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Abstract 

We present results on a combinatorial game which was proposed to one of the authors by 
Ingo Althiifer (personal communication). Let G be an undirected finite graph without loops and 
multiple edges and let k be a positive integer with k < i( IGI - 1). There are two players, called 
white and black, both having k men of their color. In turn, beginning with white, the players 

position their men one at a time on unoccupied vertices of G. When all men are placed, the 
players take turns moving a man of their color along an edge to an unoccupied adjacent vertex 
(again beginning with white). A player wins if his opponent cannot carry out his next move 
since none of his men has an unoccupied neighbor. If the game does not stop, then the outcome 
is a draw. We always assume that both players play optimal. Among other questions, we deal 
with the following ones: 1. Is it true that, for all G and k, white cannot win the game? 2. Does 
there exist a tree T and a positive integer k for which the outcome is a draw? Let t(G) denote 
the covering number of G, i.e., r(G) is the minimum number of vertices covering all edges 
of G. We prove that black wins the game if r(G) <k. We use this result to show that white 
never wins the game if G is bipartite, thus providing a partial answer to the first question. We 

answer the second question in the affirmative by constructing an infinite series of trees for which 
the outcome is a draw (for some k). Moreover, we present results on extremal problems arising 
in the context of the game. We also completely solve the cases when G is a path or a cycle. 
Further, we completely settle the case k < 2. In the proofs of our results, matchings and cycles 
in graphs play a predominant role. @ 1999-Elsevier Science B.V. All rights reserved 
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1. Introduction 

In recent years, combinatorial games played on graphs have received increasing 

attention; see e.g. the bibliography of Fraenkel [13]. In the present paper, we investigate 

a two-person game which was proposed to one of the authors by Althofer [l]. In 

this game two players, white and black, each place k men of their color onto the 

vertices of a graph G (the board) which, subsequently, are moved along edges trying 

to encircle their opponent’s men thus making the opponent unable to carry out his next 

move. The precise rules are given in the abstract. In flavor, this game is related to the 

many pursuit and evasion games for graphs that appear in the literature; see e.g. 

[2,3,5,6,9, 13-16, 18-231 and the literature mentioned there. 

Throughout, the symbol G denotes the board of the game and k denotes the number 

of men per player. We write We = 1 if white has a strategy to win the game, 

and ok(G) =2 if black has a winning strategy; ok(G) = 0 means that neither white 

nor black possesses a winning strategy. In this paper, we focus our attention on the 

following questions. 

Question 1. Is it true that o~(G)# 1 for all G and kbi(lGl - l)? 

Let r(G) be defined as in the abstract. In Section 2, we show that r(G) d k implies 

We = 2 (Theorem 1) and use this result to prove that the answer to Question 1 is 

yes if G is a bipartite graph (Theorem 2). We do not know whether or not the same 

holds in the general case and leave this as an open problem. 

In Section 3, we consider the following extremal problems. Denote by e(G) and 

6(G) the number of edges and the minimum degree of G, respectively. Let n,k be 

positive integers with 12 2 2k + 1. Clearly, if G is a complete graph on n vertices, then 

cck(G) = 0. This observation prompts us to pose the following question. 

Question 2. What is the least positive integer a(n, k) such that 6(G) >cc(n, k) implies 

Ok =0 for all G with IGI = 12 and, similarly, what is the least positive integer 

/?(n, k) such that e(G) > B(n, k) implies c~k(G) = 0 for all G with IGI = n? 

We show that cr(n, k) = k (Theorem 3). Further, Theorem 4 states that fl(n, k) = (i) + 
k(n - k) provided that “n is not too close to 2k + 1” (for example, n > [2,172k + 0,5] 

is sufficient); for the latter extremal problem, we also determine the corresponding 

(uniquely determined) extremal graph. The proofs of these results are based on results 

in extremal graph theory which were obtained in [4] as extensions of classical results 

due to Corradi and Hajnal [lo], Erdos and Gallai [l 11, and Erdiis and Posa [12]. 

Question 3. What is the value of e&(G) when G is a path or a cycle? 

In Section 4, we present the complete answer to this question. Let G be a path or 

a cycle of length n. Then Theorem 5 states that W,+(G) = 2 unless G is a cycle and 

either k = 1 or k = i(n - 1); for these exceptional cases we show that Wk(G) = 0. 
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Question 4. Does there exist a tree T and a positive integer k such that ok(T) = O? 

In Section 5, we present an infinite series of examples showing that the answer is 

yes. The smallest of these examples is a tree T with 19 vertices and k = 6; see Fig. 4. 

Finally, in Section 6, we present a solution of the case k d 2. 

Our graph theoretic terminology is standard; for notions used but not defined here, 

we refer to [8]. For a graph H, we denote by V(H) and E(H) the set of vertices 

and edges, respectively. All considered graphs are undirected, finite and, if not stated 

otherwise, without loops and multiple edges. By ]HI we denote the number of vertices 

of H. For distinct vertices v,w, we denote by (u, w) (or just VW) the edge connecting 

v and w. For a graph H, if S, T are disjoint subsets of V(H), then H(S, T) denotes the 

bipartite graph with vertex set S U T and edge set consisting of all edges of E(H) which 

connect a vertex of S with a vertex of T. By m(H), we denote the matching number 

of H. Let A4 be a matching of H. A path P of H is an M-alternating path if its edges 

are alternately members and non-members of M. A vertex v E V(H) is M-exposed if 

no edge of M is incident with v. An M-alternating path of H is M-augmenting if it 

connects a pair of distinct M-exposed vertices. A set S C V(H) is stable if there exists 

no edge of H joining a pair of vertices of S. For n 3 0, P,, denotes the path of length 

n and, for n > 3, C, denotes the cycle of length n. For a path P, let x, y E V(P). Then 

P[x, y] denotes the subpath of P connecting x and y. We define P[x, y) as the path that 

results from P[x, y] by deletion of y; P(x, y] and P(x, y) are defined analogously. (In 

these definitions, the case that P[x,y), P(x,y] or P(x,y) is empty is not excluded.) For 

a path P = [ug, . . . , u,], t 3 0, the vertices ug and ut are called end vertices (or terminal 
vertices) of P. 

