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ABSTRACT 

The algebraic Riccati equation studied in this paper is related to the subop- 
timal state feedback H, control problem. It is parametrized by the Ha-norm 
bound y we want to achieve. The objective of this paper is to study the behavior 
of the solution to the Riccati equation as a function of y. It turns out that a 
stabilizing solution exists for all but finitely many values of y larger than some a 
priori determined bound y- On the other hand, for values smaller than y_ there 
does not exist a stabilizing solution. The finite number of exception points can be 
characterized as switching points where eigenvalues of the stabilizing (symmetric) 
solution can switch from negative to positive with increasing y. After the final 
switching point the solution will be positive semidefinite. We obtain the following 
interpretation: The Riccati equation has a stabilizing solution with k negative 
eigenvalues if and only if there exists a static feedback such that the closed-loop 
transfer matrix has k unstable poles and an L, norm strictly less than y. 

1. INTRODUCTION 

The algebraic Riccati equation has a long history. The algebraic Riccati 
equation with a sign-definite quadratic term has played an important role 
in control theory. It was used in linear quadratic control, Kalman filtering, 
and the combination of the two: the linear quadratic Gaussian or Hz, 
control problem (see e.g. [l, 2, 7, 15, 251). The specific properties of this 
Riccati equation have also been studied extensively (see e.g. [21]). 

But also a more general form of the algebraic Riccati equation has ap- 
peared in the literature. In this case, the quadratic term is not necessarily 
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sign-definite. This more general Riccati equation first appeared in the 
game-theory literature (see e.g. [4, 16, 171). More recently, it turned out to 
play an important role in H, control theory (see e.g. [9, 20, 241). In the 
latter case the Riccati equation is parametrized by a parameter y. It turns 
out that there exists a state feedback which makes the closed-loop H, 
norm strictly less than y if and only if there exists a positive semidefinite, 
stabilizing solution to the algebraic Riccati equation. An iterative search 
then determines the minimal achievable H, norm, say y+. In the process 
of determining y+ one also checks for existence of stabilizing solutions for 
values of y smaller than y*. It turned out that the solution either does not 
exist or is indefinite. The objective of this paper is to study the behavior 
and existence of stabilizing solutions of the algebraic Riccati equation also 
for values of y smaller than y*. 

It turns out that a stabilizing solution exists for all but finitely many 
values of y larger than some a priori determined bound y-. On the other 
hand, for values smaller than y- there does not exist a stabilizing solution. 
The finite number of exception points can be characterized as switching 
points where eigenvalues of the stabilizing (symmetric) solution can switch 
from negative to positive with increasing y. After the final switching point 
the solution will be positive semidefinite. We obtain the following interpre- 
tation: the Riccati equation has a stabilizing solution with k negative eigen- 
values if and only if there exists a static feedback such that the closed-loop 
transfer matrix has k unstable poles and a closed-loop L, norm strictly 
less than y. Note that the L, norm is equal to the H, norm for stable 
systems; in other words, the L, norm is an extension of the H, norm to 
the larger class of possibly unstable transfer matrices. 

This is not a purely theoretical exercise. This study might help to find 
more efficient ways to perform the abovementioned y-iteration. In general, 
this Riccati equation plays such an important role in present-day controller 
design that it is important to study its properties. Some related results have 
been obtained in [ll, 141. 

We denote by Hk the set of transfer matrices with i unstable poles, i.e. 
such that the McMillan degree of the unstable part is equal to i. Moreover 
GH, denotes those transfer matrices in H, that are invertible and whose 
inverses are again in H,. 

