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Abstract 

Up to one third of the total cost of energy from offshore wind generation is contributed by operation and maintenance 
(O&M). Compared to its onshore counterpart, this fraction is significantly higher. Costs are not only caused by spare-
parts and repair actions, but also by production losses due to downtime. The accessibility of a turbine in case of a 
failure is one main aspect affecting downtime. Therefore, a tool has been developed and implemented in MATLAB to 
simulate the operating phase of a wind farm with special emphasis toward the modeling of failures and repair. As an 
example application, a site at the UK east coast was chosen, and a few distinct scenarios were considered. Results 
include how sensitive availability changes with respect to changes in maintenance fleet and maintenance scheduling 
strategy. A quantification of potential cost savings due to an increase in availability is also stated.  
 
© 2011 Published by Elsevier Ltd.  
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1. Introduction 

In order to be able to fund ambitious large-scale offshore wind projects, it is necessary to mitigate the 
risk for potential investors [1]. Wind turbine availability is a main risk-influencing factor, as it determines 
the obtainable income directly. Experiences from the UK round 1 offshore wind farms Barrow, North 
Hoyle, Scroby Sands and Kentish Flats show availabilities of 67-87%, which is far below expectations 
[2]. We have performed simulations to determine key factors to increase availability, and therefore the 
economical efficiency of offshore wind farms. Studies have been carried out showing the influence of 
variations in maintenance fleet. The effect of changes in wave height limits for the utilized equipment has 
been analyzed, and results with respect to changes in availability and quantified production losses due to 
downtime are discussed. Influences of changing the accuracy of weather forecasts have also been 
investigated. All studies have been performed using MATLAB, with the methodology described within 

 

* Corresponding author. Tel.: +47-73593113; fax: +47-73597021. 
E-mail address: matti.scheu@gmail.com 

Available online at www.sciencedirect.com

© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of SINTEF Energi AS.
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82159745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/


282   Matti Scheu et al.  /  Energy Procedia   24  ( 2012 )  281 – 288 

this paper. Investigations have been carried out for a hypothetical 2.5 GW wind park close to the UK east 
coast that consists of 500 turbines, each with a rated power of 5 MW.  

2. Methodology 

The methodology for modeling the offshore wind farm is described in the following paragraphs, and is 
functionally divided into the five main modules weather, failures, resources, scheduling and cost.

 
Whether it is possible to perform offshore operations or not is mainly determined by weather 

conditions. Amongst all parameters, wave height is the most important limiting factor, in magnitude, as 
well as in persistence [3]. It is therefore important to have a method at one’s disposal that allows for 
generating realistic sea state time series. The main available methods can be classified into three 
categories and are either based on Gaussian statistics, ARMA processes, or assume the Markov property 
[4]. The latter is particularly capable to not only represent correct wave height distributions, but to also 
capture their persistence [5], and has therefore been chosen for the present work. 

Historical data for a given site was used to first estimate transition probabilities for a discrete Markov 
chain whose states represent different values of significant wave height. Time series of significant wave 
height were then obtained by random sampling. The transition matrices were estimated for each month 
separately to capture seasonal trends. Data for the past 22 years (1989-2010) was available in 6 h 
resolution from the ERA Interim dataset of the European Centre for Medium-Range Weather Forecasts2

b. 
The Markov chain consists of eighteen states, each representing an incremental change in significant 
wave height of 0.4 m, which results in a 18 x 18 transition matrix. The significant wave height is assumed 
to be constant throughout each 6 h period. The number of states is a compromise between resolution and 
having enough statistics available for reliable estimation of transition probabilities from one state to 
another. Corresponding wind speeds were generated, also assumed to be constant per 6 h time interval, 
based on their conditional probability distribution relative to the significant wave height value. The wind 
speeds ranged from one to thirty meter per second, and were represented with 1 m/s resolution.  

The weather module was validated by comparing its output with the original time series, with respect 
to mean values, standard errors (SE) and cumulative distribution functions (CDFs) of significant wave 
height, wind speed and the length of weather windows fulfilling certain conditions. Table 1 compares 
mean values and standard errors of significant wave height and wind speed for the complete 22 year 
period, as well as their linear correlation coefficients.  
 

Table 1. Mean values, standard errors, and wind-wave correlation; comparison of model results against observed data 

 

           Wind           Waves 

 Modeled Observed Modeled Observed 

Mean Value 7.1394 7.1367 0.9802 0.9829 

Standard Error 0.0187 0.0189 0.0035 0.0035 

 Modeled Observed 

Wind-Wave Correlation 0.8582 0.8787 

 
Regarding mean values and standard errors, both modeled wind speeds and wave heights lie within 2 

percent of the values for the observed time series. Results for the CDFs, besides errors due to the finite 
number of states used for the synthetic data, agree well (Fig. 1). Considering correlations between wind 
speed and wave height, both modeled and observed data is showing similar results. 

