=

metadata, citation and similar papers at core.ac.uk brought to you by .. CC

provided by Elsevier - Publisher Con

RO

3 Computational
?g Geometry
Theory and Applications

ELSEVIER Computational Geometry 23 (2002) 195-207

www.elsevier.com/locate/comgeo

Reporting intersecting pairs of convex polytopes
in two and three dimensions

Pankaj K. Agarwat*, Mark de Berd, Sariel Har-Peleti Mark H. Overmars,
Micha Sharifet, Jan Vahrenholt?

@ Department of Computer Science, Duke University, Durham, NC 27708-0129, USA
b |nstitute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
¢ Department of Computer Science, DCL 2111, University of Illinois, 1304 West Soringfield Ave., Urbana, 1L 61801, USA
d School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
€ Courant Ingtitute of Mathematical Sciences, New York University, New York, NY 10012, USA
f \Westfalische Wi helms-Universitét Munster, Institut fur Informatik, 48149 Minster, Germany

Received 6 August 2001; accepted 10 January 2002

Communicated by S. Suri

Abstract

LetP ={P1,..., P,} be a set ofn convex polytopes iiR?, for d = 2, 3, with a total ofn vertices. We present
output-sensitive algorithms for reporting alpairs of indiceg(i, j) such thatP; intersectsP;. For the planar case
we describe a simple algorithm with running timeéx®3log?*¢ n + k), for any constant > 0, and an improved
randomized algorithm with expected running tim¢(@ogm + k)a(n)logn) (which is faster for small values
of k). Ford = 3, we present an @%5%¢ + k)-time algorithm, for any: > 0. Our algorithms can be modified to
count the number of intersecting pairs i 310g>*¢ n) time for the planar case, and in&¥/°t¢) time for the
three-dimensional case.2002 Elsevier Science B.V. All rights reserved.

* Corresponding author. P.A. was supported by Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan
fellowship, by NSF grants EIA-9870724, EIA-997287, and CCR-9732787, and by a grant from the U.S.—Israeli Binational
Science Foundation.

E-mail addresses: pankaj@cs.duke.edu (P.K. Agarwal), markdb@cs.ruu.nl (M. de Berg), sariel@cs.uiuc.edu
(S. Har-Peled), markov@cs.ruu.nl (M.H. Overmars), sharir@cs.tau.ac.il (M. Sharir), jan@math.uni-muenster.de
(J. Vahrenhold).

1 M.S. was supported by NSF Grant CCR-97-32101, by a grant from the Israel Science Fund (for a Center of Excellence in
Geometric Computing), by the Hermann Minkowski-MINERVA Center for Geometry at Tel Aviv University, and by a grant
from the U.S.—Israeli Binational Science Foundation.

2 Part of this work was done while visiting Duke University.

0925-7721/02/%$ — see front matter 2002 Elsevier Science B.V. All rights reserved.
Pll: S0925-7721(02)00049-4

https://core.ac.uk/display/82159649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

196 PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207
1. Introduction

Computing intersections in a set of geometric objects is a fundamental problem in computational
geometry. A basic version of this problem is when the objects are line segments in the plane. Indeed,
computing the intersecting pairs in a setmfline segments was one of the first problems studied
in computational geometry: Already in 1979, Bentley and Ottmann [8] described an algorithm for
this problem with Q(n + k)logn) running time, wherek is the number of intersecting pairs of
segments. Since then much research has been done on this problem, culminating in optimal—that is,
with O(nlogn + k) running time—deterministic algorithms by Chazelle and Edelsbrunner [13] and
Balaban [6], and simpler randomized algorithms by Clarkson and Shor [15] and Mulmuley [20].