2. PROBLEM FORMULATION 

This paper studies the following Riccati equation: 

O=ATP+PA+CTC 

-(PB + CTD)(DTD)-l(BTP + II%) + y-2PEETP. (2.1) 



H, ALGEBRAIC RICCATI EQUATION 155 

In this paper we only study stabilizing solutions of this equation, i.e., so- 
lutions for which the following matrix is asymptotically stable: 

A - B(DTD)-l(BTP + DTC) + Y-~EE~P. (2.2) 

One of the main reasons for studying this Riccati equation is related to 
the H, control problem. Consider the following system: 

.x=Ax+Bu+Ew, 
(2.3) 

z=Cx+Du. 

where x E Iw”. The following theorem can be found e.g. in [9, 20, 241: 

THEOREM 2.1. Consider the system (2.3), and let y > 0. Assume that 
the system (A, B, C, D) h as no invariant zeros on the imaginary axis and 
D is injective. Then the following statements are equivalent: 

(i) There exists a static feedback law u = Fx such that after applying 
this compensator to the system (2.3) the resulting closed-loop system 
is internally stable and the closed-loop transfer matrix GF has H, 
norm less than y, i.e., /IGF/J~ < y. 

(ii) There exists a positive semidefinite solution P of the Riccati equa- 
tion (2.1) such that the matrix in (2.2) is asymptotically stable. 

If P satisfies the conditions in part (ii), then a controller satisfying the 
conditions in part (i) is given by 

F := -(DTD)-‘(DTC + BTP). (2.4) 

For later use, we define the infimal achievable H, norm via a stabilizing 
state feedback by y*. It is our objective to extend the above result. We 
will show that for some y < y* there still exists a stabilizing solution of 
the algebraic Riccati equation, but the solution is not positive semidef- 
inite and the number of negative eigenvalues determines the number of 
unstable poles we have to admit to guarantee an L, performance bound 
of y. More precisely stated, the main result of this paper is the following 
theorem: 

THEOREM 2.2. Consider the system (2.3), and let y > 0. Assume that 
the system (A, B, C, D) has no invariant zeros on the imaginary axis and 
D is injective. Then for all but finitely many y the following statements 
are equivalent: 
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(i) There exists a static feedback law u = Fx such that after applying 
this compensator to the system (2.3), the resulting closed-loop sys- 
tem has at most i unstable eigenvalues and the closed-loop transfer 
matrix GF has L, norm less than y, i.e., llG~l\~ < y. Moreover, 
there does not exist a static feedback law u = Fx such that after 
applying this compensator to the system (2.3) the resulting closed- 
loop system has less than i unstable eigenvalues while the closed-loop 
transfer matrix GF has L, norm less than y. 

(ii) There exists a solution P of the Riccati equation (2.1), such that the 
matrix in (2.2), is asymptotically stable. Moreover, P has i negative 
eigenvalues. 

If P satisfies the conditions in part (ii), then a controller satisfying the 
conditions in part (i) is given by (2.4). 

REMARK. Note that we do not suggest that people should start de- 
signing controllers which do not stabilize the system. The importance of 
the above theorem lies in the fact that it tells us a great deal about the 
algebraic Riccati equation and the behavior of its stabilizing solution as 
a function of y. For large y the equation has a positive semidefinite sta- 
bilizing solution. Then after a switching point, y* as defined above, the 
Riccati equation may still have a solution, but it will have at least one neg- 
ative eigenvalue. These switching points are the only values of y where 
the number of positive eigenvalues of the stabilizing solution can change. 
The finitely many values of y for which the above theorem might not hold 
are precisely these switching points. Hence we also know a priori that there 
are no more than n values of y for which the theorem might not be true. 

We will show via an example that these switching points do indeed occur 
and that the equivalence between (i) and (ii) in the above theorem might 
not hold true for such a switching point. 

EXAMPLE 2.3. Consider the following system: 

i=.x+u+w, 
z = u. 

It is easy to check that the Riccati equation (2.1) has two solutions for all 
y # 1: PI = 0 and P2 = 2y2/(y2 - 1). P 1 is not stabilizing, while P2 yields 
a stable matrix in (2.2) for P = P2. For y = 1 there is only one solution: 
P = 0, which is not stabilizing. 