 

2 http://www.ecmwf.int/ 
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Regarding maintenance tasks, the persistence of weather conditions is of particular importance. All 
offshore operations take a dedicated period of time to be performed, in which, for instance, wave height 
and wind speed must not exceed defined threshold levels. The persistence of wind speed and wave height 
has been evaluated by their CDFs [5]. Results indicate that modeled and observed persistence data agree 
reasonably well (not shown).  

To summarize, the assumption of a Markov process for the sea state, in combination with wind speeds 
modeled by the conditional probability distribution relative to the sea state shows a good agreement with 
observed values. Considering all mentioned tests, the method is therefore suitable for the purpose of this 
investigation. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 1 Cumulative distribution function of significant wave height (top) and wind speed (bottom)
 

Annual failure rates and mean time to repair are the basis for the failure module. Data gathered from 
an ongoing onshore reliability study performed at the Fraunhofer Institute for Wind Energy and Energy 
System Technology has been used as input [6]. 

 In accordance with that study, turbine failures for 12 subsystems were considered, assuming a Poisson 
process for the failure of each component. Failures are clustered into those which can be repaired without 
heavy lifting equipment, and those which need a crane. To concentrate on the essential features, repair 
times are assumed constant. For components which do not need a crane, a constant number of people 
needed for repair is assumed, which is referred to as a repair crew. Failures are generated for each 
component of all turbines independently. Malfunction of one subsystem always results in the breakdown 
of the whole turbine. Correlations between external conditions (wind speed, time of year) and failure rates 
are not considered. Bathtub curves of failure distribution during lifetime, as described in [6], are also 
neglected. Scheduled preventive maintenance has not been taken into account.

 
The module on resources defines which equipment and personnel is available for O&M activities. The 

equipment is specified by its characteristic properties: assumed transit time from harbor to park, its 
maximum capacity, and its operational constraints with respect to maximum wind speed and wave height. 

For simplification, the transit time for a maintenance vessel is set to 6 h for an ordinary vessel, 
respectively 12 h for a crane vessel. The capacity of people to carry in a boat is adjustable. Wave height 
and wind speed constraints are also variable, in order to study the effect on the availability.  

In order to consider limitations of working-hours for the crews, a maximum time offshore has been 
implemented and set to 7.5 days. If it is exceeded, an abortion stop of all ongoing operations at that 
moment proceeds and  the affected vessel and its personnel returns to shore. 
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Whether an operation is going to be performed under different circumstances is defined in the 
scheduling module. A general overview of the procedure after a new failure occurs is shown in Figure 2 
for an ordinary vessel (the scheduling of a crane ship being similar).  

In case of the occurrence of a new failure, all ships operating in the wind park check if they transport 
enough personnel (from previous, completed repairs) without present task. If this is the case, a new crew 
is established for which the component is scheduled for repair, provided that the maintenance personnel 
has not been offshore too long and the weather conditions are sufficient. If a failure cannot be scheduled 
for all ships located in the park, it stays unscheduled (unreserved) and can then be scheduled for ships in 
harbor. First, all ships already containing crews (from previous time steps with bad weather) are trying to 
schedule the failure. Depending on each ship’s capacity, it will either create and add a crew for this 
failure, or, if the maximum load is already reached, leaves the component unreserved and available for 
scheduling by other ships. If there are no suitable ships available, the failure remains unreserved and the 
procedure starts afresh six hours later, in the next time step. If a ship in harbor carries a crew, it will, as 
soon as weather conditions allow for, enter into transit to the park. For the weather check, a so-called 
look-ahead-time represents the accuracy of the weather forecast. This parameter determines the maximum 
time a ship can assume reliable information about future weather conditions. Weather conditions are 
sufficient, as long as wind speed and wave height are under the operational threshold levels for the total 
intended time offshore (maximum of all crews’ expected time to repair). In the next time step after transit, 
the ship drops off all crews at the turbines with components that are scheduled for repair. Weather 
conditions and time offshore are reviewed every time step whenever a vessel is in park. After a crew 
arrives at a component, the respective repair time counts down every time step until zero. The crew is 
then collected by the ship in the next time step and can schedule further failures. Every ship can only 
handle the crews that were assigned to it in the harbor. It is presumed that all components which can be 
repaired without a crane do not require additional equipment from land.  
 