Another well-studied variant of the problem is the red—blue intersection problem. Here one is given
a set of red segments and a set of blue segments, and the goal is to report all bichromatic intersections
If there are no monochromatic intersections, then the problem can be solved iog@ + k) time by
applying an optimal standard line—segment intersection algorithm; when the red segments and the blue
segments both form simply connected subdivisions, then the problem can even be soled+it)O
time [16]. The situation becomes considerably more complicated when there are monochromatic
intersections. Applying a standard line—segment intersection algorithm will not lead to an output-sensitive
algorithm because it may report a quadratic number of monochromatic intersections even when there are
no bichromatic intersections. Somehow one has to avoid processing all the monochromatic intersections.
Agarwal and Sharir [4] showed that one can detect whether the two sets interseet*ifQ time3
Later Agarwal [1] and Chazelle [10] gave(@/31og®® n + k)-time algorithm to report alk red—blue
intersections. Basch et al. [7] presented a deterministia: @ k)a (n) log®n) algorithm for the case
where the set of red segments is connected and the set of blue segments is connected. This algorithn
also works for the case of Jordan arcs, each pair of which intersect at tivasss; its running time then
becomes Q.,,»(n + k) log®(n)), wherea,(n)—the maximum length of axw, s) Davenport—Schinzel
sequence—is an almost linear functiomdbr any fixeds [22]. The bound for the case of segments was
later improved to @(n + k) log®n log logn) by Brodal and Jacob [9]. Har-Peled and Sharir [18] improved
the general case of Jordan arcs by giving a randomized algorithm \ith £ + k) logn) running time.

We are interested in the case in which the input consists of convex polygons in the plane. We want
to compute all intersecting pairs of polygons. More formally, we are given &sef{ P, ..., P,} of
m convex polygons irR? with a total ofn vertices, and we want to report allpairs of indicesi, j
such thatP; intersectsP;. (The polygons are considered to be 2-dimensional regions, so two polygons
intersect also in the case that one of them is fully contained inside the other.) If each pdlybas
constant complexity, then the number of intersections between pairs of edges will not exceed the total
number of intersecting pairs of polygons by more than a constant factor, and one can solve the problem in
O(nlogn + k) time, by a straightforward modification of the algorithms mentioned above for reporting
segment intersections. If the given polygons do not have constant complexity, then the problem becomes
considerably harder because the intersection of a pair of the given polygons can have many vertices.
Regarding each input polygon as a collection of segments will thus not lead to an output-sensitive
algorithm in this case.

3 The meaning of a bound like this is that for any O there exists a constant= c(¢) that depends oa, so that the bound
holds withc as the constant of proportionality.

PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207 197

Gupta et al. [17] nevertheless developed an output-sensitive algorithm for this case that runs in time
On*3*¢ 4+ k). The algorithm first computes a trapezoidal decomposition for each polygon. Then it
computes, using a multi-level partition tree, those pairs of intersecting trapezoids such that the leftmost
intersection point of the trapezoids is also the leftmost intersection point of the corresponding polygons.
This way it is ensured that each intersecting pair of polygons is reported exactly once.

We develop two new algorithms for this problem. The first algorithm is randomized and combines
hereditary segment trees [14] with the above mentioned red—blue intersection algorithm of Har-Peled
and Sharir [18]. Its expected running time is(@logm + k)a(n) logn) and it is significantly faster than
the algorithm of Gupta et al. fdr= o(n*3). In addition, the algorithm also works for convex splinegons
(that is, convex shapes whose boundary is composed of Jordan arcs) with only a minor increase in running
time; this is not the case for the algorithm of Gupta et al. Our algorithm can be made deterministic at the
expense of an additional polylogarithmic factor.

Our second algorithm has(@"/21og>™® n + k) running time, for any constaat> 0, and is thus slightly
faster than our first algorithm fat = Q (n%/3). It is related to the algorithm of Gupta et al.—it uses
partition trees and similar techniques to search for the rightmost intersection points of intersecting pairs
of polygons—but it is conceptually simpler and it has a slightly better running time.

The main advantage of our approach over Gupta et al.’'s is that it generalizes to the 3-dimensional
version of the problem: Given a s@= (P, ..., P,,} of m convex polytopes irR® with a total ofn
vertices, report alk pairs of indices(i, j) such thatP; intersectspP;. For this problem, no subquadratic
algorithm was known except for the special case where the polytopes satisfy two special properties: the
minimum aspect ratio of any bounding box of the polytopes is not too small (thus the polytopes must be
fat), and the scale factor (the ratio of the sizes of the largest and the smallest polytope) is not too large.
In particular, if these two values are constant, Suri et al. [23] gave an algorithm for arbitrary dimension
d with running time Qnlog’1n + klog?~1n). Their algorithm works by first computing all pairs of
bounding boxes that intersect, and then checking for each such pair whether the polytopes themselves
intersect. Under the conditions mentioned above, the number of intersecting bounding boxes is in the
same order of magnitude as the number of intersecting polytopes (up to an additive linear term), which
means their algorithm is efficient. In general, however, the number of intersecting bounding boxes can
be quadratic even when there are no intersections at all among the polytopes.