For all y > 1, there exists a positive definite stabilizing solution to the 
algebraic Riccati equation, and the feedback (2.4) with P = P2 satisfies 
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the H,-norm bound of part (i). On the other hand, for y < 1 there exists 
a negative definite stabilizing solution, and (2.4) with P = Pz yields a 
closed-loop system with one unstable eigenvalue and an L, norm less than 
y; in other words, part (i) is satisfied for this feedback with i = 1. 

But for y = 1 the implication (i) =S (ii) does not hold. It is easy to see 
that 21 = 0 satisfies part (i) for y = 1 and i = 1 but part (ii) is not satisfied: 
there does not exist a stabilizing solution. 

Note that these switching points are not always present. For instance, 
the system 

i=---z+u,+w, 

yields a stabilizing solution 0 for all y, and no switching occurs. 

3. THE BOUNDED REAL LEMMA 

In our derivation of Theorem 2.2, the bounded real lemma will play a 
role. But this is a different version than the classical result (see e.g. [3, 251). 
Instead of a test to check whether a stable transfer matrix has N, norm 
strictly less than y, we derive a test whether an arbitrary (not necessarily 
stable) rational matrix has L, norm strictly less than y. Reference [25] 
already basically contains this result, although our assumptions are slightly 
weaker. 

THEOREM 3.1. Let a stabilizable and detectable realization [A, B, C, D] 
of th,e transfer matrix G be given. Then the following statements are equiu- 
alent: 

(i) We have ]]G]loo < y. 
(ii) We have DTD < y21. Moreover, there exists a solution P of the 

algebraic Riccati equation 

O=ATP+PA+CTC 

+ (PB + CTD)(y21 - DTD)-‘(BTP + DTC) (3.1) 

such that the following matrix is asymptotically stable: 

A + B(y’I - DTD)-l(BTP + DTC). 

(iii) We have DDT < 7’1. Moreover, there exists a solution Q of the 
algebraic Riccati equation 

O=AQ+QAT+BBT 

+ (QCT + BDT)(y21 - DDT)-‘(CQ + DBT) (3.2) 
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such that the following matrix is asymptotically stable. 

A + (QCT + BDT)(y21 - DDT)-%. 

If P satisfies condition (ii) or Q satisfies condition (iii), then it has the same 
number of negative eigenvalues as the number of unstable eigenvaluesofA. 

Proof. Conditions (ii) and (iii) are clearly dual to each other. Hence it 
suffices to prove equality between conditions (i) and (iii). 

Due to detectability, there exists a solution Y of 

AY + YAT - YCTCY = 0 

such that A - YCTC is asymptotically stable. Define a transfer matrix H 
with realization 

[A - YC’C, B - YCTD, C, D]. 

It is then easy to check that G”G = H-H, where G”(s) = GT(-s), and it 
is immediate that G and H have the same L, norm. On the other hand, 
since H is stable, we know from the classical small-gain theorem that H 
has H, norm less than y if and only if DDT < y and if there exists a 
solution 2 of 

0 = [A - YCTC]Z + Z[A - YCTCIT + [B - YCTD][B - YCTDIT 

+ (XT + [B - YCTD]DT)(y21 - DDT)-‘(CZ + D[B - YCTDIT) 

such that the following matrix is stable: 

[A - YCTC] + (XT + [B - YCrD]DT)(y21 - DDT)-%. 

The proof is completed by noting via some algebraic manipulations that 
Z satisfies the above equations if and only if P := Z - y2Y satisfies the 
conditions of Theorem 3.1. 

To prove the part regarding the number of unstable eigenvalues of P 
and Q, we view (3.1) and (3.2) as Lyapunov equations, and since (A, B) is 
stabilizable and (C, A) is detectable, we obtain the result directly from [6]. 

w 

4. RELATION OF H, CONTROL PROBLEMS TO 
J-SPECTRAL FACTORIZATION 

In this section we will show the relation between the existence of suitable 
H, control problems and J-spectral factorization. This section is strongly 
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based on the paper [13]. We basically study how the results change if we 
allow unstable closed-loop poles. We study the classical one- and two-block 
problems and relate the existence of a controller with at most i unstable 
poles to the existence of a J-spectral factorization with a specific additional 
feature. In the next section we relate J-spectral factorization to Riccati 
equations according to a theorem of [5, 131. Finally, in the section after, 
we use our results for the two-block problem to prove our Theorem 2.2. 