 

Fig. 2 Scheduling strategy flow chart 
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In contrast, a crane can only handle one repair task before returning back to the harbor. If a crew has to 
interrupt a repair, failures are reset to the state unreserved and repair times stay as they were before the 
interruption, assuming the next crew can continue immediately working on the failure. 

 
There are diverse factors determining operating costs of an offshore wind farm. Here, the focus is set 

on production losses, as they can be handled in a simple manner and are strongly effecting the economical 
performance of an offshore wind park [7]. We quantify how much worth it would be to deploy more or 
better equipment in terms of an increase in availability. Spare-part and labor costs, as well as expenses 
due to vessel or crane deployment, are included in this value. To quantify production losses, a linearized 
power curve is evaluated for the modeled wind speeds during downtime. Potential production is equal for 
every turbine in park, i.e., there is only one wind speed considered and wake effects are neglected. In 
order to quantify losses in monetary terms, the summarized kilowatt hours are multiplied with the local 
feed-in tariff (FIT), assuming a compensation of 0.1801 €/kWh for British waters [8]. 

3. Results 

Variations of maintenance fleet and weather forecast accuracy have been performed with respect to 
park-availability, cost savings and deployment of equipment. Each simulation represents one year of 
operation.  

3.1. Influence of wave height constraint and equipment variation on park availability 

Four different compositions of the maintenance fleet were taken into account for this study, as major 
effects can be clearly seen in those configurations (Figure 3): 

Wave height boundaries were varied from 1.0 to 2.6 m in steps of 0.4 m (corresponding to the 
resolution of the sea state simulation). All other simulation parameter were held constant. The look-
ahead-time was set to 48 h. The maximum number of people that could be carried on a ship was four. 
Each calculated availability value represents a mean over five runs, with standard errors less than a few 
percent.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Park availability against equipment characteristics, for four different fleet compositions 

Regarding fleet variation, it can be seen that the highest availabilities have been achieved with three 
ships and three cranes, the largest fleet considered (Fig. 3). In reverse, lowest values occurred by 
considering only one ship and one crane. For assumed wave height boundaries less than 1.4 m, additional 
ships and cranes both lead to an increase of availability of the same magnitude, i.e., the availability 
changes (almost) linearly with the number of resources. For the regime from 1.4 to 2.2 m, additional ships 
have a lower influence on the availability than additional cranes have. The availability of more than one 
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ship that can perform for boundaries greater than 2.2 m has almost no effect on availability anymore, i.e., 
there exist sufficient weather windows that one such ship can handle all repairs. The number of crane 
vessels still has an important influence, as each crane vessel can only handle one repair a time. In case of 
several failures, a greater number of cranes would directly lead to more repairs during a weather window. 

3.2. Effects of accuracy of the weather-forecast 

The decision whether an operation is going to be performed mainly depends on weather conditions. In 
case of a theoretical, fully accurate forecast (with a look-ahead-time of infinite length), ships or crane 
boats are only deployed if it is assured that they can finish their tasks. If the look-ahead-time is finite, as it 
is in reality, vessels have to cancel offshore operations from time to time, and need to access the turbine 
more than once for each repair. This is represented in Figure 4, where the number of deployments for an 
ordinary maintenance vessel (ship) and a crane vessel (crane) are displayed for five different cases. The 
look-ahead-time has been varied in a range from 6 h to 72 h. 

 
 
 
 
 
 
 
 
 

 

Fig. 4 No. of crane deployments against look-ahead-time 

The total number of average operations carried out by both vessels is shown for a one year simulation 
in a three-ship-three-crane configuration, where five runs have been taken into account. Achieved 
availabilities have been on the same level for all runs. Both curves show a strong dependence of the 
amount of operations on the reliability of the weather forecast in regions of short look-ahead-times. Crane 
boats arrive at their optimal operating point if an accurate forecast of two days or more can be provided. 
Due to shorter transit and repair times, the saturation for ships is reached after 24 h, i.e., longer 
information about future weather conditions is not necessary for an optimum performance in this 
configuration. Especially for crane vessels, a slight increase of the number of deployments can be 
observed for long look-ahead-times. This phenomenon is assumed to be of statistical nature due to the 
limited amount of simulation runs. 

