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SUMMARY

Structural genomics initiatives provide ample struc-
tures of ‘‘hypothetical proteins’’ (i.e., proteins of un-
known function) at an ever increasing rate. However,
without function annotation, this structural goldmine
is of little use to biologists who are interested in par-
ticular molecular systems. To this end, we used (an
improved version of) the PatchFinder algorithm for
the detection of functional regions on the protein sur-
face, which could mediate its interactions with, e.g.,
substrates, ligands, and other proteins. Examination,
using a data set of annotated proteins, showed
that PatchFinder outperforms similar methods. We
collected 757 structures of hypothetical proteins
and their predicted functional regions in the N-Func
database. Inspection of several of these regions dem-
onstrated that they are useful for function prediction.
For example, we suggested an interprotein interface
and a putative nucleotide-binding site. A web-server
implementation of PatchFinder and the N-Func data-
base are available at http://patchfinder.tau.ac.il/.

INTRODUCTION

There is a growing need for the automatic annotation of proteins

of unknown function, termed ‘‘hypothetical proteins’’ (Lubec

et al., 2005), the structures of which are known (Friedberg,

2006). The structures of many hypothetical proteins are solved

in pipelines at structural- genomics centers, which usually lack

the resources to engage in thorough functional characterization

of each of the solved structures. Moreover, some of the proteins,

which are considered to be well annotated, may have additional

functions beyond their listed records (e.g., moonlighting protein

functions or promiscuous enzymatic capabilities [Copley, 2003]).

Previous attempts to collect and annotate hypothetical pro-

teins have resulted for example, in the PDB-UF database (von

Grotthuss et al., 2006), the ProKnow server (Pal and Eisenberg,

2005), and the ProFunc server (Laskowski et al., 2005a). The

PDB-UF database is a collection of all of the structural genomics

proteins whose functions are recorded in the Protein Data Bank

(PDB) file as ‘‘unknown.’’ Some of the enzymes in the database

have been assigned Enzyme Commission (EC) numbers (http://

www.chem.qmul.ac.uk/iubmb/enzyme/) on the basis of their
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global structural similarity to enzymes of known function. The

ProKnow server has integrated a database that includes function

predictions for all of the structural genomics proteins. Recently,

Watson et al. (2007) established a new database by applying the

ProFunc (Laskowski et al., 2005a) server for automated function

annotation on the structures that emerged from the Midwest

Center for Structural Genomics (MCSG). Nevertheless, as far

as we know, there is still no comprehensive database of hypo-

thetical proteins that incorporates data from external databases,

thereby enabling users to determine whether functional annota-

tions are indeed missing. In addition, all of the structures incor-

porated into existing databases were solved in the context of

structural genomics projects, whereas structures of hypothetical

proteins can result from other sources as well. In an attempt

to overcome these limitations, we constructed the N-Func

database, presented below.

Typically, the function(s) of a newly discovered protein may

be inferred from a sequence homolog (e.g., by using BLAST)

(Altschul et al., 1997), from structurally related proteins (e.g.,

using structural alignment tools [Wolfson et al., 2005]), or from

sequence motifs (Lee et al., 2007). Alternatively, function may

be inferred on the basis of properties that are associated with

a specific functional class of proteins, such as, the enrichment

in basic residues and the presence of specific structural motifs

that characterize DNA-binding proteins (Lubec et al., 2005).

When these approaches fail, focusing on the functionally impor-

tant region(s) of the protein may help to characterize the protein’s

functionality (Wei and Altman, 1998). Hence, identification of

functional regions by various methods (Aloy et al., 2001; Innis

et al., 2004; Landgraf et al., 2001; Madabushi et al., 2002; Nimrod

et al., 2005; Ondrechen et al., 2001; Pazos and Sternberg, 2004;

Pettit et al., 2007) could be the first step toward function annota-

tion. The next step would be, for example, to match the predicted

functional region with a known functional site in another protein,

by using, e.g., SiteEngine (Shulman-Peleg et al., 2004) and other

analytical tools. Some examples are provided below.

In addition to function annotation, the identification of function-

ally important regions in proteins is useful for mutation analysis

and drug discovery. Progress in computational methods for

drug design along with the activity of structural genomics cen-

ters, such as the Protein Structure Initiative (PSI), have greatly

motivated the development of automated methods for that

task. Sequence and structure conservation (Panchenko et al.,

2004; Pugalenthi et al., 2007; Stern et al., 2007; Via et al., 2007),

physicochemical characteristics (Ko et al., 2005), surface curva-

ture (Liang et al., 1998), and other properties (Amitai et al., 2004;
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Kufareva et al., 2007) are commonly used to this end. Addition-

ally, some methods specialize in the identification of specific

classes of functional regions, such as enzyme active sites (Gut-

teridge et al., 2003; Tong et al., 2008), DNA-binding residues

(Kuznetsov et al., 2006; Tsuchiya et al., 2004), and protein-protein

interfaces (Elcock and McCammon, 2001; Negi et al., 2007; Ofran

and Rost, 2007).