For the above game, the first phase is the phase in which the players place their men 

on G; the subsequent phase, when the players move their men along edges, is called 

the second phase. We frequently use the expression at time ti to indicate that, in the 

first phase, white has placed exactly [i/21 men and black has placed exactly [i/21 men 

(i=O , . . . ,2k). Similarly, for h > 1, we use the term at time t2k+h to indicate a point in 

time of the second phase. By Wi and bi, we denote the vertices on which, in the first 

phase, white and black place their i-th man, respectively (i = 1,. . . , k). If, in the first 

phase, a man is placed on u E V(G), then we denote this man by v”. A vertex is white 
(black) if it is occupied by a white (black) man. A subgraph H of G is completely 
occupied if each of its vertices is white or black. For a path P = [OO, ~1,. . . , L+] contained 

in G, assume that { ui,, . . . , Vi,“} is the set of occupied vertices of P, where s>O and 

ij < ... <i,. (Here s = 0 means that no vertex of P is occupied.) Then P is called 

alternately occupied if the color of Vi, does not equal the color of v,,_, (,j = 2,. . . ,s). 

Similarly, one defines when a cycle is alternately occupied. 

For s 20, let V’ 2 V(G) be a set of 2s vertices, s of which are white and the other 

s are black. We say that the men on the vertices of V’ are placed (or arranged) in 
pairs if there exist disjoint subpaths Qi, . . . , Q$ of G each of which connects a white 

vertex of V’ with a black one. For given paths Qi, . . . , Qs with these properties and 

jg{l,. . . ,s}, the men on the end vertices of Q, are said to form a proper (odd, even) 
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pair if the length of Qj is one (odd, even). Two men forming a proper pair are called 

mates. 

2. Coverings, matchings, and the proof that white cannot win for bipartite graphs 

Our first result states that black is the winner if the covering number of G is not 

greater than the number of men per player. 

Theorem 1. For a graph G and a positive integer k 6 $(JGj - I ), let t(G) d k. Then 

cuk(G)=2. 

Proof. Let T C Y(G) be a minimum set of vertices covering all edges of G and 

let A = V(G)\T. In the following, for i = 0,. . . , k, we inductively define subsets K 

and Ai of T and A, respectively, together with a matching Mi of the bipartite graph 

Gi := G(Ti,Ai); simultaneously, we describe a winning strategy for black. We put 

TO := T, A0 :=A, and MO ~0. 

Assume that, for some i E (0,. . , k - l}, we have already defined subsets T, and Ai 

of T and A, respectively, together with a matching Mi of Gi such that, at time tzi, the 

foIlowing conditions hold: 

(i) Each edge of Mi connects a white vertex of 7;: with a black vertex of Ai; 
(ii) ri consists of the unoccupied and the white vertices of T; 

(iii) Ai consists of the unoccupied vertices of A and those black vertices which are 

met by Mi; 

(iv) For each white vertex z E z which is not met by Mi, there exists no &augmenting 

path of Gi starting at z. 

These conditions are illustrated in Fig. 1. Note also that, for i = 0, (i)-(iv) trivially 

hold. Now, we consider the situation at time tzi+l, i.e., white has just put his (i+ I)-th 

man on the vertex wi+i. We define the vertex bi+i (i.e., the vertex on which black 

puts his (i + 1 )-th man) and, simultaneously, we define the sets z+i, Ai+,, and the 

matching Mi+i of Gi+i = G(7;:+i, Al+, ). 
If wi+i E T and if there exists an Mi-augmenting path of Gi starting at Wi+r, then 

black picks one such path P and chooses bi+i as the end vertex of P which is dis- 

tinct from wj+i; by assumption (iii), this vertex is unoccupied. We define Z+i := Ti, 
Ai+l :=Ai, and Mi+i :=(Mj\E(P)) U (E(P)\Mi). 

On the other hand, if wi+i E A or if Wi+i E T and there does not exist an 

&&augmenting path of G; starting at wi+i, then black picks bi+i as some unoccupied 

member of T, provided that this is possible; if this is not possible, then black picks b,+l 
as some unoccupied member ofA. We define Ti+l := Ti\{b;+l}, Ai+l :=Ai\{wi+l,bi+l}, 
and I@+, :=Mi. 

We now show that the statements (i)-(iv) still hold if i is replaced by i + 1. By 

the definitions this is immediately clear except for statement (iv) in the case when 
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T 

Fig. 1. An illustration of the conditions (i)-(k) in the proof of Theorem I. 

Wi+l E T and w;+i, bi+l are the terminal verties of an A4i-augmenting path P of Gi. For 

the purpose of settling this case, let z E Ti+l( = Ti) be a white vertex which is not met 

by Mi+r . Then z # wi+i and z is not met by Mi, and thus we obtain from (iv) that 

there exists no &augmenting path of Gi starting at z. It follows that there cannot exist 

an Mi-alternating path Q of Gi starting at z and having a vertex with P in common 

because, otherwise, an appropriate subpath of Q could be combined with an appropriate 

subpath of P to obtain an Mi-augmenting path of Gi starting at z. Now, suppose that 

there exists an Mi+i-augmenting path P’ of Gi+i( = Gi) starting at z. Since P’ is not 

an Mi-augmenting path, we must have V(P’) n V(P) # 8. Let z’ be the first vertex of 

P’ which is on P. Then P’[z,z’] is an Mi-alternating path of Gi starting at z and having 

z’ with P in common, in contradiction to what we have shown before. Hence (i)-(iv) 

hold for i + 1 instead of i. 