3.3. Cost 

For an estimation of potential cost savings due to higher availability, downtime losses have been 
quantified monetarily. For linearization of the power curve, data from the 5 MW reference turbine 
developed by the National Renewable Energy Laboratory [9] has been used. For the FIT, data from a 
KPMG market survey has been used [8], leading to an income of 0.1801 €/kWh for British waters. The 
dependence of yearly production losses on availability is visualized in Figure 5, where data is provided 
for the entire park. All different fleet combinations and wave height boundaries have been evaluated for 
this diagram. 
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Fig. 5 Production losses against availability 

A strong linear correlation between availability and production losses can be seen. Variations occur in 
regions of lower availabilities, as wind speed variations are then having some influence, due to the total 
amount of considered realizations.  

Exemplarily, a change of wave height boundary from 1.0 m to 1.8 m for both access methods in a one-
ship-one-crane configuration would decrease downtime losses by about 30 percent. In numbers, a yearly 
decrease of downtime losses of 393 M€ for the park, respectively more than 780 k€ on average per 
turbine, could be achieved by using a more advanced access system, according to the assumptions made 
for this investigation. For the simulated wind park, the correlation between production losses (PL) and 
availability (A) can be formulated as in Equation 1, when considering availability values from 62-93 % in 
order to approximate cost savings by variation of parameters: 

PL(A) = (0.62 - A)·2460 M€ + 929 M€.                                                                                (1) 

A small increase in availability can therefore lead to high cost savings. Which parameters could 
effectively affect availability is stated in the above sections. As shown in Figure 3, the application of a 
three-ship-one-crane configuration with an assumed wave height boundary of 1.4 m leads to the same 
availability level as a one-ship-one-crane configuration with a wave height boundary of 1.8 m. The 
decision on which solution is providing the overall economical optimum has therefore to be decided 
considering aspects on various cost drivers.  

4. Discussion 

The intention of this project was to figure out the sensibility of the availability for an offshore wind 
park, under the variation of certain parameters. Calculated availabilities and potential cost savings shall 
not be understood as ultimate values, but allow for developing a sense for how the availability and costs 
could react due to parameter variation. Several simplifications have been made in order to concentrate on 
the parameters of interest.  

Regarding the weather module, slightly better statistics could have been achieved by decreasing the 
wave height resolution, i.e., by decreasing the number of states of the Markov chain. At the same time, 
that would eliminate the possibility of varying wave height boundaries as it was done for this study. 
Selected tests of the weather module also show a sufficient accuracy of generated time series. 
Furthermore, the generation of wind speed time series based on wave heights would not have been 
possible in this accuracy. Especially for the cost module, a precise representation of wind speeds is 
essential. 
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Considered failure rates are based on an onshore survey. Values for offshore turbines might differ 
significantly, but, as the market still is quite young, only incomplete data is available. Failure rates for all 
considered systems can be readily adjusted, if required. The simplification of a total turbine breakdown, 
independent of which system fails, might be refined subject to each component.  

The possibility of continuing a repair from the point it has been interrupted might also, especially for 
components repaired or replaced by a crane, not be realistic.  

The definition of maintenance resources was held very simple. Only two different access systems were 
considered, an ordinary maintenance vessel or a crane vessel. Ships were only specified by the maximum 
number of personnel they can carry, a maximum weight capacity of transported material is neglected. In 
terms of restrictions, both access systems are only underlying wave height boundaries. In reality, 
depending on the planned operation, wind speed, fog, temperature or rainfall might also play a role. 
Alternative access methods, e.g., by helicopter, have not been taken into account. For ships in harbor, 
personnel is always available in the demanded quantity.  

The scheduling strategy applied for this study could be refined by implementing more factors a ship, 
respectively a crane, can base its decisions on, including probabilistic aspects for weather forecast 
accuracy or repair time variations. If transit times and repairs could be supplied by costs, more optimal 
overall strategies could be developed. For the variation of maintenance fleet, wave height boundary and 
weather forecast accuracy, the applied scheduling is showing sufficient results.  

Economical performance is solely investigated by evaluating production losses during downtime. 
Significant changes have been achieved by parameter variation, showing that especially the wave height 
boundary for access systems has a great influence on the economical performance. An implementation of 
the described methods to other wind farm cost models could be a possibility of accessing life cycle cost 
for an overall economical optimization.  

5. Conclusion 

The presented methodologies of modeling the operation phase of an offshore wind farm show 
promising results. An accurate weather model has been developed, based on Markov theory, which, to the 
authors knowledge has not been applied for wind park simulation before. Significant changes in 
availability, monetarily quantified by production losses, have been presented with respect to changes in 
maintenance fleet and vessel characteristic. The economical potential was shown with the perspective of 
implementing these methods in tools for wind park life cycle cost models. More detailed studies 
regarding the economical effect of different scheduling strategies and equipment specifications could be 
performed on this basis.  
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