoma cells (American type Culture Collection CRL-
9607) stably expressing humanGAL1R (PMID: 7524088)were cultured in
Eagle's minimum essential medium with GlutaMAX−1 supplemented
with 10% fetal bovine serum (FBS), 1% sodium pyruvate, 1% non-essential
amino acids, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin.

Chinese Hamster Ovary (CHO) K1 cells stably expressing human
GAL2R (a kind gift from Kathryn A. Jones and Tiina P. Iismaa, Sydney,
Australia) were cultured in Dulbecco's modified essential medium F12
with GlutaMAX−1 supplemented with 10% FBS, 100 U ml−1 penicillin
and 100 μg ml−1 streptomycin.

SH-SY5Y cells stably transfectedwith an tetracycline inducible over-
expression (see Table 2) of either GAL1R or GAL2R (PMID: 14592962)
were cultivated in Dulbecco's modified eagle medium supplemented
with 10% FBS, 2 mM L-glutamine, 1% non-essential amino acids,
100 U ml−1 penicillin and 100 μg ml−1 streptomycin.

pmid:14592962


Table 2
The cell lines used in this study as well as the concentration of the receptors expressed.

Cell line and receptor
expressed

Concentration membrane
bound receptor in
pmol/mg protein References

Bowes melanoma cells
expressing human GAL1R

0.54 ± 0.185 Runesson et al. (2009)

Chinese hamster ovary cells
expressing human GAL2R

0.675 ± 0.152 Runesson et al. (2009)

Flp-In T-Rex 293 cells
expressing human GAL3R

0.696 ± 0.293 Runesson et al. (2009)

SHSY5Y stably expressing
human GAL1R

0.4 ± 0.1 Berger et al. (2004)

SHSY5Y with tetracycline
induced human GAL1R
overexpression

10.2 ± 1.2 Berger et al. (2004)

SHSY5Y stably expressing
human GAL2R

0.05 ± 0.016 Berger et al. (2004)

SHSY5Y with tetracycline
induced human GAL2R
overexpression

3.2 ± 0.3 Berger et al. (2004)
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Flp-In T-REx 293GAL3R cell line (Runesson et al., 2010)was cultured
in Dulbecco's modified essential medium supplemented with 10% FBS,
2 mM L-glutamine, 100 U ml−1 penicillin, 100 μg ml−1 streptomycin,
15 μg ml−1 blasticidin S and 150 μg ml−1 Hygromycin B (Roche Diag-
nostics). Tetracycline (1 μg/ml) (Sigma Aldrich, St. Louis, MO, USA) to
induce the expression of GAL3Rwere added 24 h prior to cell harvesting
for the 125I galanin competitive study, and after 24 h of cell seeding in
the real-time impedance based 96-well E-plate VIEW.

Cell cultures were grown at 37 °C in a 5% CO2 incubator. Cell culture
reagents were purchased from Invitrogen (Carlsbad, CA, USA) and cell
plastics from Corning (Corning, NY, USA).

2.4. Galanin receptor binding studies

Cells for 125I-galanin receptor displacement studies were seeded in
150 mm dishes and cultured in complete cell media for 2–3 days until
approximately 90% confluent. Complete cell media were changed
every other day. The GAL3R Flp-In T-REx cell line had an addition of tet-
racycline (1 μg/ml) 24 h prior to harvest for inducing GAL3R expression.
Cells were washed thrice and scraped into phosphate-buffered saline
(PBS) and centrifuged twice at 4 °C, 3000 ×g for 5 min.