4.1. The Nehari Problem 

Let R E L, be given with Hankel singular values $ 2 . . . 2 azfl > 
. . . 2 a:. Then we have the following theorem: 

THEOREM 4.1. The following statements are equivalent: 

(9 
(ii) 

(iii) 

There exists L E Hk such that IIR + L/loo < y. Moreover, there 
does not exist L E H&l such that IIR + Lllm < y. 
There exists W E !2’H, where WI1 is invertible with WI;’ E H& 
satisfying 

where 

G-JG = W-JW, (4.1) 

and all block decompositions are of compatible sizes w.r. t. (4.1). 

Proof. The equivalence of (i) and (ii) has been shown in [12]. 
(i) + (iii): We split R = R + + R_ where R+ is stable while R- is strictly 

proper and antistable and R_ has minimal realization [A-, B_, C-, 01. Let 
P and Q be the controllability and observability gramians of R-: 

ATQ+QA+CTC=O, 

AP+PAT+BBT=o. 

Since y # a; (j = 1,. . . , n) we have that N := (I 
defined. Define X by 

-AT,(C? QB-),Y2 

- rP2EQP1 is well 
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Then it can be easily checked that GYJG- = X”JX and X E GH,, 
where 

G_ := 

Moreover the (1,1) block of X, denoted by Xii, is invertible, and X,’ has 
realization 

[ - A: + y-‘C:C_ PN, CT, y-‘C- PN, I]. 

We have 

A^(P-’ - r-‘Q) + (P-’ - r-“Q)xT + (P-lB_BTP-’ + y-‘CTC_) = 0, 

where A = -AT + r-‘CTC_ PN. Moreover, P-l - r-‘Q is invertible and 
has precisely i negative eigenvalues, and finally, (C-, A-) is observable. 
Then it follows from [6] that A has precisely i eigenvalues in the closed 
right half plane and hence X,i E H&,. 

The proof of the implication is completed by noting that 

w := x 

satisfies all the requirements of the above theorem. 
(iii) * (ii): S u p pose a W exists satisfying the conditions of part (iii). 

Define V = W-‘, and partition V conformably with W. Define L = 
V12V22’. It is easy to check that L E H&. Moreover, 

(R + L)“(R + L) - y2I = -72(v22v;)-l < 0. 

This implies part (ii). w 

4.2. The Two-Block Problem 

THEOREM 4.2. Let S,T E H, be given, where T has full row rank on 
the imaginary axis. For all but finitely many y, the following statements 
are equivalent: 

(i) There exists L E H& such that 

IIT + SLII, < Y. 

Moreover, there does not exist L E H&’ satisfying (4.2). 

(4.2) 
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(ii) There exists W E GH, where Wll is invertible with W1yl E H& 
satisfying 

G-JG = WNJW, (4.3) 

where 

and all block decompositions are of compatible sizes w.r.t. (4.3). 

Proof. Factorize T = TiTo where TO E EH, and T, is inner. Choose 
T_L E H, such that [Ti Tl] is square and inner. Then we have (4.2) if and 
only if 

(RI + T,L)“(Rl + T,L) < y21 - R;R2, 

where RI = T,“S and R2 = T,“S. Therefore there exists an L E H&, such 
that (4.2) is satisfied if and only if there exists N E GH, such that 

N-N = y21 - R,“R2 (4.4) 

and 

IIRlN-’ + & < 1 (4.5) 

(where 2 = T,LN-l). If 1 # c$~(R~N-‘) (j = 1,. . . ,n), we can apply 
Theorem 4.1. We get that (4.5) is satisfied for some 2 E Hk if and only if 
there exist X such that 

(I “‘;-‘)‘(; ri) (: “‘y-l) =X-(; 8)X (4.6) 

with X E GH, with Xii invertible and X;i’ E H&. Finally, X satisfies 
the above properties if and only if 

w:=x (; ?_YN) 
satisfies (4.3) with W E EH, with Wl1 invertible and WI;’ E Hk. 