Of the properties used for the identification of functional

regions, evolutionary conservation is perhaps the most widely

employed, both alone and in combination with other properties.

In functionally important positions, the evolutionary pressure

typically retains rather limited variability within protein families.

This observation is well known and has been utilized in various

methods, such as the Evolutionary Trace (ET) (Lichtarge et al.,

1996; Mihalek et al., 2004) and the Rate4Site algorithm (Mayrose

et al., 2004; Pupko et al., 2002), implemented in ConSurf (Gold-

enberg et al., 2009; Landau et al., 2005).

Functionally important regions are often visible when evolu-

tionary data are mapped on a protein’s three-dimensional (3D)

structure (Landau et al., 2005; Morgan et al., 2006). Usually, it is

possible to detect clusters of conserved residues, corresponding

to the proteins’ functional regions (Landgraf et al., 2001; Pan-

chenko et al., 2004). Several algorithms have been developed

on the basis of this property (see, e.g., Aloy et al., 2001; Dean

and Golding, 2000; Innis et al., 2004; Madabushi et al., 2002).

Over the past years, we have been developing the PatchFinder

algorithm for the identification of functional regions on the

protein’s surface (Nimrod et al., 2005). Generally speaking,

PatchFinder searches for the largest and most highly conserved

clusters of surface residues in the protein, which presumably rep-

resent the catalytic and/or binding sites. Here, we present new

methodological improvements introduced into PatchFinder.

The new version of PatchFinder is available as a webserver

(http://patchfinder.tau.ac.il). We showed that the new version

of PatchFinder outperforms its previous version and related

methods by using a test set of 110 protein structures with resi-

dues annotated as functional sites (del Sol Mesa et al., 2003). In

order to detect the functional regions in hypothetical proteins of

known structure by using the PatchFinder algorithm, we estab-

lished the N-Func database presented here. N-Func is a collec-

tion of 757 proteins of known 3D structure but unknown function

whose close homologs also lack function annotation. The

accompanying website provides easy access to the proteins’

functional sites as predicted by PatchFinder.

RESULTS

We have developed PatchFinder, a Maximum Likelihood (ML)

algorithm for the identification of functional regions on a protein’s

surface (Nimrod et al., 2005). The algorithm uses the PDB file of

the protein’s 3D structure and a Multiple Sequence Alignment

(MSA) of the protein and its sequence homologs. It comprises

the following three steps: (1) assignment of an evolutionary

conservation score to each amino acid position based on its evo-

lutionary rate among the homologous proteins (Mayrose et al.,

2004); (2) extraction of the protein’s solvent-accessible residues,

with the aim of excluding residues that are conserved due to

structural constraints and are usually buried in the protein core;

and (3) identification of the most significant cluster of conserved
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residues on the protein’s surface, based on the hypothesis that

this ML patch is the protein’s main functional region. Once the

ML patch is found, the search procedure is continued for

nonoverlapping, secondary functional regions, which present

a weaker conservation signal.

In the new version of PatchFinder, described in detail in

Experimental Procedures, the Delaunay triangulation (Barber

et al., 1996; de Berg et al., 2000) was used to describe the neigh-

borhood and accessibility to solvent of each residue. These prop-

erties were previously calculated via a simple distance measure

and the residue’s accessible surface area, respectively. In addi-

tion, here we computed the evolutionary conservation by using

the Bayesian version of Rate4Site (Mayrose et al., 2004). This ver-

sion is evidently superior to the ML version (Pupko et al., 2002),

especially when the number of available homologous sequences

is small.

Detection of Functional Regions: Performance Analysis
We examined PatchFinder’s performance in comparison with the

previous version and other methods by using a test set of 110 pro-

tein structures with residues annotated as functional sites (del Sol

Mesa et al., 2003). The test set is referred to as dSM, from the

name of the first author of reference (del Sol Mesa et al., 2003).

Each protein in the dSM data set included documentation of

functionally important amino acids, referred to as ‘‘SITE’’ resi-

dues within the PDB file. PatchFinder identified at least one of

the SITE residues in 95 out of 110 proteins in the test set. In 66

of the cases, at least half of the SITE residues were found. We

also analyzed the predictions of PatchFinder by using a D-value

measure, which is based on the distance between the predicted

patch and the documented functional site (see Supplemental

Data available online). For 77 of the 110 proteins in the data

set, the ML patches of the PatchFinder algorithm were assigned

D-values below 0.103, which we considered as successful

prediction (see Supplemental Data).