The pellet was resuspended in assay buffer (20 mM HEPES, 5 mM
MgCl2, pH 7.4) supplemented with EDTA (5 mM EDTA) and incubated
on ice for 45 min before centrifugation at 4 °C, 8500g for 15 min. After
washing the pellet in assay buffer and repeated centrifugation the ob-
tained pellet was resuspended in assay buffer supplemented with 1%
protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA) and
stored at −20 °C. Protein concentration was determined according to
Lowry (BioRad, Stockholm, Sweden). Displacement studies on cell
membranes were performed in a final volume of 200 μl, containing
0.1 nMporcine-[125I]-galanin (2200 Ci/mmol, Perkin-Elmer Life Science,
Boston, MA, USA), 30 μg cell membrane, and various concentrations of
peptide (10−9 to 10−4 M). Peptide solutions were prepared in assay
buffer supplemented with 0.3% bovine serum albumin (BSA) using
silanized (dichlorodimethylsilane, Sigma-Aldrich, St. Louis, MO, USA)
tubes and pipette tips to prevent unspecific binding. Sampleswere incu-
bated at 37 °C for 30 min while gently shaking after which the samples
were transferred and filtered through a MultiScreen-FB filter plate
(Millipore, Billerica, MA, USA) pre-soaked in 0.3% polyethylenimine so-
lution (Sigma-Aldrich, St. Louis, MO, USA) using vacuum. The filters
were washed thrice with assay buffer and the retained radioactivity
was determined in a β-counter (Tri-Carb Liquid Scintillation Analyser,
model 2500 TR, Packard Instrument Company, Meriden, CT, USA)
using OptiPhase Supermix Cocktail (Perkin-Elmer Life Science, Boston,
MA, USA) as scintillation fluid. IC50 values for the peptides were calcu-
lated using Prism 6.0 (GraphPAD Software Inc., San Diego, CA, USA)
and converted into Ki values using the equation of Cheng-Prusoff
(Cheng and Prusoff, 1973).

2.5. Cyclic adenosine-monophosphate (cAMP) measurements

SH-SY5Y cells stably expressing either GAL1R or GAL2R were seeded
into 48-well plates and grown to confluency. Tetracycline was not
added since the experiment aimed to examine a lower receptor expres-
sion level (see Table 2). Cells were incubated for 2 h with DMEM and
[3H]adenine (3 μCi/ml) (Perkin Elmer, Waltham, MA, USA) and then
washed thrice with Hank's balanced salt solution (Gibco) before stimu-
lated with 20 μM forskolin and/or peptide ligand Ala5-galanin (2–11)
(10−5 to 10−7) for 30 min at 37 °C in the presence of inhibitors
(1 mM 3-isobutylmethylxanthine (IMBX) (Sigma, Vienna, Austria),
1 μM BAY 60-7550 (Santa Cruz, Heidelberg, Germany) and 10 μM
rolipram (Sigma, Vienna, Austria)). The cells were subsequently lysed
using of 5% (w/v) trichloroacetic acid followed by the addition of
250 μl of 5% (w/v) trichloroacetic acid supplemented with 0.1 mM
cAMP and 0.1 mM adenosine triphosphate (ATP) (Sigma, Vienna,
Austria) for at least 20 min at 4 °C.

The lysates were then added to Dowex 50W-X4 columns (200–
400 mesh) (Bio-Rad, Hercules, CA, USA) and washed twice with deion-
ized water before placed over alumina columns and eluted with 0.1 M
imidazole (AppliChem, Darmstadt, Germany). Radioactivity of the elu-
ate was determined in a liquid scintillation counter (Tri-Carb model
1600 TR; Packard Instrument Company) using Ultima Gold XR (Perkin
Elmer, Waltham, MA, USA) as scintillation fluid.

2.6. Inositol phosphate accumulation

CHO K1 cells stably expressing human GAL2R were seeded in 12-
well plates and cultured in complete cell culturingmedia for 48 h before
incubation with 1 μCi [3H]-myo-inositol (Perkin Elmer) in M-199medi-
um (Invitrogen, Carlsbad, CA, USA) containing 100 U ml−1 penicillin
and 100 μg ml−1 streptomycin for 24 h. Prior to experiments, cells
were incubated with fresh M-199 medium for 10 min at 37 °C and
washed twice with HEPES buffered Krebs-Ringer solution (HKR) buffer
(5 mM HEPES, 137 mM NaCl, 2.68 mM KCl, 2.05 mM MgCl2, 1.8 mM
CaCl2, 1 g l−1 glucose, pH 7.4) followed by 10 min pre-incubation in
800 μl HKR buffer with 10 mM LiCl at 37 °C. Cells were then stimulated
with peptide in various concentrations (10−9 to 10−4 M) generating a
total volume of 1000 μl. After addition of peptide the samples were in-
cubated for 1 h at 37 °C. The reaction was terminated by addition of
200 μl ice cold 20% perchloric acid followed by incubation on ice for
30 min. The samples were neutralized to pH 7 by addition of 1.5 M
KOH/75 mM HEPES. Anion exchange chromatography of the samples
was performed over 1.5 cm 50:50 Dowex (AG 1-X8 Resin, 200–
400 mesh formate, BioRad, Hercules, CA, USA). The columns were
washed with 5 ml distilled water before the inositol phosphates (IP)
were eluted with 5 ml of 0.1 M formic acid/1.2 M ammonium formate.
Radioactivity of the eluate was determined in a β-counter (Tri-Carb Liq-
uid Scintillation Analyzer, model 2500 TR, Packard Instrument Compa-
ny, Meriden, CT, USA) using Utima Flo AF (Perkin-Elmer Life Science,
Boston, MA, USA) as scintillation fluid. Each sample was normalized
against the total count obtained before anion exchange
chromatography.