The proof is complete if we show that the existence of W satisfying the 
conditions of part (ii) implies the existence of N satisfying (4.4). The latter 
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follows because 

Because W has full rank on the imaginary axis, (4.3) implies that G”JG 
evaluated on the imaginary axis has the same inertia as J. According to 
(4.7) this requires that 

R,“R2 - y21 < 0, 

which in turn implies the existence of the required N. 
We see that y should not be such that RI N-l has a Hankel singular value 

equal to 1. It is easy to check that the Hankel singular values of RIN-1 
are decreasing functions of y. Hence the number of exception points is no 
more than the McMillan degree of RlN-l. ??

5. J-SPECTRAL FACTORIZATION 

In this section we would like to show the relation between the existence 
of a J-spectral factorization and the exist,ence of a solution to the algebraic 
Riccati equation. Also, since the factorization is not unique, we show 
that the number of unstable poles of the inverse of the (1,1) block of the 
J-spectral factor is independent of the specific choice for the J-spectral 
factor. This is needed because that number played an important role in 
the previous section. 

We have: 

THEOREM 5.1. Let S and T have realizations [A, B1, C, D] and [A, B2, 
C,O] respectively with A stable. Then there exists W E GH, such that 
(4.3) is satisfied if and only if there exists a solution P of the algebraic 
Riccati equation 

0 = ATP + PA + CTC - (PB1 + CTD)(DTD)-’ 

x (B;rP + DTC) + y-2PB2BrP (5.1) 

such that the following matrix is asymptotically stable: 

A - B1(DTD)-l(B;P + DTC) + Y-~B~BFP. (5.2) 

Proof. This is a direct result of [5, 131. ??

Next, we focus on the question whether the existence of one J-spectral 
vector W of G”JG for which WI1 is invertible with WI;’ E H& implies 



H, ALGEBRAIC RICCATI EQUATION 163 

that every spectral factor of G”JG has this property. We first need a 
preliminary lemma: 

LEMMA 5.2. Let H E L, be a given rational matrix with 11 Hllco < 1. 
Then. (I + H)-l exists and has the same number of unstable poles as H. 

Proof. Let [A, B, C, D] b e a minimal realization of H. Then (I + H)-’ 
has a realization 

[A - B(I + II-%‘, B(I + II-‘, -C(I + 0)-l, (I + 0)-l]. 

Since H has norm less than 1, we can apply Theorem 3.1. In other words, 
there exists a matrix Q of the algebraic Riccati equation (3.2). Then, after 
some algebraic manipulations, we get 

[A - B(I + D)-%]Q + Q[A - B(I + D)-‘CIT + S = 0, (5.3) 

where 

S = [QC’ + B(I+ D)-‘(I + DT)](I - DDT)-l 

x [CQ + (I + D)(I + DT)-lBT] 2 0. 

We know that (A, B) is controllable and that A has no imaginary-axis 
eigenvalues. Hence, if we view (3.2) as a Lyapunov equation, we get that 
the number of unstable eigenvalues of A is equal to the number of negative 
eigenvalues of Q. Moreover, Q is not singular. 

It is immediate that A - B(I + D)-lC has no eigenvalues on the imag- 
inary axis. Hence, using some classical results for the Lyapunov equa- 
tion (see e.g. [19]), we find that the Lyapunov equation (5.3) implies that 
A - B(1 + D)-lC has as many unstable poles as A. ??