Note that {Wi+r, bi+i} n T # 8 if, at time t2i, T still contains unoccupied vertices 

(i=O , . . . , k - 1). Hence, because k 2 z(G) = ( TI, it follows that, at the end of the first 

phase, 

all vertices of T are occupied. (1) 

We next show that, in the second phase, black can play such that, when it is white’s 

turn, white has no choice other than moving one of his men from a vertex of T to a 

vertex of A, and black can always answer with moving one of his men from A to the 

vertex which was just abandoned by white. Clearly this implies that, after at most k 

moves of the second phase, black wins the game. We now make this precise. 

Denote by T’ the set of vertices of T which are met by I&. For some j E (0,. . . , 

k - l}, assume that, in his first j moves of the second phase, white has moved j of 

his men from T’ to A and black has answered each of these moves by moving a man 

of his color along an edge of A& to the vertex just left by white. We assume that 

white can still carry out his (j + 1 )-th move. Because A is a stable set and because, at 

time tx(k+i), the condition (1) still holds, white moves one of his men from a vertex 

z of T to a vertex of A. Suppose z 4 T’. Then one easily obtains from the way the 

first j moves of the second phase where carried out by the players that there exists an 

A&-augmenting path of Gk starting at z. This contradicts the statement (iv) for i = k, 
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and thus we have shown z E T’. Hence black can use the edge of Mx_ which is adjacent 

to z to move a man of his color along this edge from A to z. 0 

We give examples of graphs G with We = 0 for k = z(G) - 1, thus showing that, 

in a sense, Theorem 1 is sharp. Let G be a graph that consists of a cycle C of length 

four and a nontrivial path P of even length, where C n P consists of an end vertex 

of P. Note that z(G) = $ IGI and let k = z(G) - 1. It follows that G contains the disjoint 

union of C and a matching M consisting of k - 1 edges. From this one easily obtains 

We = 0 (for example, by application of the forthcoming Lemma 1 in Section 3). 

Theorem 2. Let G be a bipartite graph. Then o&(G) # 1 for each positive integer 

k< ;(/Gj - 1). 

Proof. If m(G) dk, then (by a well-known theorem of Kiinig [7,8, 171) r(G) <k and 

the assertion follows from Theorem 1. Thus we may assume m(G) 3 k. Let M be a 

matching of G with IMI = k and let further V(G) = A U B be a partition of V(G) such 

that all edges of G connect a vertex of A with a vertex of B. 

We now describe a strategy for black which guarantees that white cannot win. Let 

i E (0,. . . , k - 1) and assume that, at time t2i, the following conditions hold: 

(i) Each edge of M either connects a black vertex with a white one or a black vertex 

with an unoccupied vertex or it connects a pair of unoccupied vertices, 

(ii) each black vertex is incident with an edge of M, 

(iii) the number of white vertices of A and the number of black vertices of B are of 

the same parity. 

These conditions trivially hold for i = 0. Denote by M’ the subset of edges of M which, 

at time t2i, connect a pair of unoccupied vertices. By (i), in conjunction with the fact 

that i< IMl, we have M’ # 8. NOW, if white picks Wi+l such that wi+l is on an edge 

e EM’, then black picks bi+l such that (wi+i, b,+l) =e; otherwise, black picks bi+l on 

an arbitrary edge of M’ such that the condition (iii) is maintained. In any case, the 

conditions (i)-(iii) still hold at time t2(r+l) and, consequently, these conditions hold 

at the end of the first phase. 

Now, let j20 be an integer and assume that, at time t’J(k+j), the conditions (i)-(iii) 

hold. Then, at time tg(k+j)+l, the numbers mentioned in (iii) are of distinct parities and 

thus (because (i) and (ii) hold at time tI(k+j)) there exists an edge of M connecting 

a black vertex b with an unoccupied vertex U. Now, in his (j + I)-th move of the 

second phase, black moves his man from b to U. Then, clearly, the conditions (i)-(iii) 

are maintained. and thus we have shown that white cannot win. q 

The following proposition provides another class of graphs for which white cannot 

win. 

Proposition 1. Let G be u graph with a perfect matching. Then c&(G) # 1 for each 

positive integer k < i(IGl - 1). 
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Proof. Since G has a perfect matching, black can place his men such that, at the end 

of the first phase, the white and black men are arranged in proper pairs. Thus, in the 

second phase, each black man can follow his mate wherever he goes and thus black 

cannot loose. 0 

The general question whether or not there exist graphs G for which white has a 

winning strategy for some k < $ (I GI - 1) remains unanswered and we pose it as an 

open problem. We remark that, if loops are allowed, than it is easy to give an ex- 

ample of a graph G for which white is the winner: just take G as the graph with 

V(G) = {a, b, c} and E(G) = {(a, a), (a, b), (a, c)} and let k = 1. Then, clearly, white 

wins the game. 

3. Extremal problems 

We introduce some additional notations. For nonnegative integers s, t, we write 

G 2 0” me’ to indicate that G contains the disjoint union of s + t graphs, s of which 

are cycles and t of which are complete graphs on two vertices. By (Y,s) we denote 

the complete bipartite graph with color classes of cardinality Y and s, respectively. 

By ( (Y),s), we denote the graph that results from (r,s) by adding all possible (;) 

edges connecting the vertices of a color class of cardinality Y. By (n), we denote 

the complete graph on y1 vertices, and {n} denotes the graph consisting of n isolated 

vertices. 

Lemma 1. For integers sb 1 and t 20, let G be a graph with G > 0” ue’. Assume 

that IGI > 5s + 2t - 2 and let k = 2s + t - 1. Then We = 0. 

Proof. Denote one of the players (white or black) by P and the other by Q. Let 

6 , . . . ,H,+, be a system of disjoint subgraphs of G, where HI,. . ,I-f, are cycles and 

K+l,..., Hz+, are complete graphs on two vertices. For each i E { 1,. . . , s}, pick arbi- 

trarily IHil - 3 vertices of Hi and call these vertices extra vertices; moreover, call all 

vertices of G which are not lying on any of the Hi (i = 1,. . . ,s + t) extra vertices. 