2.7. Label-free assay for signaling using EnSpire®

SH-SY5Y cells stably expressing either GAL1R or GAL2R were seeded
in EnSpire LFC-348 well plates (Perkin Elmer, Austria) at a concentra-
tion of 12,000 cells per well and cultured overnight at 37 °C and 5%
CO2. Tetracycline was not added to be able to examine the signaling in
cells expressing the receptor at lower concentrations. The media was
then aspired and the cellswerewashed four timeswithHank's balanced
salt solution (HBSS) buffer supplemented with HEPES (20mM) and the
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final volume was adjusted to 30 μl per well. The plate was allowed to
equilibrate to assay temperature for 1 h in the Enspire multimode read-
er (Perkin Elmer, Austria). HBSS buffer supplemented with HEPES
(20 mM) alone or dilution series of Ala5-galanin (2–11) dissolved in
the same buffer were prepared and placed on a compound plate
which were allowed to equilibrate to reach the same temperature as
the Enspire plate holding the cells. A baseline readingwas first generat-
ed by 4 measurements before ligands were added. The plate was mea-
sured between 30 and 70 repeats and each experiment was
performed in triplicates. The mean was used to generate the dose re-
sponse curve and EC50 values were calculated using Prism 6.0
(GraphPad Software Inc., San Diego, CA, USA).

2.8. Label-free assay for signaling using xCELLigence

One day prior to the experiment, 100 μl of complete cell culture
media was added to each well and background recorded. Following
background measurement, 100 μl of complete cell media containing
the cell suspension were seeded on the 96-well E-plate VIEW™
(ACEA, San Diego, USA), incubated at room temperature for 30 min
and then placed onto the device station (Roche Applied Science and
ACEA Biosciences) hosted inside an incubator at 37 °C with 5% CO2.
The optimal cell density for the assay was determined to be 40,000
cells per well for Bowes human melanoma cells stably expressing
GAL1R, 25,000 cells per well for CHO K1 cells stably expressing GAL2R
and 20,000 cells per well for Flp-In T-REx 293 cells with inducible
GAL3R expression. The cells were allowed to equilibrate for 24 h (48 h
for the GAL3R cell line where tetracycline (1 μg/ml) was added 24 h
after seeding to induce the GAL3R expression) and impedance was con-
stantly monitored every minute throughout the whole experiment.
Prior to galanin ligand addition, complete cell media were replaced
with 180 μl low-FBS (1%) containing cell media, according to the
manufacturer's instructions, and incubated for 1 h. The ligandswere dis-
solved in PBS at concentrations 10× thewanted final concentration and
20 μl were added gently to each well.

Data were analyzed using the integrated software package express-
ing changes in cell electrode impedance as changes in cellular index, CI,
(Yu et al., 2006) and normalized to the cell index at the time of ligand
addition. Concentration effect curves were generated by calculation of
the area under curve (AUC) between 0 and 3600 s after peptide addi-
tion, and plotted against ligand concentration. The subsequent calcula-
tion of EC50 values was performed by non-linear regression using
Prism 6.0 (GraphPad Software Inc., San Diego, CA, USA).