The above is for SISO systems a direct consequence of the classical 
theorem by Rouchi: (see [22]). Tl . us result allows us to derive the following 
theorem establishing that the number of unstable zeros of the (1, 1) block 
of a J-spectral factorization is independent of the specific factorization 
chosen. 

THEOREM 5.3. Let G be given as in Theorem 4.2. Let V, W E GH, be 
two spectral factors of G”JG, i.e. 

V”JV=G”JG=W-JW. 

Then VI<’ and WIT’ both exist, and they have the same number of unstable 
poles. 
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Proof. Note that (4.3) together with 5’ full row rank implies that 

Wf;Wii - +V,-;Wsi = s-s > 0. 

Hence Wii is invertible and ]]W2iW1~‘]]w < y-l. Also note that the num- 
ber of unstable zeros of Wsi Wi;’ is equal to the number of unstable poles 
of W$, i.e., no pole-zero cancellations can occur. 

It is easy to show (see [13]) that J-spectral factors are unique up to a 
constant J-unitary matrix. In other words, there exists a constant matrix 
A such that V = AW where 

A-JA = J. 

This condition for A implies 

and therefore AlI is invertible and (IA~fA1211 < y. We find IIAlzWzlWl;’ 
AI;lII, < 1 and 

V,-1’ = (AiiWii + A~zWX)-~ 
-1 

= (I 0) 
A11Wll + A12W21 0 

Ck!I I 

for any value for (Y # 0. Therefore the number of unstable poles of VIT1 is 
equal to the number of unstable poles of 

(Al;ztl 3 (4lWl+y412~21 0) -’ , 
(54 

since AizW2i is stable and cr # 0. Define H by 

H .= 

. ( AdW’,-,‘A~; 
Cd 

and choose cx small enough that ]lHlloo < 1. Then the matrix in (5.4) is 
equal to 

H(I + H)-’ = I - (I + H)-’ 

Therefore Lemma 5.2 guarantees that VI;’ has as many unstable eigen- 
values as H. Moreover the number of unstable eigenvalues of H is clearly 
equal to the number of eigenvalues of WI;‘. ??
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Using the above, we can extend Theorem 5.1 to include the number of 
unstable poles of the inverse of the (1,1) block. 

THEOREM 5.4. Let T and S have realizations [A, B1, C, D] and [A, Ba, 
C, 01, respectively, with A stable. Then there exists W E GH, where WI, 
is invertible with WI<’ E H& such that (4.3) zs satisfied if and only if there 
exists a solution P of the algebraic Riccati equation (5.1) such that the 
matrix in (5.2) is asymptotically stable and P has i negative eigenvalues. 

Proof. It is easily checked that if a matrix P satisfying the conditions 
of Theorem 5.1 exists, then one particular J-spectral factor W E GH, is 
given by 

W = L-4 (Bi &),CwrDwlr 
where 

cw ,= 

. ( 

(DTD)-l12(DTC + B;rP) 

-T-~B,TP 

Dw := ((DTf)1’2 ;), 

Therefore we find the following realization for Wiy’: 

W,’ := [Aw, -B1(DTD) -1/2, (DTD)-‘(DTC + B;rP), (DTD)-1’2], 

where Aw := A - B1 (DTD)-l(DTC + BTP). The algebraic Riccati equa- 
tion for P can be rewritten as 

0 = A;P + PAW + C;,lCw,l + Y-~PB~B;P, (5.5) 

where Cw,i := C - D(DTD)-l(DTC + BFP). Treating this equation as 
a Lyapunov equation and noting that (A W, PB2) is stabilizable, [6] tells 
us that the number of negative eigenvalues of P is equal to the number of 
unstable eigenvalues of Aw. In other words, the number of unstable poles 

of Wll -’ is equal to the number of negative eigenvalues of P. Because of 
Theorem 5.3, it is sufficient to prove the result for one particular J-spectral 
factorization, and hence the proof is complete. ??