Then, because 1 GI 3 5s + 2t - 2, the number of extra vertices is at least 2(s - 1). From 

this one easily concludes that player P can manage to place his men such that exactly 

s - 1 of his men are on extra vertices and such that his remaining s + t men are on 

non-extra vertices of the subgraphs Hi (i = 1,. . . , s + t), exactly one of these men on 

each of these subgraphs. Then, for each Hi with i E { 1 . . . ,s}, the number of player 

P’s men placed on Hi is at least one and at most IHij - 2; and for each Hi with 

iE{s+l,..., s + t}, there is exactly one vertex of Hi which is occupied by P. Hence, 

in order to win the game, Q must have at least two of his men on each of the graphs 

Hi (1 <i<s) and one of his men on each of the graphs Hi (s + 1 <ids + t). Because 

k <2s + t this is impossible, and thus we have shown that Q cannot win the game. 

Hence wok = 0. Cl 
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For positive integers n, k with n >2k + 1, let a(n, k) and P(n, k) be defined as in the 

introduction. We start with the problem of determining cr(n, k). Clearly, 

cx(n,k)ak 

since the graph (k, n - k) has minimum degree k and ok( (k, n - k) ) = 2 by 

Theorem 1. We will see that in fact a(n, k) = k. For the purpose of proving this, 

we need the following result which was obtained in [4] as a corollary of the famous 

CorradUHajnal theorem [lo]. (In [4], Theorem A was not explicitly stated as a theorem, 

but it was proved in passing in the course of the proof of [4, Theorem 21.) 

Theorem A. For nonnegative integers s, t, let G be a graph with IG1>3s + 2t and 

6(G)>2s+t. Then G>OSUe’. 

The next theorem is an immediate consequence of Theorem A and Lemma 1. It 

shows that a(n, k) = k. 

Theorem 3. For a positive integer k, let G be a graph with jG[ d2k + 1 and 6(G) > 

k + 1. Then CO~(G)=O. 

Proof. Apply Theorem A and Lemma 1 for the special case s = 1 and t = k - 1. 0 

We now turn to the problem of determining fi(n,k). Clearly 

B(n,k>3 i 0 + k(n -k) 

since the graph ((k), n -k) has (i) + k(n -k) edges and ok(((k),n - k))=2 by 

Theorem 1. The next theorem shows that P(n, k) = (i) + k(n - k) provided that “n is 

not too close to 2k + 1”. More precisely, we assume 

n> [i(lOk - J32k2+1+ l)]. (2) 

Note that (2) implies n 3 2k + 1, which can be verified by an easy computation. 

Theorem 4. For integers n, k with k32, assume that (2) holds. Let G be a graph 

with IGI=n and 

e(G)> 
k 0 2 +k(n - k). 

Then 0k(G)=0 unless G” ((k),n -k). 
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For the proof of Theorem 4, we need the following Theorem B which is an imme- 

diate consequence of results obtained in [4] (namely, Theorem 2 and statement (6) of 

[41X 

Theorem B. For positive integers s, t put 

cp(s, t) := I 3s + 2t - 1 + 
(s+t)(s+t- 1) 

2(2s+t- 1) 1 (4) 

and let G be a graph with IGI =n~cp(s, t). Assume that 

e(G)3 (2s+2tV ‘) +(2s+t-l)(n-2s-t+l). (5) 

Then G > OS Ue’ or G” ((2s+t-l), n-2s-t+l) or GS (3s+2t-1) U{n-3s-2tfl). 

Before we prove Theorem 4, we derive the following Theorem 4’ which can be 

considered as a preliminary version of Theorem 4. 

Theorem 4’. For positive integers s, t, let cp(s, t) be as in (4) and let G be a graph 

with 

IGI = n 2 max(5s + 2t - 2, cp(s, t)}. (6) 

Assume that (5) holds and let k=2s+t- 1. Then 0k(G)=0 unless Gr((k), n-k). 

Proof. From Theorem B one concludes that G > OS U et or G ” ((2s + t - I), n - 

2s-t+l) or GE(3s+2t-l)U{n-3s-2t+l}. IfG>O”Ue’or GS((2si 

t - I), n - 2s - t + I), then the assertion follows from Lemma 1. Hence assume 

GE (3s + 2t - 1) U {n - 3s - 2t + l}. We show that in this case cuk(G) = 0. Denote 

by P one of the players (white or black) and by Q the other one. Denote by K the 

complete subgraph of G with 3s + 2t - 1 vertices. Player P employs the following 

strategy: P puts his first man on a vertex of K and, thereafter, P puts as many men 

on isolated vertices as possible. We show that Q cannot win. Consider the situation 

at time t2k. If all isolated vertices of G are occupied, then at least one vertex of K 

is unoccupied and thus (because at least one vertex of K is occupied by P) Q cannot 

win. On the other hand, if not all isolated vertices of G are occupied, then it follows 

from P’s strategy, that P has placed exactly k - 1 men onto isolated vertices. Hence at 

most k + 1 men are placed on K, which implies that at least IK I - k - 1 = s + t - 12 1 

vertices of K are unoccupied and thus Q cannot win in either case. 0 

Proof of Theorem 4. Let k 22 be a fixed integer. For the purpose of proving 

Theorem 4 with the aid of Theorem 4’, we want to determine integers s, t 3 1 such that 

k = 2s + t - 1 and such that max(5s + 2t - 2, cp(s, t)} is minimal. We put m = s + t. 

Then 

5s+2t-2=3k-in+1 
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and 

Hence our task is to determine an integer m, 2 <m <k, such that 

rnax 
m(m - 1) 

2k 11 
is minimal. By elementary considerations (which are left to the reader) one finds that 

a solution of this task is 

mo=[i(d32k2+ 1 -4k+ 1)J. 