2.9. Data analysis

For all experiments are data reported as mean ± SEM of at least
three individual experiments performed in at least duplicates. Statistical
significance were graded after *p-value ≤ 0.05; **p-value ≤ 0.01 and
***p-value ≤ 0.001 using ANOVA Bonferroni's multiple comparison test
using Prism 6.0 (GraphPad Software Inc., San Diego, CA, USA).

3. Results

3.1. Galanin receptor binding studies

125I-galanin-receptor displacement studies were performed using
full-length rat galanin, galanin (2–11) and Ala5-galanin (2–11) on
membrane preparations of Bowe's human melanoma cells stably ex-
pressing human GAL1R, CHO K1 cells stably expressing human GAL2R
and Flp-In T-REx 293 with inducible expression of human GAL3R. The
high degree of sequence homology between rat and human galanin re-
ceptors and the reported similar binding affinity for full-length rat,
human and porcine galanin to those two receptors (Wang et al., 1997;
Borowsky et al., 1998; Lu et al., 2005a, 2005b; reviewed in Webling et
al., 2012) allows full-length galanin from either of these three species
to be used as controls.

The displacement of both full-length rat galanin as well as galanin
(2–11) revealed for galanin a Ki of 1.70 ± 1.2 nM for GAL1R, 2.71 ±
0.9 nM for GAL2R and 4.33 ± 0.6 nM for GAL3R. Galanin (2–11) had
no detectable binding to GAL1R, and the Ki for GAL2R was 14.6 ±
2.2 nM and for GAL3R 186 ± 74 nM (Fig. 1, Table 3). Ala5-galanin (2–
11) had a lower affinity for GAL2R compared to galanin (2–11) with a
Ki of 258 ± 68 and 16.6 ± 3.5, respectively, but Ala5-galanin (2–11)
had no detectable binding to neither GAL1R nor GAL3R even at doses
as high as 0.1mM(Table 3, Fig. 1). In Table 3, the highest experimentally
tested concentration is presented when no Ki could be calculated and
indicated by a Nmeaning that the true Ki value would be higher. Conse-
quently, Ala5-galanin (2–11) has more than 375-fold preference for
GAL2R over both GAL1R and GAL3R.

3.2. Cyclic adenosine-monophosphate stimulation assay

The ability of Ala5-galanin (2–11) to initiate GPCR signalingwere ex-
amined by its ability to change the concentration of cyclic adenosine-
monophosphate, cAMP, in SH-SY5Y cells expressing GAL2R in a 10-
fold lower concentration than the CHO K1 cells. Signaling through Gi/o

would decrease the cAMP concentration and forskolin was therefore
used to stimulate cAMP production of the cells. Three different ligand
concentrations (0.1, 1 and 10 μM) were tested together with 20 μM
forskolin, using forskolin (20 μM) together with 0.1 μM full-length
human galanin as control. No significant change in cAMP concentration
after addition of Ala5-galanin (2–11) could be seen even at 10 μM con-
centration using ANOVA Bonferroni's multiple comparison testwhereas
forskolin together with full-length galanin caused a statistical signifi-
cant increase in cAMP concentration (**p-value ≤ 0.01) (Fig. 2).

3.3. Inositol phosphate accumulation

The ability of Ala5-galanin (2–11) and full-length rat galanin to in-
duce GPCR signaling was examined by the ability of the peptides to
stimulate inositol phosphate (IP) production in CHO cells stably ex-
pressing humanGAL2R. The ability to inducemaximum IP accumulation
is similar to that of full-length rat galanin and also the previously pub-
lished full agonist M1145 (Runesson et al., 2009). Ala5-galanin (2–11)
has relatively low affinity compared with the previously published
GAL2R selective ligands with an EC50 value of 1.01 ± 0.18 μM but con-
sidered a full agonist (Fig. 3) (Runesson et al., 2009; Saar et al., 2013a,
2013b; Sollenberg et al., 2006). The EC50 value of full-length rat galanin
in the present study was 66.4 ± 13 nM for GAL2R, a value in concor-
dance with previous studies were full-length rat galanin had a EC50-
value of 75 nM (Runesson et al., 2009). Using ANOVA Bonferroni's mul-
tiple comparison significance were graded according *p-value ≤ 0.05;
**p-value ≤ 0.01 and ***p-value ≤ 0.001. Galanin showed significant ac-
cumulation of inositol phosphate above 0.1 μM (***p-value) whereas
Ala5-galanin (2–11) had (*p-value) accumulation of inositol phosphate
at 0.1 μM and significant accumulation above 1uM (***p-value).