First, we conducted a comparison that showed that Patch-

Finder is superior to several sequence-based methods (del Sol

Mesa et al., 2003). The data are presented in Supplemental Data.

Next, we compared the predictions of PatchFinder with its

ancestral version (Nimrod et al., 2005) and three additional

applications for the prediction of functionally important sites in

proteins of known 3D structure, namely, siteFiNDERj3D (Innis,

2007), the ET Viewer (Morgan et al., 2006), and HotPatch (Pettit

et al., 2007). In the following paragraphs, we briefly describe

each of these methods.

siteFiNDERj3D (Innis, 2007) is based on the conserved func-

tional group (CFG) analysis that was developed by Innis et al.

(2004). Briefly, the CFG analysis identifies, within the query

protein, positions with evidence of evolutionary pressure to re-

tain specific functional/chemical groups. Potential functional

sites are then identified as spherical regions enriched with these

predicted functional positions.

The ET Viewer is a server for an automated evolutionary analy-

sis of proteins of known 3D structure (Morgan et al., 2006). As part

of this analysis, the evolutionary importance of each residue is

evaluated by using a real-value variant of the ET method (Mihalek

et al., 2004). The ET Viewer provides cluster analysis of residues

at various cutoffs of evolutionary importance rank. These clusters

are of potential functional or structural significance (Madabushi
Ltd All rights reserved
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Table 1. PatchFinder Performance in Comparison with Other Methods

The Fraction of SITE Residues

Detected in the Patch R 0.5a

At Least One SITE Residue

Detected in the Patchb

Average Patch Size ± Standard

Deviationc

PatchFinder 2008 0.61 (66) 0.87 (95) 19.43 ± 21.29

PatchFinder 2005 0.64 (70) 0.88 (96) 29.56 ± 33.58

siteFiNDERj3D 0.48 (52) 0.87 (95) 27.05 ± 24.01

ET Viewer 0.53 (58) 0.87 (95) 20.56 ± 21.67

HotPatch (best patch) 0.17 (19) 0.47 (51) 6.92 ± 7.2

HotPatch (all patches) 0.24 (26) 0.69 (75) 12.9 ± 10.5
a The fraction of cases for which at least half of the SITE residues were in the predicted functional patch/cluster (i.e., [SITEXpatch]/site R 0.5). The

number of cases in the dSM data set is provided in parentheses.
b The fraction of proteins for which there is some overlap between the ML patch and the SITE residues (i.e., [SITEXpatch] > 0).
c The average number of residues predicted as functionally important. The results were measured for siteFiNDERj3D, HotPatch, the ET Viewer, the

original version of PatchFinder (namely, PatchFinder 2005 [Nimrod et al., 2005]), and the new version of PatchFinder (PatchFinder 2008). Note that

PDB ID 1nox includes only a single non-amino acid documentation of SITE (namely, the flavin mononucleotide molecule). It was therefore excluded

from the calculations in the two middle columns.
et al., 2002; Mihalek et al., 2006). Both the ET Viewer and

siteFiNDERj3D receive as input the 3D structure of the query

protein and an MSA of homologous proteins.

The HotPatch algorithm searches for surface patches of

exceptional physicochemical properties in proteins with known

3D structure (Pettit et al., 2007). HotPatch uses the protein’s

3D structure alone as input. Hence, it is suitable for every protein

with known 3D structure regardless of the availability of se-

quence homologs. The algorithm has several variants special-

ized in different functional categories (e.g., protesases, kinases,

and transferases). When the functional class of the protein is

known, using the corresponding specialized variant often yields

better predictions (Pettit et al., 2007). Additionally, HotPatch can

be used to analyze oligomers within the context of their oligo-

merization state (when available) and to utilize this information

to find functional regions that are composed of several chains.

Here, we used HotPatch in the variant of a generic functional

site, and we analyzed the proteins as monomers in order to

compare the algorithms with the same input.

As a comparison between the original version of PatchFinder,

siteFiNDERj3D, the ET Viewer, HotPatch, and the new version

of PatchFinder, we measured the fraction of SITE residues that

were detected by each method and the total number of residues

that were predicted to be functionally important. (Special consid-

erations that were used in this analysis are detailed in Supple-

mental Data.) Table 1 summarizes the comparison between

PatchFinder and the other methods. The analysis showed that

whereas PatchFinder found at least half of the SITE residues in

61% of the proteins, siteFiNDERj3D and the ET Viewer suc-

ceeded only in 48% and 53% of the cases, respectively. The

patches predicted by HotPatch are, on average, considerably

smaller then those predicted by PatchFinder and the other

methods. However, these patches comprised at least half of

the SITE residues in up to 24% of the cases. According to the

D-value measure, in 37 of the 110 proteins in the data set, the

best patch found by HotPatch was a successful prediction,

compared to 77 successful predictions of PatchFinder.