Moreover, one obtains 

(7) 

max 
C 

m0(m0 - 1) 

2k 11 
= 3k - mo + 1 =[i(lOk - J32k2+1+ l)]. (8) 

Now, let s := k - mo + 1 and t := 2mo - k - 1. Then s, t are integers satisfying the 

equations k = 2s + t - 1 and mo = s + t. Because mo d k, we have s 3 1; moreover, t 2 1 

follows from (7) by an elementary computation. Hence we have determined integers 

s, t as desired. Moreover, one obtains from (8) that 

max(5s + 2t - 2, cp(s, t)} = I+( 10k - J32k2+1+ 1)l. 

Hence Theorem 4’ can be employed to obtain Theorem 4. 0 

In the context of Theorem 4 it is interesting to observe that 

4. Paths and cycles 

In this section, we solve the problem of determining c@G) when G is a path or 

a cycle. For settling the case when G is a cycle, we need the following lemma. This 

lemma also shows that We = 2 when G is a path. (We mention that there exist 

other more direct and shorter ways to settle the case when G is a path.) 

Lemma 2. Assume that the board is a path P and that, in the first phase, black 

plays according to the following rule. 

Black chooses bisuch that, at time t2i, P[wi,bi] is completely and, if possible, 

alternately occupied (i = 1,. . . , k). (9) 

Then, for the second phase, black has a strategy to win the game. 
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o-. -0 -*4- . -o_. . -0 
\ / 

Pb.Yl 

Fig. 2. The path P[x’,bi] in the proof of Lemma 2. 

Proof. Assuming that black plays according to (9), we claim that, for each i E 
{ 1,. . . ,k}, the following holds. At time t2i, there exists a collection pi of disjoint 

subpaths of P such that the vertices covered by the paths of pi are exactly the occu- 

pied vertices and such that the following holds: 

For each P’ E pi, if P’ has a white end vertex which is not an end vertex of P, 
then P’ is alternately occupied and has an even number of vertices. (10) 

By (9), this holds at time t2. For some i E (2,. . . , k}, assume that the claim holds at 

time t2(i_l). We are considering the situation at time t2i and show that the claim still 

holds. 

If P[wi,bJ is alternately occupied, then we choose P[wi,bi] as one of the paths of 

9i and, as the remaining paths of pi, we take those members of pi-1 which are 

disjoint to P[wi,bi]. Then, clearly, 9i has the required properties, and thus we may 

assume that P[wi,bi] is not alternately occupied. 

Let x be the uniquely determined vertex of P such that P[x,wi] is completely occu- 

pied, Wi E P[x,bi], and x is either an end vertex of P or x has an unoccupied neighbor 

x’. If x is black or if x is an end vertex of P, then we are done since we can choose 

P[x,bi] as one member of pi and, as the remaining paths of 9i, we can pick those 

members of Yi-i which are disjoint to P[x, bi]. Hence we can assume that x is white 

and that there exists an unoccupied neighbor x’ of x. 

Let y E P[x, wi] be the uniquely determined vertex such that P[x, y) is alternately 

occupied, IP[x, y)l is even, and P[x, y) is maximal with these properties. We claim 

that y is black. (See also Fig. 2.) For the proof of this claim, suppose that y is white. 

Note that y # wi since, otherwise, by rule (9), black would have put his i-th man onto 

x’. Let y’ E P[y, wi] be adjacent to y. By the induction-hypothesis, there are disjoint 

paths Qi , . . . , Qr E Pi-1 such that 

Lj v<Qi)= v(P[XtWi)). 
i=l 

Because Qi , . . . , Qr are members of pi-t, the following holds. If Qj has a white end- 

vertex, then Qj is alternately occupied and has an even number of vertices (j = 1,. . . , r). 

However, this is only possible if y’ is black since P[x, y] is alternately occupied and 

because x,y are white. This contradicts the maximality of P[x,y). Hence we have 

proved that y is black. 

Now, we can choose P[x, y) and P[y,bi] as paths of 4 and select the other paths 

of Yi as those members of pi-1 which are disjoint to both P[x, y) and P[y,bi]. This 
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yields Pi as desired. Hence we have proved that our claim holds at time t2i, and thus 

it holds for all i=l,...,k. 

For P’ E Ypk, denote by &,(P’) the set of end vertices of P’ which are not end vertices 

of P. At time t2k, if all members of V,(P’) are black, then black never moves his men 

on P’, and so white cannot move his men on P’. On the other hand, if @(P’) contains 

a white vertex, then (10) implies that the white and black vertices of P’ are arranged 

in proper pairs and each black man on P’ can follow his mate wherever he goes. This 

clearly ends up with a win for black. El 

Theorem 5. Let n, k be positive integers with n > 3 and k < i(n - 1). Then uk(P,,) = 2 
and 

mk(cn) = 
0 ifk=l or k=$(n- l), 

2 otherwise. 

Proof. The case k = 1 is trivial and the case that the board is a path is covered by 

Lemma 2. Hence let k 2 2 and assume that C,, is the board. We first present a strategy 

for black to win the game if kc i(n - 1) and to achieve a draw if k = i(n - 1); 
thereafter, we show that white can achieve a draw if k = i(n - 1). 

Let iE{l,..., k}. Assume that, at time t2+1), the players have placed 2(i - 1) 

men in proper pairs and assume further that white places his i-th man on a neigh- 

bor of a white vertex. Then, clearly, black can place his i-th man such that there 

are disjoint paths Qi, Q2 C C, covering all vertices of C, and having the following 

properties: 

(i) Qi is non-trivial, the first and the last vertex of Qi is black, and all vertices of 

Ql are occupied, 

(ii) the men on Q2 are arranged in proper pairs. 