No significant change in IP production could be seen when Ala5-
galanin(2–11) was added to Bowes melanoma cells stably expressing
GAL1R nor Flp-In T-REx 293 with inducible expression of GAL3R (data
not shown).

3.4. Label free methods using EnSpire® and xCELLigence®

When using the optical based label-free real-time system, Enspire,
the ligand Ala5-galanin (2–11) was only able to generate a dynamic
mass redistribution (DMR) response in the SH-SY5Y cells stably ex-
pressing GAL2R with an EC50-value of 3.23 ± 0.4 μM. Full-length
human galanin was used as control and had in this study an EC50-
value of 1.08 ± 3.19 nM at SH-SY5Y cells expressing GAL1R and
47.2 ± 5.3 nM for SH-SY5Y cells expressing GAL2R.



Fig. 1. Displacement studies of porcine-[125I]-galanin on CHO K1 cells stably expressing human GAL2R, presented in open squares, and Flp-In T-REx 293 cells with inducible expression of
humanGAL3R, presented infilled triangles, using thenon-GAL1R ligandgalanin (2–11) (A) and the specificGAL2R ligandAla5-galanin (2–11) (B). Data is presented asmean±SEMof three
individual experiments performed in duplicates.
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When using the impedance based label-free real-time assay,
xCELLigence, Ala5-galanin (2–11) was only able to generate a dose-re-
sponse curve in CHO K1 cells stably expressing GAL2R. The EC50-value
was 191 ± 49 nM (Table 4). No response could be observed when
Ala5-galanin (2–11) was added to Bowes Melanoma Cells stably ex-
pressing GAL1R nor Flp-In T-REx 293 cells with tetracycline induced ex-
pression of GAL3R (data not shown). Full-length rat galanin were used
as a control and had in this study EC50-values of 1.1 ± 0.11 nM for
GAL1R, 8.26 ± 1.9 nM for GAL2R and 412 ± 38 nM for GAL3R.

4. Discussion

The usage of knockout (KO)-animals, overexpression (OE)-animals
and the use of a few available selective ligands for the different galanin
receptor subtypes indicate specific involvement of galanin receptor sub-
types in different diseases (for review see Webling et al., 2012). GAL2R
agonists are for example considered to be neuroprotective in both
Alzheimer's disease (Pirondi et al., 2010) and in kainic acid induced
cell death (Webling et al., 2015), antidepressant and anxiolytic
(Kuteeva et al., 2008), and able to reduce the severity of seizures in ep-
ilepsy (Robertson et al., 2010; Mazarati et al., 2004) (for review see
Webling et al., 2012). This has generated an increasing interest to gen-
erate and use specific ligands to delineate the effects of the galanin re-
ceptors, but the pharmacological tools available are still limited. The
first specific galanin ligand presented was galanin (2–11) (Liu et al.,
2001) and even though the finding that galanin (2–11) binds with sim-
ilar affinity to both GAL2R and GAL3R (Lu et al., 2005a, 2005b), it is com-
monly used as an non-GAL1R ligand.

Even though theN-terminal amino acid sequence of galanin is highly
conserved among species and considered important for receptor bind-
ing, some N-terminal alterations have been shown to retain receptor
binding affinity. Bulaj and colleagues reported a N-terminal methylated
galanin ligand where the first glycine was replaced by sarcosine along
Table 3
Experimental Ki determined by displacement studies of porcine-[125I]-galanin on Bowes
Melanoma Cells expressing human GAL1R, CHO K1 cells stably transfected with human
GAL2R or Flp-In T-REx 293 cells with inducible expression of human GAL3R. The highest
concentration used in this study served as a Ki-value when no experimentally Ki-value
could be determined.Data are presented asmean values± SEMof at least three individual
experiments each performed in duplicates. When Ki-values could not be determined was
the Ki presented as above the highest concentration experimentally used.