A comparison between the original and new versions of Patch-

Finder showed that the patches of the latter are 34% smaller, on

average, than the former. The number of cases in which at least

half of the SITE residues are in the patch decreased, on the other
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hand, by only 6% in the new PatchFinder. This and the D-value

analysis, provided in Supplemental Data, show that the new

version is significantly superior to the original version of Patch-

Finder, and that it provides patches that are considerably more

focused on the functional region.

A Z-Score Measure of Confidence
The new version of PatchFinder assigns a Z-score to each patch.

The Z-score of a patch of size x with an average conservation

score of y corresponds to the probability of choosing, at random,

a patch of size x or larger with a conservation score equal to, or

greater than, y. In Figure 1A, the D-values of the ML patches are

plotted against their assigned Z-scores. The graph clearly shows

that the Z-score tends to increase as the D-value decreases

(Spearman correlation, r = �0.55; p < 0.0001). A similar trend

was reported with the ET method (Mihalek et al., 2003).

We examined the outliers of the graph, in particular the three

patches tagged ‘‘1’’ to ‘‘3’’ in Figure 1 (see Supplemental Data).

In these cases, both the D-value and the Z-scores are high, which

would indicate bad predictions that were assigned high confi-

dence. The analysis showed that the high D-value may occur

due to incomplete documentation of functionally important

residues in the PDB file. Hence, the prediction of PatchFinder

on these three cases is more successful than indicated by the

D-value.

Based on these results, we used the Z-score, which is com-

puted without knowledge of the true functional region, in order

to assign a level of confidence to each individual prediction.

High confidence was assigned to patches with Z-scores above

1.7 (Figure 1). This threshold was chosen with the objective of

reaching 85% coverage. With this cutoff, 78% of the predictions

were correct according to the gold standard. Of the proteins

whose Z-scores were below 1.7, only 25% of the predictions

were correct.

N-Func
We assembled the N-Func database of 757 proteins of known

3D structure but unknown function (and whose close homologs

do not include function annotation). As anticipated, most of the

structures (91%) had been solved in the context of worldwide

structural genomics initiatives. Of the structures in N-Func,
63, December 10, 2008 ª2008 Elsevier Ltd All rights reserved 1757
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Figure 1. Evaluation of the Performance of

PatchFinder by Using the dSM Test Set

(A) Scatter plot of the correlation between the

Z-scores and D-values that were assigned to ML

patches in the dSM test set. Predictions with

a D-value smaller than 0.103 (gray, dashed line)

were considered to be correct. Predictions that

were assigned a Z-score greater than 1.7 (gray

line) were labeled as ‘‘high confidence.’’ The num-

bers 1, 2, and 3 mark the three outliers discussed

in Supplemental Data.

(B) Summary of the data in (A). Values are the frac-

tions of patches in each Z-score category; colors

indicate corresponding categories. The numbers

of patches within each category are recorded in

parentheses. The figure shows that the accuracy

of the prediction increases with increasing Z-score

values.
85% had been solved by X-ray crystallography, and the rest had

been solved by NMR. This is close to the ratio between struc-

tures solved by X-ray and by NMR in the entire PDB database.

In addition, almost two-thirds of the structures are composed

of between 150 and 249 residues, corresponding to one or two

structural domains of average size (Shen et al., 2005). Of the

proteins in N-Func, 66% are derived from bacteria, 17% from

archaea, 16% from eukaryotes, and 1% from viruses and

phages (see Figure S6).

Analysis of these proteins by PatchFinder showed that the

average size of the ML patches in the database was 17 (±12)

residues. Of the ML patches, 90% (681) are high-confidence

predictions (Z-score > 1.7). These high Z-scores indicate that al-

though the proteins in N-Func lack annotations, their conserva-

tion profiles make it possible to predict their functional regions.

This is a first step toward function annotation of these proteins.

The N-Func database, which will be updated periodically, is

available as a website (http://patchfinder.tau.ac.il/N-Func/).

Each protein is allocated a ‘‘result’’ page, which includes an

interactive 3D visualization of the significant patches (using First-

Glance in Jmol), the calculated conservation scores of each

amino acid position in the protein, and the input MSA.