We generalize our second 2-dimensional algorithm to 3-dimensional space, and obtain an algorithm
with running time @n®5¢ 4 k), for anye > 0. Such a generalization seems hard for the algorithm of
Gupta et al., as the vertical decomposition of a convex polytope can have quadratic complexity. Note that
our algorithm for the 3-dimensional case has the same running time as the best known algorithm for the
much simpler problem of reporting all intersecting pairs in a set of triangl&s {3].

2. Theplanar case

Let P={Py,..., P,} be a set ofm convex polygons in the plane, with a total @fvertices. For
simplicity, we assume that none of the polygons has a vertical edge and that all the vertex coordinates
are distinct; we can enforce this in@ogn) time by applying a suitable rotation. We also assume that
no two edges overlap (that is, intersect in more than one point). To this end, we shift such edges slightly
in O(nlogn + k) time in a preprocessing step; this can be done in such a way that the collection of
intersecting pairs of polygons does not change.

198 PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207

For a polygonP;, we define?; to be the leftmost point oP; andr; to be the rightmost point oP;
(since there are no vertical edgés,andr; are uniquely defined). They partition the boundaryRof
into two convex chains: thapper chain, denotedU;, and thelower chain, denotedL,. Note that the
rightmost vertex of?; N P; is r;, r;, an intersection point of/; with L ;, or an intersection point of;
with U;.

We first describe an algorithm whose running time is near-linear amd k£, and then a worst-case
optimal algorithm for the case of largewhose running time is @*3logn + k).

2.1. Anear-linear randomized algorithm

We present a randomized algorithm that reports, (mw@gm + k)a(n) logn) expected time, alk
intersecting pairs of polygons ih. For each polygorP;, we defines; to be the segment connectiigto
r;; we calls; thespine of P;. Let 8P denote the set of all the spines.

Our algorithm starts by constructinghareditary segment tre@ on (thex-projections of) the spines
of 8P [14]. Each nodey of T is associated with a vertical strify, and with a subsefP(v) of spines.
A spines; intersectingW, is short at v if at least one of its endpoints lies in the interior'@f, otherwise
it is long. The setSP(v) is the subset of spines that inters@ét and are short at the parentoflf v is
the root, ther8P(v) = 8P. LetP(v) = {P; | s; € SP(v)}. A polygon is short (respectively, long) aif its
spine is short (respectively, long) @tAs shown in [14],> " |P(v)| = O(m logm).

We assume thaéiP(v) andP(v) are clipped to withinW,,. At each node of the tree, we will report
all pairs(i, j) with the following property:

the rightmost intersection point & and P; lies insideW, and P; is long atv. ()

The following lemma is straightforward from the structure of hereditary segment trees.

Lemma 2.1. For every pair of intersecting polygons P; and P;, thereis exactly one node v of T at which
property (x) holds.

Letk, be the number of pairs that satisfy propestydt a nodev. Then) _ k, = k. Our procedure will
ensure that a pat, j) is reported only once, at the node whespi§ satisfied, but it will spend roughly
O(logn) time for each intersecting pair.

Fix a nodev. Let P, € P(v) denote the subset of long polygonsvatand letPs C P(v) denote the
subset of short polygons at Denote the set of spines & by 8P;, the set of their upper chains by
U., and the set of their lower chains By, . The setssPs, Us, andLg are defined analogously f6ts.
Again, all these objects are clipped to within . Letn, denote the total number of edges in (the clipped)
P, andPs. As above, the structure of hereditary segment trees implieg that, = O(n logm). Finally,
we defineRg to be the set of right endpoints of the spinessiP(v) that lie in the interior ofW,. Note
that every point inRg is the right endpoint of an (unclipped) original spineSiA. Let i, be the number
of intersection points betwees; andSP(v) U aP(v)—ignoring, of course, “intersections” between a
spine and itself—plus the number of intersection points between the upper (respectively lower) chains of
P, and the lower (respectively upper) chainshgh), wheredaP(v) ={dP | P € P(v)}.

Lemma2.2.)" _;u, = O(k).

PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207 199

Proof. Leto be an intersection point of a spisge 8P, (v) and another sping; € SP(v); o is one of

the intersection points counted foy. We claim that is the only node at which is counted by, . It is

obvious thatr cannot be counted by a nodeother than an ancestor or a descendent, af the vertical

strip W,, associated withw has to contain the intersection poimt Since neithes; nors; belongs to

8P, (w) for any ancestow of v, o will not by counted byu,,. On the other hand; does not belong to

8P (u) for any descendent of v, soo will not be counted by any descendentwogither. Hence is the

only node at whichr is counted. A similar claim holds for an intersection poin86f; (v) andd®(v) or

of upper (respectively lower) chains 8f (v) and lower (respectively upper) chains®fv). Since there

are Qk) intersection points between two spines, between a spine and a polygonal chain, and between
upper and lower polygonal chains, the lemma follows

Since all the vertex coordinates are distinct, there exists at most one sp#¥#(ih whose right
endpointr; lies on the right boundary oW,. We can easily compute in @,) time all polygons of
P(v) that contairr;. We now describe how we report all the other pairs that satigfat(v.

We construct, in @, logn, + wu,) time, the arrangemend = A(8P;) of the spines of the long
polygons [13]. We also add the vertical lines boundifigto A. Each facef of A is a convex polygon,
so we can compute the intersections between a linedgnaoh O(logn,) time. We preprocessl, in
O((n, + uy) logn,) time, for planar point-location queries [21]. For each edgé P(v), we locate its
left endpoint inA and then trace it through, spending @ogn,) time at each face ofl thate intersects.

For each facef € A, we report the pairgi, j) that satisfy) at v and for which the rightmost point
of P, N P; lies insidef. This is accomplished in the following three stages.

(a) Report all pairgi, j) such thatP; € P, contains the right endpoimt € Rg andr; € f.

(b) Report all pairgi, j) such that the lower chain @, € P, intersects the upper chain & € P(v)
and the rightmost point of their intersection lies insifle

(c) Report all pairgi, j) such that the upper chain & € P, intersects the lower chain &; € P(v)
and the rightmost point of their intersection lies insifle

It is easily verified that stages (a)—(c) indeed report all the desired intersections. Since (b) and (c) are
symmetric, we omit the description of (c).

Containments of rightmost points. Let R(f) C Rs be the subset of right endpoints that lie insifle
Using the point-location structure we have constructeddfathe setsk(f) can be found in Q:, logn,)
time in total. We wish to report all pair§, j) such that-; € R(f) lies insideP; € P,. Let P(f) S P,
denote the set of long polygons that contginn their interior (i.e., for a polygornP € P(f), we have
f € P), and letQ(f) € P, denote the set of polygons whose boundaries intersecetn ; denote the
number of vertices of the polygons @(f) that lie insidef, and letr’, denote the number of edges in
Q(f) that intersectf but their endpoints do not lie insidé. Then

anénv and Zn/fguv. 2
f f

Obviously,|Q(f)| <ny +n’f. Since we have already traced the edgeB,afv) throughA, we haveQ(f)
at our disposal. However, we do not st@ef) explicitly for each facef because the resulting storage
could be quite large.

200 PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207

We first describe how to deal with the polygonsJiif). Note that every point irR(f) lies inside
every polygon inP(f), so we can report every pair i(A(f) x R(f). We do this for all facesf in a
single plane sweep, as described below. In fact, the algorithm will report a superset of these pairs: a pair
P;,r; with r; € f will be reported if and only if the intersection gf with the vertical line through; is
contained in the intersection @ with that line. This clearly holds for all polygons (/), but it may
also hold for some of the polygons (/). Hence, when we are dealing with the polygons fraqy)
we have to make sure that we do not report any pair for the second time. This is easy to do, as we can
afford to spend @ogn,) time to check a pair.

We now come to the plane sweep. The sweep is from left to right. While we sweep, we maintain
the following information. First of all, we have a balanced binary searchTiestoring all the long
spines in the order in which they intersect the sweep lingVe also maintain a segment trée. Its
elementary intervals are of the forfin: i + 1], for 1< i < n,. The segment tree stores the intersections
of the polygons i, with A in the following way. Number the faces &f that are intersected byfrom
bottom to top asfo, ..., f, for somer < n,. Suppose that the intersectionofvith the lower (upper)
boundary of a given polygor liesin f; (f,). If I < u, we store forP the interval[/ : u] in 5. Otherwise
I =u, and P is currently not stored iff,. Note that these structures can be easily built {n,dogn,)
time when the sweep starts (ahds at the left boundary of the strify,,). There are three types of events
during the sweep.