Name

Ki (nM)

GAL1R GAL2R GAL3R

Rat galanin 1.70 ± 1.2 2.71 ± 0.9 4.33 ± 0.6
Galanin (2–11) N100,000 14.6 ± 2.2 186 ± 74
Ala5-galanin (2–11) N100,000 258 ± 68 N100,000
with cationic amino acids C-terminally together with a fatty acid to im-
prove stability (Bulaj et al., 2008). The presented ligand, named NAX
5055, had nM affinity for both GAL1R and GAL2R with a 14–fold prefer-
ence for GAL1R over GAL2R. Unfortunately, no data for NAX 5055 and
GAL3R affinity have been reported to date. The first GAL2R specific li-
gand M1145 presented by Runesson et al. (2009) was designed with a
four amino acid sequence from the GAL2R/GAL3R selective galanin-like
peptide (GALP) added to theN-terminus to improve theGAL2R selectiv-
ity alongside replacement of the first glycine to asparagine to minimize
binding to GAL1R (Runesson et al., 2009) (Table 1). M1145 retained a
nM binding affinity for GAL2R and had a 90-fold preference for GAL2R
over GAL1R and a 76-fold preference for GAL2R over GAL3R (Runesson
et al., 2009). Based on theM1145 sequence, a new ligandwith improved
specificity for GAL2R was designed and presented by Saar et al., 2011,
Fig. 2. Signal transduction using cyclic adenosine-monophosphate stimulation. Cyclic
adenosine-monophosphate, cAMP, production was measured radiometrically. Ala5-
galanin (2–11) did not significantly stimulate cAMP production in SH-SY5Y cells stably
expressing human GAL2R. Full-length human galanin (0.1 μM) together with forskolin
(FSK) were used as control. Data shown are mean values of triplicates ± SEM of one
experiment. **p-Value ≤ 0.01, ANOVA Bonferroni's multiple comparison test.
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Fig. 3. Signal transduction via inositol phosphate accumulation. CHO K1 cells stably
expression human GAL2R were pre-incubated with [3H]-myo-inositol for 24 h previous
to galanin ligand addition at different concentrations (10−10–10−4 M). The dose
response curve of Ala5-galanin (2–11) is plotted using filled squares and full-length rat
galanin plotted as filled circles. Data are presented as % of control when no ligand was
added as mean ± SEM of six individual experiments each performed in duplicates.
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named M1153 (Table 1) (Saar et al., 2011). The C-terminal branching
produced a ligand that retained nM affinity for GAL2R with a 380-fold
preference for GAL2R over GAL1R and a 46-fold preference for GAL2R
over GAL3R. The seventh amino acid in the M1145 sequence, threonine,
was deleted to reduce the affinity for GAL3R according to mutagenesis
studies resulting in an even more selective GAL2R specific ligand,
named M1160 (for sequences see Table 1) (Saar et al., 2013b). M1160
had a 465-fold preference for GAL2R over GAL1R and more than a
1000-fold preference for GAL2R over GAL3R. In Ala5-galanin (2–11),
the substitution of serine to an alanine at position five in galanin (2–
11) reduced one hydroxyl group in the peptide. The re-evaluation of
an alanine scan to identify important pharmacophores for GAL2R
showed a 6-fold reduction in EC50-value while replacing the serine at
position five in galanin (2–11) (Lundström et al., 2005). Land et al.
(1991) showed a similar 6-fold reduction in KD while comparing
galanin (1–16) to Ala6-galanin (1–16) (Land et al., 1991). In an in silico
study using the short galanin fragment, galanin 2–6, for docking to
GAL3R highlighted serine as important for forming a hydrogen bond to
Ala923.22 (Runesson et al., 2010). In concordancewith the experimental
result presented herein, where the importance of serine at position five
were highlighted by replacing serine with alanine resulted in a ligand
unable to bind to GAL3R even at high concentrations of 0.1 mM.