Function is known to be transferable between sequence

homologs (Rost et al., 2003), but the measure of similarity for

reliable transfer of function between proteins is still a matter of

debate (Devos and Valencia, 2000; Rost, 2002; Thornton,

2001). By utilizing the N-Func database, the user can retrieve pro-

teins according to a preset sequence-identity cutoff of between

30% and 95% to a homologous protein with known function.

As an example, by choosing a sequence-identity threshold of

45%, the user can view a list of all N-Func entries for which the

UniProt database (Bairoch et al., 2005) contains no functional

annotation for the protein, as well as for any homolog with a

sequence identity of 45% or more. Currently, that list includes

594 of the 757 proteins in N-Func.

Function Annotation: Three Cases
Manual inspection of some of the patches in the N-Func data-

base convinced us that they are functionally important indeed.
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Three examples are presented below, and a fourth one is

available in Supplemental Data.

Q9I5E5_PSEAE: PatchFinder’s Functional Site

Is Supported by Additional Evidence

PDB ID 2h9f refers to a hypothetical protein of 391 residues from

Pseudomonas aeruginosa. PatchFinder analysis revealed an ML

patch of 24 residues with a Z-score of 11.1 (Figure 2A, red) and

a secondary patch of 19 residues with a Z-score of 2.14 (green).

These two patches delineate the functional site in the largest cavity

of the protein. Mapping of the electrostatic potential (Baker et al.,

2001) on the protein’s surface shows that the cavity’s potential is

conspicuously positive (Figure 2B). The presence of such highly

conserved patches of amino acids in (and near) a highly charged

cavity strongly supports the hypothesis that the two patches are

located in the protein’s functional site. It further suggests that

the protein binds to a large negatively charged molecule. A more

detailed analysis is provided in the Supplemental Data.

Q8E989_SHEON: Biological Interfaces

and Crystal Contacts

PatchFinder analysis can also be used to examine the physiolog-

ical relevance of various crystallographic interfaces between

proteins. Some of the observed protein-protein interfaces might

reflect crystal packing, whereas others could be genuine con-

tacts of functional importance. Evolutionary data can be utilized

to discriminate between them (Elcock and McCammon, 2001;

Valdar and Thornton, 2001); real interfaces are usually more

conserved, as exemplified in the case of PDB ID 1t82 from

Shewanella oneidensis. The crystal structure shows a homotetra-

meric protein with two distinct protein-protein interfaces. Patch-

Finder analysis showed that the ML patch overlaps with one of

the interfaces (Figure S5), suggesting that it is physiological.

This interface is symmetrical and involves contacts between

the ML patch of each of the two subunits. In contrast, the resi-

dues that comprise the second crystallographic interface are

highly variable, suggesting that it is nonphysiological.

The PQS server (Henrick and Thornton, 1998) differentiates

between contacts that are biologically relevant and those reflect-

ing crystal packing. The prediction of the PQS server is based on

several parameters, including the size of the interface and the
td All rights reserved

http://patchfinder.tau.ac.il/N-Func/


Structure

Ways & Means
estimated difference in solvation energy between the protein’s

dimeric and monomeric forms. Evolutionary conservation is

not taken into consideration; therefore, PQS calculations are

complementary to PatchFinder. The prediction of the PQS server

supports our supposition that 1t82 dimerizes through the

interface region delineated by the ML patch.

Further support for the biological relevance of the interface

comes from the cons-PPISP server (Chen and Zhou, 2005).

This server is based on a neural network method that uses as in-

put the position-specific sequence profile (Altschul et al., 1997)

and the solvent accessibility of the examined positions. cons-

PPISP predicted a surface cluster of 20 residues as a site of

protein-protein interaction. PatchFinder found 19, of which

15 overlap with the cons-PPISP cluster.

Figure 2. The Conserved and Charged Cavity in Hypothetical Protein

Q9I5E5_PSEAE

(A) The ML patch and the secondary patch are colored green and red, respec-

tively. The rest of the protein is gray.

(B) Projection of the electrostatic potential on the protein surface, using the

color bar on the right. The figure was produced by using PMV (Sanner,

1999). The evolutionarily conserved patches are evidently located in the larg-

est cavity of the protein, which is positively charged. Overall, the analysis

indicates that PatchFinder detected a region of association with a negatively

charged molecule.
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Q3M7B8_ANAVT: A Potential GTPase

Another interesting protein in the database is Q3M7B8_ANAVT

from Anabaena variabilis, as represented by PDB ID 2obn. The

protein forms homodimeric structures that are predicted to be bi-

ologically relevant according to the PQS server (Henrick and

Thornton, 1998). PatchFinder analysis revealed an ML patch of

15 residues with a Z-score of 12.8. This patch resides within the

largest cavity of the protein (Figure 3A), a location that often de-

lineates a possible ligand-binding site (Liang et al., 1998). We

Figure 3. Hypothetical Protein Q3M7B8_ANAVT from Anabaena

variabilis

(A) Surface representation of the protein. The patch is colored red, and the rest

of the protein is gray.

