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Dissecting the evolutionary genetics of iron overload
in non-alcoholic fatty liver disease
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Hepatic iron accumulation due to primary and secondary iron
overload conditions is an important co-factor promoting chronic
liver damage in many liver diseases including alcoholic liver dis-
ease [1] and chronic hepatitis C [2,3]. In addition to these entities,
indicators of increased iron stores are found in approximately
one-third of patients with non-alcoholic fatty liver disease
(NAFLD) who usually present with increased serum ferritin levels
along with normal or only slightly elevated transferrin saturation
[4,5] and parenchymal iron deposition on liver histology [6]. The
term insulin resistance-associated hepatic iron overload (IR-HIO)
syndrome has been coined for this association [5] whose patho-
physiology, however, is only partly understood. In analogy to
hereditary hemochromatosis, consensus exists that iron excess
in IR-HIO elicits iron-mediated oxidative stress and lipid peroxi-
dation driving inflammation and fibrosis development [7,8].
Some investigators have identified a role of hemochromatosis
gene mutations as promoters of increased iron storage in NAFLD
[8,9], while others have not [10,11]. Recently, low copper status
was suggested as a modifier of iron storage in NAFLD [12].

In this issue of the Journal, Valenti and co-workers present
data from a hypothesis-driven candidate-gene association study
in 274 well-characterized Italian subjects with biopsy-proven
and graded NAFLD genotyped for the hemochromatosis gene
(HFE), ferroportin gene (FPN), and a1-antitrypsin (AAT), and phe-
notyped for heterozygosity of the b-globin gene mutation associ-
ated with thalassemia minor [13]. A control population extracted
from a pool of blood donors served as a reference. Major findings
of this study include a significant and independent association of
the b-thalassemia trait with parenchymal siderosis (OR 2.57, 95%
CI 1.49–4.47), and moderate to severe fibrosis (OR 2.5, 95% CI
1.26–5.19). C282Y heterozygosity and H63D homozygosity were
also associated with relevant hepatic/hepatocellular siderosis
but not with fibrosis, while AAT mutations were neither associ-
ated independently with siderosis nor fibrosis.

The finding of the b-globin gene mutation being associated
with iron overload and fibrosis in NAFLD is of special interest,
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since it exemplifies nicely that certain genetic factors may be
important in specific geographical regions and ethnic subgroups
who are subjected to environmental factors favouring carriers
of genes that confer a selection advantage towards non-carriers.
In the present study, this could be true for the b-thalassemia
trait: Hemoglobinopathies, including thalassemia render their
carriers partially resistant to malarial infections, therefore, thal-
assemia is frequent where malaria is endemic such as in coun-
tries bordering the Mediterranean sea, including Italy where
Malaria was wide-spread since the Roman period until 1940
when the Pontine Marshes were successfully drained. Malaria
had also been a major health problem in Northern Italy such as
in the Po valley which is closer to Milan (where the study was
conducted), and thalassemia shows an equally high prevalence
in this region. Considering the prominent rural exodus of peas-
ants from the countryside to big cities (such as Milan) during
the last two centuries, it is conceivable that this resulted in a high
frequency of the b-globin gene mutation among the population
under scrutiny. Thus, the b-globin gene mutation which pro-
tected carriers against malaria in the past, now increases the risk
of progressive NAFLD by promoting iron storage (Fig. 1).

As with all single-center candidate-gene studies, the results of
Valenti and co-workers still have to be viewed with some cau-
tion. Looking closer at the phenotypes of interest, the study has
investigated relatively small numbers: 116 patients had true-iron
deposition and only 42 patients had relevant fibrosis greater than
stage F1. This might have an impact on the general applicability
of these findings since minor changes in numbers could affect
the effect-estimates derived. This might especially apply to
H63D homozygosity in this study with 13 of 274 patients being
carriers of this genotype. In short, independent replication of
these findings is needed. It would be fascinating to collect Italian
patients with confirmed NAFLD from regions with a high preva-
lence of thalassemia, and a past history of malaria to assess the
impact of b-globin gene mutations in the context of a genome-
wide risk profile, for instance, in a genome-wide association
study (GWAS).

Globally, the overall genetic risk profile for NASH is indeed
emerging, epitomized by the identification of PNPLA3 as a robust
marker of steatosis, liver-enzyme elevation, and fibrosis [14,15]
across populations. Despite the advent of GWAS as a very
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Fig. 1. b-Globin mutations confer protection toward Malaria infections thereby providing a selection advantage over non-carriers. (circle 1) With the eradication of
Anopheles populations by draining swamps and by the extensive use of DDT (dichlorodiphenyltrichloroethane), this effect got lost. Instead, in the context of the obesity
epidemic b-globin mutations may have become a modifier of iron overload in patients at risk for NAFLD (circle 2) underscoring differential effects of this mutation under
different environmental pressure.
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powerful and unbiased tool to investigate the genetic susceptibil-
ity of complex phenotypes, the study by Valenti et al. underscores
the utility of selected, hypothesis-driven candidate studies as this
risk factor is likely coupled to a specific population-history. In
terms of the general pathogenesis of NASH, this study adds
another piece of evidence supporting a central role of iron metab-
olism in the progression of liver damage that could present a tar-
get for therapeutic intervention in future.
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