The C-terminus of galanin has been reported as an important se-
quence for binding to the GAL3R even though the GAL3R binding pocket
has been described as tighter and more narrow as compared to GAL1R
and GAL2R (Runesson et al., 2010). Our new GAL2R specific ligand,
Ala5-galanin (2–11), behaves as a full agonist for GAL2Rwhen examined
by 125I-galanin competitive binding studies as well as IP turnover stud-
ies (Table 3; Figs. 1 and 2). Ala5-galanin (2–11) has a lower affinity for
the receptor compared to other published GAL2R selective ligands, but
is the shortest peptide fragment that shows excellent receptor specific-
itywith nodetectable binding to neither GAL1R nor GAL3R even at doses
as high as 0.1 mM. In concordance with previously published specific
GAL2R agonists (M1145 (Runesson et al., 2009), M1153 (Saar et al.,
Table 4
Galanin receptor signaling studies using a real-time label-free technique based on imped-
ance - the xCELLigence system.
EC50 values obtained from the impedance based (RT-CES) xCELLigence system using
Bowes Melanoma Cells stably expressing GAL1R, CHO K1 cells stably expressing GAL2R,
and Flp-In T-REX 293 cells with tetracycline induced expression of GAL3R. Dose-response
curves were generated and calculated by area-under-curve between 0 and 3600 s after
peptide addition, and plotted against the ligand concentration. Data from at least three
representative experiments performed in duplicates, are presented as mean ± SEM.

Name

EC50 (nM)

GAL1R GAL2R GAL3R

Rat galanin 1–29 1.1 ± 0.11 8.26 ± 1.9 412 ± 38
Ala5-galanin (2–11) N100,000 191 ± 49 N100,000
2011) and M1160 (Saar et al., 2013b)) is the binding affinity for
GAL2R lower than for full-length galanin and galanin (1–16). Our new
GAL2R specific ligand, Ala5-galanin (2–11), could be used as a research
tool to delineate the galaninergic system and the role of GAL2R in sever-
al studies where galanin (2–11) has been used to exclude effects caused
by interactions with GAL3R.

Limitations for this ligand, among most peptides, are the fast degra-
dationwhen used in animal studies alongwith problematic administra-
tion routeswere i.c.v injections are often used since unmodified peptide
ligands are unable to pass the blood-brain barrier (BBB). Bulaj and co-
workers presented a new modification that increased the half-life of
galanin analogues fromminutes to several hours by adding several pos-
itive amino acids along with a fatty acid at the C-terminus (Bulaj et al.,
2008; Robertson et al., 2010). A study by Saar et al. (2013a) have
adopted themodifications from Bulaj and co-workers to produce stable
GAL2R selective ligands that could pass the BBBwhen administrated in-
travenously and exert anti-depressant affects in mice (Saar et al.,
2013a). Recent studies byWhite and colleagues presents a C-terminally
monodisperse oligoethyleneglycol (dPEG) modified GAL2R selective
galanin ligand, named NAX 409-9, that is stable and peripherally active
with restricted BBB penetration (Zhang et al., 2013;Metcalf et al., 2015).

Recently, a 14 amino acid long peptide named spexin was reported
as aGAL2/3R ligandwith a higher potency for GAL3R than galanin (for se-
quence see Table 1) (Kim et al., 2014). Human spexin is C-terminally
amidated like galanin from most species (human and macaque being
exceptions) and share Trp2, Thr3, Tyr9, Leu10 and Gly12 (Mirabeau et
al., 2007; Schmidt et al., 1991; Cunningham et al., 2002). Based on the
spexin sequence, Reyes-Alcaraz et al. (2016) reported several new
GAL2R specific ligands when replacing amino acids in the spexin se-
quence by the corresponding amino acid from galanin and highlighted
the importance of Gln5, Met7, Lys11 and Ala13 in spexin for GAL3R bind-
ing (Reyes-Alcaraz et al., 2016). The presented GAL2R specific ligands,
Asn5-spexin, Ala7-spexin, Phe11-spexin, Pro13-spexin and Asn5, Ala7,
Phe11, Pro13-spexin, all retained similar binding affinity to GAL2R as
spexin but no binding to neither GAL1R nor GAL3R could be detected
even at concentrations of 10 μM (Reyes-Alcaraz et al., 2016). Addition-
ally, the spexin based GAL2R specific ligands were chemically stabilized
by either addition of Fmoc, N-terminal PEGylation, C-terminal or N-ter-
minal substitution of D-amino acids which resulted in an up to four
times improved serum stability compared to spexin (Reyes-Alcaraz et
al., 2016).