(B) Superimposition (Laskowski et al., 2005b) of the structure of

Q3M7B8_ANAVT (green ribbons) and the structure of human Rab5a (orange

ribbons [Zhu et al., 2003]) with a GNP molecule (yellow, spacefilled represen-

tation). Clashes between the GNP molecule and Q3M7B8_ANAVT appear to

be only minor, suggesting that Q3M7B8_ANAVT might bind nucleotides.
63, December 10, 2008 ª2008 Elsevier Ltd All rights reserved 1759
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used the ProFunc server (Laskowski et al., 2005a) to examine the

protein’s functionality. ProFunc revealed marked local structural

similarity (Laskowski et al., 2005b) between the query protein and

the ligand-binding sites of several GTP-binding proteins, includ-

ing human Rab5a (Zhu et al., 2003). The local structural similarity

of Rab5a’s GTP-binding site to a subregion of 2obn was used to

superimpose the entire structures. The superimposition revealed

a strong resemblance between the global fold of the human

Rab5a and one wing of the Q3M7B8_ANAVT structure (Fig-

ure 3B). In addition, the GTP analog, GNP, could be seen to reside

within the cavity of Q3M7B8_ANAVT with only minor clashes.

Further analysis, presented in Supplemental Data, suggests

that Q3M7B8_ANAVT is likely to bind GTP or another free nucle-

otide. Experimental investigation of Q3M7B8_ANAVT is needed

in order to examine the predictions, elucidate the mechanism of

nucleotide hydrolysis in detail, and study the roles of the residues

from both of the relevant domains.

DISCUSSION

Here, we presented an improved version of PatchFinder, based

on the incorporation of the Delaunay triangulation and the

Bayesian version of the Rate4Site algorithm. The results demon-

strated significant improvements over the old version, attribut-

able, for the most part, to a substantial increase in precision at

the cost of only a minor decrease in recall (see Supplemental

Data). The new version of PatchFinder also provides an estimate

of the level of confidence of the prediction.

Based on the SITE annotation in the PDB (and the D-values <

0.103 cutoff), we successfully detected 77 of the 110 functional

sites in the dSM test set, corresponding to a detection rate of

70%. However, as described above, examination of the other

cases showed that, in many instances, the ML patch corre-

sponded to a functional region that was not annotated in the

PDB. In principle, it is not implausible that many of the predicted

ML patches that were calculated on the basis of a sufficient num-

ber of homologous proteins represent functional regions that

have yet to be discovered. In this respect, some of the apparently

false predictions can still be considered as functionally important

regions, and the actual detection rate of PatchFinder is likely

to be considerably higher than 70%. A list of the amino acids

comprising each of the ML patches and those predicted by the

related methods is provided at the accompanying website. We

are hopeful that experimentalists will test the predictions.

Comparing PatchFinder with Other Methods
The comparison between PatchFinder and similar methods has

a few marked limitations. One limitation is based on the way in

which the ‘‘functionally important regions’’ of a protein are

defined. An important assumption in our development of Patch-

Finder was that the functionally important regions comprise only

amino acids that mediate interactions with other biomolecules.

Based on this definition, PatchFinder overlooks residues that,

though highly conserved, are completely buried in the protein

core. An alternative approach is aimed at the ‘‘identification of

evolutionarily important residues’’ (Lichtarge et al., 2003), re-

gardless of the extent to which they are buried. Thus, buried

residues that are highly conserved because of their role in stabi-

lization of the 3D structure of the protein may be detected by
1760 Structure 16, 1755–1763, December 10, 2008 ª2008 Elsevier L
methods that are based on that broader definition. Yet another

approach looks for the catalytic residues (Petrova and Wu,

2006), which constitute a subgroup of the residues included in

our definition. Methods based on such different definitions of

the proteins’ functional regions naturally produce dissimilar

results, and comparisons between them may be misleading.

Moreover, a comprehensive comparison requires a data set

of proteins that have undergone thorough mutation analysis,

enabling a clear distinction between functional regions and the

rest of the protein (Mihalek et al., 2004). Such data, however,

are available in only a few cases, such as the E. coli lactose

repressor (Markiewicz et al., 1994).

In spite of these limitations, we compared PatchFinder with re-

lated methods. Our analysis showed that PatchFinder performs

better than the other methods on the dSM test set. We demon-

strated that PatchFinder finds a considerable part of the SITE in

more cases than siteFiNDERj3D and the ET Viewer. Moreover,

the average size of the functional region predicted by Patch-

Finder was 28% smaller than that of siteFiNDERj3D. This is

indicative of the superior precision of PatchFinder.