Hence, in order to win the game, black never moves his men on Qi and imagines that 

the game is played on Q2 (rather than C,,). Moreover, because of (ii), black can also 

imagine that the men placed so far on Q2 were placed according to rule (9). Now, 

black continues to play on Q2 according to (9) and, by Lemma 2, wins the game. 

Hence we may assume that the following holds. 

At time t2(i_,), if the players have placed 2(i - 1) men in proper pairs, 

then white never places his i-th man on a neighbor of a white vertex 

(i=2 ,...,k). (11) 

We may assume that the vertices of C,, are denoted by 0, 1,. . . , n - 1 where E(C,) = 
{(j,j+ 1): j=O,..., II - 2) U {(n - 1,O)). NOW, for i = 1,. . . , k - 2, black chooses bi 

such that 

bi-wi - l(modn). (12) 

Note that, because of (1 l), this choice is possible. If k = ;(a - l), then black also 

picks bk_-l and bk according to (12) and thus achieves a draw. Now, let kc i(n - 1). 

Consider the situation at time tZk_3. We may assume q-1 = 0. Then, for some s > 1, 
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V3 

Q-1 

I Q* 
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I 

\ 
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\ 
/ 

\ / 

\ / 

\ / 
\ 0 

. / 
---- 

Fig. 3. The situation at time t2k__3; ~‘1 =v2 is possible 

there exist vertices ut ,212,. . , vzs_ 1, vzs of C,, for which the following conditions (a)- 

(c) hold. (This immediately follows from (11) together with our assumption (12) on 

black’s first k - 2 moves; for an illustration, see Fig. 3.) 

(a) O=VI du2, V2j+l<V2i+l<U2i+2(i=l,...,S- l), vzs<n- 1, 

(b) the subpaths Qi := [~_t,. . . , v2i] of C, are completely and alternately occupied 

(i= 1 , . . , s) and all vertices outside Qt U . . . U Qs are unoccupied, 

(c) vi is black if and only if 1’23 and i- 1 (mod2) (i= 1,...,2s). 

We now describe rules for black for choosing bk_1 and bk. These rules ensure that, 

at time t2k, the following condition (13) holds. (One easily finds that, in the second 

phase, this results into a win for black,) 

The 2k men are placed in pairs on C,,, but not alternately; 

k - 2 of the pairs are proper and the remaining two pairs are of the same parity. 

(13) 

Cuse 1: ~32 and vd#n - 2. 

Black chooses bk-1 = n - 1. Then the so far placed 2(k - 1) men are not on a single 

path P C C,, with IP( = 2(k - 1). From this one easily concludes that black can answer 

the k-th move of white such that, at time t2k, the 2k men are arranged in proper pairs 

on C,,, but not alternately. Hence (13). 
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Case 2: ~32 and vq=n -2. 

Note that v4 = n - 2 implies s = 2. Black chooses bk- 1 = v2 + 1. By (1 1 ), wk # n - 1 

and thus black can choose bk as a neighbor of wk. It follows that the 2k men are 

arranged in proper pairs on C,, but not alternately. Hence (13). 

Case 3: s= 1. 

Black chooses bk_1 = 29 + 3. If wk = 112 + 1, then black chooses bk = n - 2. (Because 

k < i(n - l), the vertex n - 2 is unoccupied.) If wk = v2 + 2, then black’s choice 

iS bk = n - 1. If wk = v2 + 4, then black chooses b,: = 2’2 + 1. Finally, if Wk # v2 + i 

for i = 1,2,4, then black chooses bk = wk - 1. One easily checks that, in each of the 

subcases, condition (13) is met. 

Now, let k = i(n - 1). It remains to show that white has a strategy which prevents 

a win of black. Suppose that this is not the case and choose n minimal with this 

property. If black picks bl such that 61 is a neighbor of WI, then white picks w2 as the 

unoccupied neighbor of bl. In the second phase, there is only one unoccupied vertex 

and thus the three men +I, bl, $2 “behave like a single white man”. More precisely, 

this means the following. Assume that, at some point in time of the second phase, the 

white men Gi and $2 are placed on the neighbors of &I. For some i E { 1,2}, assume 

further that white moves @i to an unoccupied neighbor. Then black has no choice but 

moving & to the vertex just left by Gi, and subsequently white has to move G, to the 

vertex just left by 81 (for j E { 1,2} with j # i). It follows that, in the obvious way, one 

can simulate the game on C, with k men per player by the game on Cn_2 with k - 1 

men per player. Hence one concludes from the minimal choice of n, in conjunction 

with the trivial statement wi(Cs) = 0, that white can prevent a win of black. This 

contradiction settles the case that bl is a neighbor of WI. 

Hence assume that black picks bl such that bl is not a neighbor of ~1. Then white 

picks w2 as a neighbor of WI such that the WI, bl -path of C,, which does not contain 

w2 has even length; this is possible because n is odd. For j = 1,2, denote by Qj the 

wj, bi-path of C,, which contains W3_j. Note that both Qi and Q2 have odd length. In 

the sequel, whenever necessary, we consider the paths Qj to be oriented from wj to 

bl. For example, we use expressions like “the i-th unoccupied vertex of Qj” thereby 

meaning the i-th unoccupied vertex of Qj when Qj is traversed from wj to bl. By 

Uj,/, we denote the set of vertices of Qj which are unoccupied at time tl; by U,i, /,i, we 

denote the i-th unoccupied vertex of Qj at time tl (3 < I< 2k, 1 <j <2). 

In the sequel, we describe rules for white for the choice of ~3,. . . , wk and, subse- 

quently, show that these rules ensure a win for white, which contradicts the supposition 

that white does not have a strategy preventing a win of black. Let i E (2,. . . , k - 1 }. 

We assume that, at time t2;_,, the following holds. 