The first type is a vertex ofl. At such an event we updafg in O(logn,) time. The second type of
event is an intersection of the boundary of a polygba P; with an edge ofA. When this happens, the
interval we stored foP in T, has to be changed. This can be done to@r,) time. The third type of
event is when we reach a pointe Rs. We then search with; in T to see in which face it lies. With
that information we can search i and report all polygong such thatf N A c P N A. In total, the
sweep takes time @n, + u, + k) logn,).

Next, for every point; € R(f), we report the polygons i(f) that contairr;. We build aunion tree
¥ on the polygons if(f), which is a minimum-height binary tree whose leaves store the polygons of
Q(f). Each nodé¢ of ¥ is associated with the subsgt C Q(f) of polygons that are stored at the leaves
of the subtree rooted &t Let v: be the total number of vertices of the polygonsdnthat lie in the
interior of £, and letv; be the number of edges of the polygoninthat intersectf but both of whose
endpoints do not lie insid¢; we have

Z v =O(nslogn,) and Z v = O(n’f logn,).
£ £

For any polygonP € Q(f) either its upper or its lower boundary intersegidut not both, because the
spine of P does not intersect the interior ¢f We partitionQ; into two subsetsQQ, Q; ; apolygonP e
Q: belongs toQgF (respectivelyQ,) if the upper (respectively lower) chain #fintersects the interior of
/. We construct the lower envelogg of the lower chains of the intersection polygdsn f | P € QO '}
and the upper envelopé: of the upper chains of the intersection polygg®snN f | P € Q;}. We store
only those portions of the envelopes which lie in the interiof oT hese portions have(@ +v;)a(n,))
breakpoints, where a breakpoint is a vertex of a polygon, an intersection point of two lower (upper)
chains, or an intersection point 8f and an edge of a polygon. If we have already computed the lower
and upper envelopes of the childreréothenl;, U; can be computed in an additional ©: + vé)a(nv))
time. We store the sequences of breakpoint§ obnd of U; in an array, sorted from left to right. For
each breakpoint, we store the segment that appears on the envelope immediately to its left if the envelope

PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207 201

lies in the interior off to the left of the breakpoint; otherwise we mark that the envelope appears on

to the left of the breakpoint. We also apply fractional cascading [11] so that if we know the breakpoint
of L (respectivelyll;) that lies immediately to the right of a givencoordinatexy, we can compute, in

0O(1) time, the corresponding breakpoints at the childre&.dfhe total time spent in preprocessidgis

O((n s +n'pa(n,)logn,).

For each point; € R(f), we find all polygons irQ(f) containingr; by traversing¥ in a top-down
manner. Suppose we are at a ngdef ¥. Since f is not crossed by any spine; lies in a polygon
Pe Q; (respectivelyP € Q) if and only if r; lies below (respectively above) the upper (respectively
lower) chain of P N f. We thus find the breakpoints 6f, U, that lie immediately to the right of;. We
can then decide in Q) time whetherr; lies inside any polygon o0, by determining whether it lies
below U, or aboveLl;. If r; does not lie in any polygon d¢;, we stop. If¢ is a leaf and'; lies inside the
only polygon, sayp;, in Q;, then we return the pait, j). If £ is not a leaf and; lies inside a polygon
of Q;, we recursively visit the children df. Suppose; lies insidek; polygons ofQ(f), then the query
procedure visits QL + k; logn,) nodes of. It spends @ogn,) time at the root and (1) at any other
node, so the time spent in processinds O((1 + k;) logn,). Hence, the algorithm spends

o(((nf +nam) + > 1+ k,-)) Iognv)

ri€R(f)

time at the facef. Summing over all the faces &f and using (2), we obtain that the total time spent in
reporting the pairs that satisfy condition (a), over all fagesf A, is O((n, + w, + k,)a (n,) logn,).

I nter sections between long lower chainsand upper chains. For a facef of A, let L(f) denote the set
of maximal connected portions of the chainslip that lie insidef, let U (f) denote the set of maximal
connected portions of upper chains of (short and long) polygo®giinthat lie insidef, and letSP(f)
denote the set of portions of short spines insfdeSince we have traced the edgeshgh) through A,
the setsl.(f) andU (f) are already available for all facgs We will report all pairs(i, j) that satisfy
(x) and whose rightmost intersection points lie insitle

The endpoints of all chains ih(f) lie on df because they are portions of long chains. Agtbe the
set of edges that constitulg /) andof; setay = |A¢|. The union ofA is connected. If both endpoints
of a chainy € U(f) lie in the interior of /, theny is the entire upper chain of a short polygéy. In
this case, we add a vertical segmentfrom the right endpoint; of P; downwards until it meetsyf.