Unlike PatchFinder and the other methods compared here,

HotPatch (Pettit et al., 2007) is not based on the evolutionary

conservation of the residues of the query proteins. Instead, it

uses various physicochemical properties, such as concavity

and hydrophobicity. HotPatch found patches that were consid-

erably smaller, on average, than those identified by PatchFinder.

On the other hand, HotPatch did not find SITE residues in nearly

one-third of the cases, which is indicative of inferior sensitivity in

comparison with PatchFinder, at least in the dSM data set. In this

respect, it should be mentioned that HotPatch was developed to

maximize specificity, which is difficult to measure in this study

because of the incompleteness of the documentation of SITE

residues in the dSM data set. In our analysis, the specificity is

estimated, indirectly, based on the size of the patch/cluster.

The approach used by HotPatch is complementary to that

of PatchFinder (and the ET Viewer and the siteFiNDERj3D

methods). Therefore, regions identified by both methods as func-

tionally important are more likely to be true predictions. Further-

more, an algorithm that will combine the properties examined

by PatchFinder and HotPatch may improve their performance.

Regardless of performance, HotPatch and PatchFinder are

unique in that they are fully automatic and report a single (or sev-

eral) patch(es), which presumably corresponds to the functional

region(s) of the protein. The user is not required to make any

decisions along the way. Having said that, it is important to

note that, in the HotPatch and PatchFinder webservers, the

user may tailor the computational protocol to a specific need.

For example, the user can use a protocol that was found to be

most suitable for the detection of specific catalytic sites in Hot-

Patch or choose the number and type of homologs that are

used for the PatchFinder analysis. The other methods provide

a list of putative clusters without ranking them by the likelihood

to be functional. The ET Viewer enables the user to tune the evo-

lutionary importance cutoff for the clustering in order to suit the

analysis to the specific examined case. In our analysis, we virtu-

ally enforce an automated cluster selection for the ET viewer

(see Supplemental Data). This procedure did not necessarily

yield the best selection of clusters for each protein; manual in-

spection may have improved the performance of the ET Viewer.
td All rights reserved
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Limitations and Implications of PatchFinder and N-Func
The use of evolutionary conservation might be impractical in

some cases. For example, when only a few sequence homologs

for the query protein are available, it might be difficult to track the

evolutionary process within the family. In such cases, the evolu-

tionary signal is weak, and it might be problematic to differentiate

between amino acid positions that evolve slowly because of

negative selection and hence comprise the functional region

(i.e., signal) and those that appear to be conserved because of

the short evolutionary time (i.e., noise).

It is also important to note that the functional region might not

always be evolutionarily conserved. In extreme cases, such as

the peptide-recognition regions of antibodies and MHC mole-

cules, the functional region is highly variable (Reche and Rein-

herz, 2003).

The novelty of PatchFinder, compared to similar methods,

comes from two main aspects. First, it distinguishes between

positions that are functionally important and those that are struc-

turally important. Second, the identification and delineation of

the patches are conducted within the framework of the ML ap-

proach, which is statistically robust.

PatchFinder was implemented here as a fully automated web-

server, which is easy to use and enables the user to provide MSAs

(in any of the common formats) and predict functional sites in pro-

teins of their interest. This might prove useful for the design and

interpretation of mutagenesis studies, the rational design of pro-

tein and drug, and the interpretation of genetic and clinical data.

Annotation of Protein Function
The analysis of ML patches might also be useful for the predic-

tion of a protein’s function. As an example, a preliminary analysis

in our laboratory showed convincingly that the ML patches of

DNA-binding proteins differ significantly in amino acid composi-

tion and electrostatic potentials from those of other proteins

(G. Nimrod, A. Szilágyi, C. Leslie, and N. Ben-Tal, unpublished

data). It should therefore be possible to identify DNA-binding

proteins on the basis of the properties of their ML patches.

N-Func is a collection of hypothetical proteins that were

automatically analyzed by using the (improved) PatchFinder

algorithm. This database currently provides the ML patches of

757 PDB entries, thus serving as an initial step toward function

annotation of these proteins. The ML patches of 90% of these

proteins were assigned a high level of confidence. This, together

with the detailed examples presented above, indicates that

N-Func provides valuable data that may ultimately be used to

suggest the functions of these proteins. This will most probably

be done by integrating PatchFinder predictions with data ob-

tained by the use of other computational tools. It should be pos-

sible, for example, to characterize these proteins by looking for

local similarities between the predicted functional regions and

known sites in other proteins (Laskowski et al., 2005b; Shul-

man-Peleg et al., 2004). The ML patches are also potentially

useful in designing experiments for the deduction of functionality.