6. YOULA PARAMETRIZATION 

The Youla parametrization is an often used tool in modern control theory 
(see e.g. [8, 10, 261). H owever, since we allow for a fixed number of unstable 
poles, we need to extend this theory. 
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First of all, we need to define the unstable closed-loop poles of the closed- 
loop system. Suppose we have the following interconnection: 

(6.1) 

The closed-loop transfer matrix from w to z is equal to 

T(G, K) := 
-G(I - KG)-1 G(I - KG)-lK 

-K(I - GK)-lG (I - KG)-lK 

Our standing assumption in this paper is that G is stabilizable and de- 
tectable. Then we define the unstable closed-loop poles as the unstable 
poles of T(G,K), and the number of unstable poles as the McMillan de- 
gree of the unstable part of T(G, K). 

We obtain left and right coprime factorizations over H, of K and G: 

G =;I-‘fi = NM-l. 
(6.2) 

Then it is easy to show that a right coprimc factorization of T(G, K) is 
given by 

T(G,K)= fN ;) (:’ ;)-‘. 
Therefore the number of unsta.ble poles of the closed-loop system is equal 
to the number of unstable zeros of 

We can now derive the following theorem: 

THEOREM 6.1. The set of all proper controllers K which, when ap- 
plied to the system G, yield a closed-loop system with i unstable poles is 
parametrized by 

K = (Y - ML)(X - NL)-’ = (j;_ - Li)-l(Y - Lii), LEH&,, 
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where N, M,M, N, X, Y,X, Y form a doubly coprime factorization of G, 
i.e., (6.2) is satisfied and 

(” YT)(; ‘)=I. 

7. PROOF OF THEOREM 2.2 

Using the classical technique from [lo], we transform the state feedback 
H, control problem into a model-matching problem. 

The following result is a direct consequence of our extended Youla para- 
metrization as given in Theorem 6.1 and an explicit expression for the 
doubly coprime factorization which can be found in e.g. [lo, 181: 

THEOREM 7.1. A (possibly dynamic) feedback u = Kx yields, when 
applied to (2.3), a closed-loop system with i unstable poles if and only if 
there exists a L E H& such that 

K = (Y - ML)(X - NL)-‘, 

where M, N, Y, X are defined by: 

M := [A+BF,B,F,I], 

N:= [A+BF,B,I,O], 

Y := [A+BF,-H,F,O], 

X := [A + BF, -H, I, I], 

and F and H are such that A + BF and A + H are asymptotically stable. 
Moreover, the resulting closed-loop transfer matrix is equal to 

Gcl := T1 - T2LT3, 

where 

A+ BF -BF E 
T1 = 

0 A+H JO ’ E 
,(C+DF -DF),O , 

I 

Tz = [A+BF,B,C+DF,D], 

T3 = [A + H, E, I, 01. 

It turns out that the parametrization as obtained from [lo] can be simplified 
by replacing L with L + F. Clearly L + F E H,& if and only if L E H&. 
In this way we obtain the following corollary: 
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COROLLARY 7.2. A (possibly dynamic) feedback u = Kx yields, when 
applied to (2.3), a closed-loop system with i unstable poles if and only if 
there exists a 2 E H& such that 

K = (p - MZ)(jZ - NE)+ 

where M, N, Y, X are defined by 

M := [A + BF, B, F, I], 

N := [A+BF,B,I,O], 

p:= [A+BF,-H+BF,F,F], 

2 := [A + BF, -H + BF, I, I]. 

Moreover, the resulting closed-loop transfer matrix is equal to 

where 

51 = [A + BF, E, C + DF, 01, 

Tz = [A + BF, B, C + DF, D], 

T3 = [A+ H,E,I,O]. 

The implication (i) + (“) n in Theorem 2.2 is now a direct consequence of 
the above corollary, Theorems 5.4 and 4.2. After all, the existence of a 
suitable feedback implies according to the above corollary the existence 
of a mat@ 2 E-H& such that II?r - T2zTslloo < y. Hence ?; := ET3 
satisfies /ITI - TzLII, < y, and according to Theorem 4.2 this implies the 
existence of a certain J-spectral factorization for all but finitely many y. By 
Theorem 5.4, this J-spectral factorization exists if and only if there exists a 
solution to an algebraic Riccati equation. Finally, it is easily checked that 
the solution of this Riccati equation satisfies all the requirements of part 
(ii) of Theorem 2.2. 