Let B, denote the union of the set of edges that constitit¢) andof, and the set of vertical segments
that we have just added; st = |B|. By construction, the union aB is also connected because all

the upper chains i/ (f) are connected téf after introducing the vertical segments. Since the unions
of A, and of By are both connected, we can use the randomized algorithm of Har-Peled and Sharir [18]
to compute alll; intersection points between the segmentd pfand of B, that lie in the interior off,
inO((ay + by + I5)a(n,)logn,) expected time.

We report a pair(i, j) if there exists an edge; of P, in Ay and an edge;; of P; in By such
that the intersection point of; and e¢; (one of thel, intersections that we have computed) is the
rightmost vertex ofP; N P;. The total expected running time spent in reporting the pairs that satisfy
property (b) ist O((as + by + Iy)a(n,)logn,). Each endpoint of a segment df; or of By is
a vertex of P(v), an intersection point of a long spine and an edgeéP@f), or the lower endpoint
of a vertical segment;. Therefore,zf(af + bs) = O(n, + p,). The expected running time is thus

O((nv + My + Zf If)a(nv) Iognv)-

202 PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207

We call an intersection point af € A, ande’ € B real if e is an edge of a lower chain in(f)
ande’ is an edge of an upper chain th(f); otherwise we call the intersection powittual. Each real
intersection point is an intersection point©of and the upper chains 6f(v), so the total number of real
intersection points, summed over all facesAgfis O(u,). Sincedf does not intersect the relative interior
of any segment it (f) or L(f), a virtual intersection point is an intersection pa#m ¢’, wheree is
an edge of the lower chain of a long polygéhande’ is the vertical segment; emanating from the
right endpointr; of (the upper chain of) a short polygad?;. We can ignore intersections aif because
they correspond to degenerate intersections betwgeand B, and, in any case, their number is only
O(u,). SinceP; is a long polygon, its sping is in 8P, . Therefores; lies above the interior of the face
f and thus above;. The intersection of ando; implies thatr; is inside P;. We charge the intersection
pointe N ¢’ to the pair(i, j). Each pair(, j) is charged by at most one virtual intersection point and the
pair (i, j) is reported ab, therefore the total number of virtual intersection points, summed over all faces
of A, is at mostk,. Hence,zf I+ = O(k, + 11,), and the total expected time spent in executing stage (b)
is O((n, + ky + py)a(ny) logn,).

We have thus described procedures for reporting all intersecting pairs that satisfy properties (a)—(c)
at a nodev of T. The total expected time we spendais O((n, + k, + w,)a(n,)logn,). Since
> ,ny=0(mlogm), Y k,=k,and)_ un, =O(k) (Lemma 2.2), we obtain our first main result.

Theorem 2.3. Let P = {P4,..., P,,} be m convex polygons in the plane with a total of n vertices. All k
pairs of indices (i, j) such that P; intersects P; can be reported in O((n logm + k)« (n) logn) expected
time.

Remark 2.4.

(i) To get a worst-case time bound instead of an expected time bound, we can replace the algorithm of
Har-Peled and Sharir [18] used in the second part of the algorithm by an algorithm of Basch et al. [7].
This will increase the time bound by a polylogarithmic factor.

(i) The algorithm also works for splinegons, whose boundaries are composed of Jordan arcs instead of
straight edges, provided the splinegons are still convexisithe maximum number of intersection
points between any pair of Jordan arcs that form the boundaries of the splinegons, the running time
of the algorithm is @A, o(n) logm + A, 2(k)) logn).

2.2. An alternative deterministic algorithm

Let P; and P; be two intersecting polygons [A. Recall that the rightmost vertex & N P; is r;, r;,
an intersection point of the upper chain Bfwith the lower chain ofP;, or an intersection point of the
lower chain ofP; with the upper chain oP;. Using this observation, we can report the intersecting pairs
of the given polygons as follows.