EXPERIMENTAL PROCEDURES

Collection of Proteins for N-Func

Our objective in constructing the N-Func database was to gather proteins with

available 3D structures but with no functional annotations. We based our
Structure 16, 1755–17
search on the PDB and UniProt (Bairoch et al., 2005) documentation for

each protein. Using a text-based search in the RCSB website (http://www.

pdb.org/), we first listed all PDB entries that contained the terms ‘‘hypotheti-

cal’’ or ‘‘unknown function.’’ This yielded an initial collection of 2245 entries.

To avoid duplicates and filter the structures, we used the PISCES server

(Wang and Dunbrack, 2003) to cull the initial collection by defining the following

three structural parameters as inclusion criteria: resolution of, at most, 3 Å;

maximum sequence identity of 99% between all chains; and minimum chain

length of 100 amino acids (this threshold was chosen in order to avoid

incomplete structural domains).

Culling reduced the initial collection to 1599 nonidentical protein chains. We

also removed 43 entries of hetero-oligomeric structures since, by definition,

these cases present annotations that relate to interprotein interactions. In

addition, we removed 71 entries with fewer than four homologous sequences

in the Homology-derived Secondary Structures of Proteins (HSSP) database

(Schneider and Sander, 1996), because Rate4Site often fails to detect the

evolutionary signal in such cases (Mayrose et al., 2004).

For the final filtering step, we checked the presence or absence of functional

annotations provided by the UniProt database (Bairoch et al., 2005). The

examined fields in the UniProt entry of each protein were ‘‘function,’’ ‘‘catalytic

activity,’’ ‘‘GO’’ (Ashburner et al., 2000), and ‘‘EC.’’ Only proteins for which all of

these fields were missing were considered in N-Func. Furthermore, if any close

sequence homolog (>95% sequence identity over >80% of the protein length)

of a particular protein had functional annotation, that protein was also ex-

cluded from the database since function can safely be inferred from the

homologs in such cases.

Multiple Sequence Alignments

Rate4Site (Mayrose et al., 2004) computes the conservation score for each

amino acid position in the protein based on the MSA of the query protein

family. The input MSA was extracted from the HSSP database (Schneider and

Sander, 1996) by using MVIEW (Brown et al., 1998). Parameterization and

improvements in PatchFinder were first introduced in 2005, with the dSM

test set and their matching MSAs from the HSSP compilation of that year.

The MSAs are provided at the PatchFinder website. The predictions in

N-Func are based on a more recent release of HSSP (in 2007).

Solvent Accessibility and Connectivity

The solvent accessibility of each residue and the identities of its surrounding

residues were determined by using the Delaunay triangulation (Barber et al.,

1996; de Berg et al., 2000). The center of each heavy atom in the query protein

was considered as a vertex. The 3D Delaunay triangulation created nonover-

lapping tetrahedral shapes, where each atom center was a vertex of at least

one tetrahedron. The shapes assembled into a convex hull enclosing the

protein.

We considered a vertex to be on the protein surface if a face that it belonged

to appeared in exactly one tetrahedron. Some of the tetrahedral shapes, being

within surface cavities (Liang et al., 1998), typically had long edges. Therefore,

tetrahedra with edges longer than a certain cutoff distance (see below) were

iteratively removed, exposing the ‘‘floor’’ of the cavity. A residue was consid-

ered to be exposed if at least one of its atoms was a surface vertex.

Two residues were considered to be adjacent if they had surface atoms that

shared the same tetrahedron and the distance between these atoms was

smaller to a preset cutoff distance. The distance chosen was the sum of

a probe with a diameter of 2.8 Å, corresponding to a water molecule, and

the van der Waals radii of the atoms (Chothia, 1976).

There are various measures by which to determine the solvent accessibility

of each residue/atom in a protein structure quantitatively (for example, the

accessible surface area [Lee and Richards, 1971] that was used in the first

version of PatchFinder). Here, we used the Delaunay triangulation for consis-

tency with the description of the neighborhood of each atom. Furthermore, the

current procedure determines whether an atom is exposed or buried within

the protein in a binary manner and does not require the user to choose a

solvent-accessibility cutoff.

Generating Structural Figures

All molecular graphical pictures were produced by using UCSF Chimera

(Pettersen et al., 2004), except for Figure 2B, which was produced with the
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Python Molecular Viewing environment PMV (Sanner, 1999), and Figure S5,

which was generated with PyMol (DeLano, 2002).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, and three figures and can be found with this article online

at http://www.cell.com/structure/supplemental/S0969-2126(08)00423-1.
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