The implication (ii) =+ (i) in Theorem 2.2 is almost immediate. The 
feedback given by (2.4) results in a closed-loop system [Aw, E, Cw,O] 
where 

Aw := A - B(DTD)-l(DTC + BTP), 

Cw := C - D(DTD)-l(DTC + BTP). 
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It is easy to check that the algebraic Riccati equation for P can be rewrit- 
ten as 

0 = A&P + PAW + C$Cw + y2PEETP. (7.1) 

Moreover, 
Aw + yy2EETP 

is asymptotically stable. Given (7.1), 1 c assical inertia theory then tells 
us that the number of unstable eigenvalues of Aw equals the number of 
negative eigenvalues of P. It is then a direct consequence of Theorem 3.1 
that this feedback satisfies the conditions of part (i) of Theorem 2.2. 

8. EXISTENCE OF A STABILIZING SOLUTION TO 
THE RICCATI EQUATION 

We define y- as the unique value for y such that for all but finitely many 
y larger than y- there exists a stabilizing solution to the algebraic Riccati 
equation. Moreover, the stabilizing solution does not exist for y smaller 
than y-. According to Theorem 2.2, y- is the minimal achievable L, norm 
of the closed-loop system without any stability requirements. According to 
Corollary 7.2, we have 

Since T3 is minimum-phase and ?r is strictly proper, it is easy to see that 

where ?z := T2(DTD)- I/2 We still have the freedom to pick F. We choose 
F such that ?2 becomes co-inner. In other words, F = -(DTD)-‘(BTR+ 
DTC) where R is a stabilizing solution of 

0 = ATR + RA + CTC - (RB + CTD)(DTD)-‘(BTR + DTC) 

Then we can obtain the following result: 

where 
?2,1 := [A + BF, -R+CTDI, C + DF, Dl] 

with Dl such that [D Dl] is square and unitary and R+ denotes the 
Moore-Penrose inverse of R. The transfer matrix T2.l is constructed such 
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that [?s ?Z,,J] is square and inner. Therefore 

and (8.1) follows immediately. We obtain the following realization for 
?$ ?i : 

[-(A + BF)T, RE, DTCR+, 01. (8.2) 

In conclusion, the minimal achievable L, norm is equal to the L, 
norm of T^- ,,,?I whose realization is given by (8.2). Note that the Moore- 
Penrose inverse is only needed if the realization for ?i and ?z is nonminimal 
(otherwise R is invertible). A numerically more reliable way to determine 
y- is therefore based on applying model reduction to pi and ?.. 

Finally, we would like to note that in [23] a. similar problem has been 
studied where the smallest value of y for which a stabilizing solution exists, 
is characterized. 

9. CONCLUSION 

In this paper we have established a very general result regarding the ex- 
istence of stabilizing solutions to the algebraic Riccati equation. The sta- 
bilizing solution exists for all but finitely many y larger than y_. The 
stabilizing solution does not exist for y smaller than y_. Moreover, we re- 
lated the number of negative eigenvalues of the stabilizing solution to the 
number of unstable poles needed to achieve the required L, performance. 

Using the techniques of this paper, one can also derive conditions for 
the L, control problem with measurement feedback, where we look for 
dynamic controllers which yield no more than i unstable closed-loop poles 
and achieve an a priori given bound on the L, norm of the closed-loop. 
However, this seems to be mainly of theoretical interest. 

The author would lake to thank Professor Ha&us for numerous discussions 
related to this paper. The research of Dr. Stoorvogel has been made possible by a 
fellowship of the Royal Netherlands Academy of Sciences and Arts. 
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