Let V ={r; | 1 <i < m}. We first report all intersecting pairs of polygons for which the rightmost
vertex of the intersection polygon is the rightmost vertex of one of the two polygons. A veligeihe
rightmost vertex of?; N P; if and only if ; € P;. For eachP;, we therefore reporP; N V. Using the
range-searching data structure of Matou3ek [19], for given parameters < m? ande > 0, we pre-
processV, in time O(m** + slog® m), into a data structure of size(©, so that allu; points of P, NV

PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207 203

can be reported in time @P; |(m/+/s) 1og® m + ;). Sinced_, | P;| = n, the total time spent in this step
is

O(ml+8 +slog® m + (mn//s)log® m + ,u)

where . = 3", |P, N V| < k. Choosings = max{m?°3n?/3log?m, m?}, the running time becomes
O(m?3n?310g*™* m + nlog®m +).

Next, we report the pair§, j) such that the rightmost vertex & N P; is an intersection point of an
edge ofP; with an edge ofP;. Let U be the set of segments in the upper chains of the polygdfisand
let L be the set of segments in the lower chains of these polygons. We compuiatalisecting pairs of
segments betwedli and L. This can be accomplished in(@/31og¥3n + v) time [1,10]. Suppose that
an edgee of the upper chain of; and an edge’ of the lower chain ofP; intersect. We check in Q)
time whethere N ¢’ is the rightmost vertex oP; N P;, and, if so, report the paii, j). Since an upper
chain intersects a lower chain in at most two points, the number of intersections bdfwaeahl is at
most Z, wherek is the number of intersecting pairs of polygonshn

Hence, we obtain the following resuilt.

Theorem 2.5. Let P be a set of m convex polygons in the plane with a total of n vertices. All k pairs of
indices (i, j) such that P; intersects P; can be reported in O(n*3log®™ n + k) time, for any & > 0.

Remark 2.6. As in Agarwal and Sharir [5], we can use a more sophisticated data structure to improve
the running time of the algorithm to@?31n?3log® n + n*** + k), for an appropriate constaatand for
anye > 0.

The data structure by Matousek in [19] can count the number of points lying ingiegoa in time
O(k(m?3/nY3) . log? m) time using @m?°3n?3log®"* m + m'*¢) preprocessing. Moreover, a minor
variant of the algorithm of Chazelle [10] can count, ifix®3logn) time, the number of intersection
points between. and U that correspond to the rightmost intersection points of the corresponding
polygons. Hence, we obtain the following.

Theorem 2.7. Let P be a set of convex polygons in the plane with a total of n vertices. The number of
pairs of indices (i, j) such that P; intersects P; can be counted in O(n*Rlog?** n) time, for any & > 0.

3. Thethree-dimensional case

LetP ={Py,..., P,} be a set ofn convex polytopes ifR3 with a total ofn vertices. We present an
algorithm, with running time ©@:8/°+¢ + k), for anye > 0, which reports alk pairs of indiceqi, j) such
that P; intersectsP;. Our approach is similar to the algorithm described in Section 2.2. We compute the
bottom vertex, i.e., the vertex with the minimugcoordinate, of each nonempty intersection polytope
P;j = P; N P;, and report the corresponding paiisj). The bottom vertex of an intersection polytope
P;; is the bottom vertex of;, the bottom vertex of;, the intersection point of an edge Bf and a face
of P;, or the intersection point of a face &f and an edge of;. In the two latter cases, the intersection
has to satisfy a few additional properties, which we describe and exploit below.

Let b; be the bottom vertex aP;, and letV = {b; | 1 <i < m}. We first report all pairsi, j) such that
the bottom vertex oP;; is the bottom vertex of; or of P;. A vertexb; € V is the bottom vertex of;; if

204 PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207

Fig. 1. An arcy,, and a spherical trianglé pgr.

and onlyb; € P;. Therefore, for eacl?; € P, we need to compute and rep@tn V. As in Section 2.2, we
can accomplish this in time @**73*log® n +), for some constant, wherep =Y """, [P; N V| <k,
using the range-searching algorithm of Matousek [19].

Next, we report all pairgi, j) such that the bottom vertex of (the nonemp#y) is an edge-face
intersection. Lefz and F denote the sets of edges and of faces, respectively, of the polytoeblging
the partition-tree data structure of Agarwal and Matousek [3], we can computgnf®®) time, for
anye > 0, a family of pairsF = {(Ey, F1), ..., (E,, F,)}, such that

() E,CEandF, C F,forall1<a<r;

(i) every edge inE, crosses every face @f,, forall 1 < a <r;
(iii) for every crossing edge-face pda¥, f) € E x F, there is anx so thate € E, and f € F,,; and
(iv) Y a_1(IEel+ |Fyl) = O(n®5+).