The signaling cascade of GPCRs has been shown to involve both G
protein-dependent and -independent pathways. For GAL2R, it has
been shown that the Gα subtypes used upon activation are mainly
Gq/11, but Gi/o, and G12/13, are also involved (for review see Lang et al.,
2015; Wittau et al., 2000). Thus to get a summarized picture using clas-
sical signaling assays is very time consuming. Signaling through Gq

causes an increase in IP production whereas signaling through Gi/o is
classically accompanied by decreasing cAMP levels. The contribution
of G12/13 is more difficult to access using classical assays
(Wettschureck, 2005).

In the IP turnover study classically measuring Gq signaling, Ala5-
galanin (2–11) behaved as a full agonist compared to full-length rat
galanin on CHO K1 cells overexpressing GAL2R in agreement that Gq is
the main signaling pathway for GAL2R. By comparing the classical sig-
naling assays with the new real time label free techniques, full-length
galanin showed similar values to GAL1R and GAL2R, with 1.1 ±
0.11 nM and 8.26 ± 1.9 nM, respectively, while the EC50 towards
GAL3R was 412 ± 38 nM. The xCELLigence system has similar or im-
proved sensitivity when compared to traditional endpoint assays per-
formed in the same laboratory. The relative low EC50 for full-length
galanin at GAL3R could reflect intrinsic receptor properties or might be
related to the utilized cell clone. Runesson et al. (2009) reported an
EC50-value of 530 nM for galanin on GAL3R using a GTPγ-assay and
the receptor expression of GAL3R is similar to those of GAL1R and
GAL2R used in this study (Runesson et al., 2009).
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In this study, the lack of statistically relevant results by Ala5-galanin
(2–11) in the cAMP stimulation assay using cells expressing GAL2R at a
10-fold lower concentration compared to the CHO K1 cell line could be
due to Ala5-galanin (2–11) being a biased ligand i.e. a ligand that prefers
one signaling pathway over several others and the lower receptor ex-
pression might be difficult to evaluate using this assay. Signaling
through Gi/o will decrease cAMP levels and therefore forskolin was
added to stimulate the cells. However, full-length galanin caused a sig-
nificant increase in cAMP. Increased cAMP levels are classically related
to activation through Gs, but GAL2R has not been reported to signal
through this G-protein (Lang et al., 2015; Lang et al., 2007; Wittau et
al., 2000). However, Gu et al., (1994) reported that full-length galanin
added to dispersed smooth muscle cells from guinea pig stomach
caused increased levels of cAMP (Gu et al., 1994). Signaling through
Gq activates protein kinase C (PKC) and causes an increase in intracellu-
lar Ca2+ concentration via IP (Lang et al., 2015), both PKC and Ca2+

have been reported to stimulate adenylyl cyclase (AC) which in turn
leads to increased cAMP levels (Mons et al., 1998). This might explain
the small change in cAMP concentrations for full-length galanin since
both cAMP stimulating as well as cAMP decreasing routes could be
activated. If comparing classical signaling alongside the new label-free
real-time assays according to cell line used it is obvious that similar or
somewhat better sensitivity can be observed using label-free assays.
The signaling cascade can be further evaluated using the real-time
label-free techniques together with inhibitors, as shown by Bouvier
and colleagues that presented an additional signaling route for the β2-
adrenergic receptor (Stallaert et al., 2012). These techniques can also
be used to evaluate primary cell cultures, an interesting aspect since
GPCRs recently have been reported to exist as heteromers in vivo
(Borroto-Escuela et al., 2014; Fuxe et al., 2012; Narvaez et al., 2015).
But in this study, the real-time label-free techniques were used to eval-
uate their potential use as a screeningmethod for novel galanin receptor
ligands.
5. Conclusions

Ala5-galanin (2–11) was found to be the shortest GAL2R specific ag-
onist and the importance of serine at position five from a previous in
silico study of GAL3R was here experimentally verified. Two classical
second messenger assays for GPCR signaling was compared with two
label-free real-time techniques on both high receptor expressing cells
as well as a lower receptor expressing cell lines resulting in similar or
somewhat better sensitivity observed for the label-free techniques.
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