If Ui,2i_i and Uz,,i_ 1 both are nonempty, 

then (Ui,2i-_1/ and I&J-I 1 both are odd. 
(14) 

We now consider the situation at time t2i. By symmetry, we may assume bi E Ql. (If 

bi E Q2, then white employs rules for the choice of wi+l which are analogous to the 

forthcoming rules for the case bi E Ql.) If U 1,2i = 0 , then white chooses wi+i = ~2,2i,2. 
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Let Ui,zi # 8. If Uz,zi = 8 and bi = u 1,2i_l,l, then white’s choice is Wi+i =uI,~~,J. NOW 

assume U2,2i # 8 or bi #ul~_l,~. If there exists an unoccupied vertex on Ql[bi,bl], 
then white chooses wi+i as the first such vertex; otherwise, white chooses Wi+r E Ur,Ii\ 

{ur,2i,i}. (The latter choice is possible for the following reason. From Ur,2, #a and 

b, E Ql, it follows that IU1,2i-l/ 22. If U2,2i_1 #@I, then 1U1,2i_lla3 by (14) and thus 

the claimed choice of wi+r is possible. If U2,2i-1 = 0, then the claimed choice of wi+r 

is clearly possible.) 

Note that, since both Qt and Q2 have odd length, (14) is true for i = 2. Further, if 

(14) holds for some i E (2,. . , k - l}, then it clearly follows from the just described 

rules for the choice of Wi+t that (14) also holds for i + 1 instead of i, and thus white 

can employ these rules for choosing all the vertices ~3,. . . , wk. In order to show that 

this results into a win for white, we need the following statement (15) which is a 

consequence of the rules for the choice of ~3,. . , wk. The proof of (15) can be carried 

out by induction on i; we leave the easy (but somewhat lengthy) proof to the reader. 

ForjE{1,2} and iE(2,. . . , k}, let u E Uj,,i_l and v E V(Q, [wj, u)). Then, 

at time tzi-1, Qj[V,U] contains at least as many white vertices as black ones 

and, if u=u~,J_~,I, u = uj,zi_i,2 and Uj-j,zi_l = 8, then Qj[u, U] contains more 

white vertices than black ones. (15) 

We define vertices xi, yi (i = 2,. . . ,k) as follows. Let i E (2,. . . ,k}. If both U1,2i_l 

and U2,2i_r are nonempty, then let xi=ur,2i_i,r and yi=u2,2;_r,r; if U,,J_~ #@ and 

tY_.i,Ii_ 1 = 0 for some j E { 1,2}, then let ~i = uj,zi_ 1.1 and yi = uj,z,- 1,~. For j E { 1,2}, 

let P = [vo, VI,. . . ,vz~] be a subpath of QJ, where r>, 1 and vi E Qj(Us, bl]. For all 

PE{l,..., 2r - l}, assume that, at time t2i_1, up is white if p is odd and black if p is 

even. Then P is called a chain for xi if vzr =xi and if va is white; further, P is called 

a chain for yi if vlr = yi and if either vo is white or vg =x,. 

At time t2i_1, there exist both a chain for xi and a chain for yi (i = 2,. , k). 

(16) 

For the proof of (16) let x: be the neighbor of Xi for which Xi E Qj[xi, bl] (where Q, 

denotes the path with xi E Qi). Similarly, we define y;. Then neither X: nor y: is black 

since this would contradict (15). Further, yj cannot be unoccupied since this would 

imply yi = xi, in contradiction to (15). Hence both xi and y: are white. Let xi E Qj and 

suppose that there exists no chain for Xi. From this, together with the fact that x(, wi 

and w2 are white, one concludes that there exists a subpath Q = [us, ~1,. . . ,24 = $1 of 

Qj such that u, is black if either 0 = 0 or 0 E 1 (mod 2) and such that u, is white, 

otherwise. But this contradicts (15). In a similar manner, the supposition that there 

exists no chain for yi leads to a contradiction to (15). Hence (16). 

Recall that, at time t2k-1, Xk and yk are the only unoccupied vertices. From this, 

together with (16) for i = k, one easily concludes that white wins the game. 0 
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5. Trees for which the outcome is a draw 

We frequently make use of the following simple lemma. 

Lemma 3. For S C V(G), let H be a subgraph of G consisting of some of the com- 

ponents of G -S. Let M be a matching of H. At time t2k or at some point in time of 

the second phase, assume that all vertices of S are white and, for each e EM, there 

is exactly one white vertex incident with e. Assume further that one of the following 

conditions (i), (ii) holds. 

(i) The number of black vertices of H is less than IMl. 

(ii) For each e E A4, there is exactly one black vertex incident with e and there do 

not exist any other black vertices in H; further, it is black’s turn to do the next 

move and black cannot move any men on vertices outside H. 

Then black cannot win the game. 

Proof. Assume that (i) holds. Then, in order to prevent a win of black, white can 

employ the following strategy: white never moves any of his men except for those 

which are on vertices incident with edges of M, and these white men are just moved 

along edges of M. This is always possible because condition (i) is assumed and because 

the white men positioned on S do not allow black to move any of his men from 

(G - S) -H to H. Thus black cannot win the game, i.e., the outcome is either a draw 

or a win of white. 

Next assume that (ii) holds. Then the men on A4 are arranged in proper pairs and, 

in order to prevent a win of black, each white man on M just has to follow his mate 

whereever he goes. 0 

For each integer m 22, we define a tree T, as follows. (For an illustration, see 

Fig. 4.) The vertices of T,,, are denoted by E, CI, c(‘, al,. . . , ct,, CY~, . . . a;, B, p’, /31,. . . , /!L, 

/I{, . . . , pk, y, y’, ~1,. , ym, y{, . . . , yk and the edges of T, are the following: ea, .a/?, r-:y, XX’, 

pp’, YY’, @%, Bpit YYi, @iC(, Pi/$, YiY: (i = 1,. , ml. 
The component of T,,, - E which contains CI is denoted by A; similarly, we de- 

note by B and C the components of T, - E containing fi and y, respectively. Let 

IV;:={ cI,c(i: i= I,..., m} and MA :=Mi u {xa'}; similarly, the matchings M~,,MB,M& 

and Mc are defined. 

Theorem 6. For m 22, let T,,, be the above defined tree and let k = 2(m + 1). Then 

Wk(T,)=o. 

Proof. By Theorem 2, wk( T,) # 1. We show how white can prevent a win of black. 

White chooses WI = E and, in his next two moves, occupies as many vertices of {a, /I, y} 

as possible. 
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Fig. 4. The tree r, (m>2). 

Case 1: {w,w3} Cr {a,B,y}. 

We may assume (~1, ~3) = {p, y}. First assume that bi EA for at most one i E { 1,2,3}. 

Then white picks ~4,. . . , w,,,+4 such that each edge of MA contains exactly one of these 

vertices. (This choice is possible since bi E A for at most one i E { 1,2,3}.) Further, 

white chooses w,+s, . . . , w2,,,+2 E B U C such that each edge of Mf UM& contains at 

most one of these vertices. (This choice is possible since /ML U M&I = 2m and because 

the number of edges of MA U ML for which both ends are black can be at most m + 1.) 

Then, at time f2k, the number of white vertices in V(A) U {a} is greater than the num- 

ber of black vertices in this set and thus B or C must contain more black vertices than 

white ones; we may assume that this holds for B. Then application of Lemma 3(i) 

(with S = {P},H = T,,, -B, and M appropriately chosen) yields that black cannot win. 

Now assume that at least two of the vertices bi, b2, b3 are in A. Then white chooses 

~4,. . . , WQ,,,+~ such that these vertices are on 2m - 1 distinct edges of ML U M& which 

clearly is possible. Application of Lemma 3(i) (with S = {E}, H = B U C, and M ap- 

propriately chosen) yields the assertion. 

We may assume bl = ~1, w2 = fl, b2 = y. White picks ws,. . . , w2,,+2 such that, at time 

tzk, each of the edges of Mi UML is incident with exactly one of these vertices and 

such that the following holds. At time t2k, if neither ~j nor IX: is black, then zi is 

white (j= l,..., m). It follows that, at time t2k, there must be m + 1 black vertices 

in B and m black vertices in A since, otherwise, Lemma 3(i) could be employed to 

find that black cannot win. Denote by F the set of vertices of A which, at time t2k, 
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are unoccupied. Clearly, IFI =2 and it follows from the choice of ~3,. . . ,w~k+~ that, 

up to symmetry, there are just two cases to be considered, namely, F = (~(1, a’} and 

F= {~,a2). 

In both of these cases, in his first move of the second phase, white moves q to 

sit. If F = (~(1, a’}, then application of Lemma 3(ii) (with S = {b}, H = T, - B, and 

A4 appropriately chosen) yields the assertion. Hence let F = {XI, ~2). Then F follows 

p wherever 7 goes and 4 follows 5 wherever Z goes; further, for j = 3,. . . ,m, if $ 

is white and Ej is black, then 4 follows 4 wherever !i goes. It follows that, after 

a finite number of moves of the second phase, black must move 2 to CI. Then white 

answers this move of black by moving ?2 to ~12. It follows that we are in the situation 

of Lemma 3(ii) (with S = {p}, H = T, -B, and A4 appropriately chosen). Hence black 

cannot win the game. q 

6. The case k < 2 

For m 23, denote by Ym the class of graphs G having the following properties: 

G contains a chordless cycle C of length m, all vertices of V(G)\V(C) have degree 

at most one, and no two vertices of V(G)\ Y(C) are joined by an edge. With this 

notation, our result on the case k d 2 reads as follows. 

Proposition 2. (a) For each graph G with ICI 33, q(G) = 0 if G contuins a cycle, 

and ~1 (G) = 2, otherwise. 

(6) For each graph G with IGl>5, coz(G)=O if G>O’U e’ or GE.Y~, und 

02(G) = 2, otherwise. 

Proof. We prove part (b), part (a) being trivial. By Lemma 1, we have @Z(G) = 0 if 

G > 0’ u e’. If G is a forest, then one easily finds 02(G) = 2. (The proof is left to 

the reader.) Now assume G 2 0’ 111 e ‘, G is not a forest, and G 6 Sf,,, for all m B 3. 

From these assumptions, one easily concludes that r(G) = 2 and thus 02(G) = 2 by 

Theorem 1. 

Hence let G E Y, for some m 3 3 and let C be the uniquely determined cycle of G. 

For v E V(C), let B(v) be the set of neighbors of u which are not on C. 

We start with discussing the case m = 5. The easy proof that black can prevent a win 

of white is left to the reader. We sketch the proof that white can prevent a win of black. 

White picks WI on C. Clearly, it may be assumed that bl is not an isolated vertex. 

If bl E B(wl), then white picks w2 arbitrarily on C; if bl EC and (bl,wl) $!E(C), 

then white chooses w2 as the uniquely determined neighbor of w1 on C which is not 

adjacent to bl; in all remaining cases, white chooses w2 as a neighbor of bl on C. One 

easily checks that, for all possible choices of b2, white can force that, at the end of 

the first phase or after a few moves of the second phase, one of the following holds: 

(i) White wins the game; 

(ii) the four men are arranged alternately on C; 



T Andreae et ul. I Theoretical Computer Science 215 (1999) 305-323 323 

(iii) both white men are on C and there exists a white vertex u E C such that at least 

one vertex of B(v) is black. 

One easily finds that, if (ii) or (iii) holds, black cannot win the game. 

Now let m # 5. If WI 4 C or m E {3,4}, then one easily checks that wz(G) = 2. Let 

m>6 and w1 E C. Then black chooses bt on C such that the distance of WI and hl is 

three. A similar discussion as in Case 3 in the proof of Theorem 5 yields OZ(G) = 2. 

(We leave the details to the reader.) 0 
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