We will describe an algorithm that, for a given pdiF,, F,), computes, in time Q|E,| +
|F,)log?n +v;), all v; pairs(e, f) € E, x F, such that N f is the bottom vertex of the corresponding
intersection polytope. Repeating this procedure for all paitg ofe report, in time @5 4 v) (for a
slightly larger, but still arbitrarily smalt > 0), all v pairs(i, j) such that the bottom vertex &f; is the
intersection of an edge-face pair.

Consider a paifE,, F,) from the family 7. For each edge € E, (respectively, each facg € F,),
let P, € P (respectively,P, € P) be the polytope containing(respectively,f). LetS? be the unit sphere
of directions inR?3, and lety = (0,0, —1) be the south pole d&§?. For two pointsp, ¢ € S? that are not
antipodal, lety,, C S? be the shorter arc of the great circle passing thropgindg. For three points
p.q,r €S? no two of which are antipodal, let pgr be the smaller spherical triangle formed by the arcs
Ypq» Yqr» @Ndy,.. See Fig. 1.

Let n; denote the outward unit normal of a fage For an edge, let y, be the great circular arc on
S? representing all outward normals to the planes suppomingt e. The endpointg andn of y, are
the outward normals of the faces 8f incident upone, andy, = y;,. For an edge € E, and a face
f € Fy, lett,; = Aénny be the spherical triangle formed by, yen,, andy,n,; 7.r is the set of outward
normals supporting®, N P, at the vertexe N f. The following lemma is straightforward but crucial to
our analysis.

Lemma3.1. For apair (e, f) € E, x F,, theintersection point e N f isthe bottom vertex of P, N P if
andonly if x € 7.

PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207 205

In order to find the edge-face pairs with the above property, we define a spherical trtarfgleeach
edgee € E, as follows. Letp andg be the antipodal points of the endpointsjpf and lety, be the
antipodal arc ofy,, i.e., the set of points that are antipodal to the pointy.oiWe defineA, to be the
spherical triangleA pq x, which is bounded by the argg, y,,, andy,,. We also defingV, to be the
spherical wedge that contains the ggcand is formed by the meridians passing thropgindg. Finally,
let H, be the hemisphere containidg and bounded by the great circle containipgandy . (this circle
is the set of normals to the planes passing through the €ddé&enA, = H. N W,.

It can be easily checked thate 7. if and only if ns € A,, which implies the following lemma.

Lemma 3.2. For a given pair (e, f) € E, X F,, the intersection point e N f is the bottom vertex of
P,NPyifandonlyifn, e A,.

LetA={A,|ec E,}andN ={n; | f € F,}. For eachA, € A, we wish to reportA, N N. Recall
thatA, = W, N H,. We thus preproces¥ into a two-level data structure—the first level reports, for any
queryA., all points of W, N N as the union of Qog|F,|) canonical subsets, and the second level reports
all points of the canonical subsets that lie inside More precisely, we proceed as follows. We sort the
points in N by their longitudes and construct a minimum-height binary #een the sorted point set
(we omit the easy details concerning the handling of the circularity of this order). Eachurafdg is
associated with the subsat, C N of points that are stored at the leaves of the subtree rootedVile
preprocessV, for hemisphere reporting queries, where each query reports all poiMslging inside a
query hemispheré&l C S?. By using a halfplane range-reporting structure [12], we can prepraégss
O(|N,|log|N,]) time, into a data structure of size(|®/,|), so that a hemisphere query can be answered
in O(log|N, | + 1) time, where is the output size. We attach this structure ais its secondary structure.
The total time spent in preprocessingis O(| F,|log?|F,|). For an edge € E,, we reportA, NN as
follows. By searching with the longitudes of the endpointsyof we first find, in Qlog|F,|) time, a
setU, of O(log|F,|) nodes ofT, so thatUueUe N, =W, N N. For each node € U,, we report allz,
points of N, N A, in O(log|F,| + t,) time, by searching witlH, in the secondary structure attached
to u. Therefore the total time spent in reporting alpoints of A, N N is O(log? |F, | + t.). Hence, the
overall time spent in reporting all pairs of E, x F, such that N f is the bottom vertex oP, N Py is
O((|Eo| + | Ful) log? | Fy | +).

Summing up all the bounds, and replacingy a slightly larger (but still arbitrarily small) constant,
we obtain the following.

Theorem 3.3. Given a set P of m convex polytopes in R® with a total of n vertices, we can report all k
pairs of indices (i, j) such that P; and P; intersect, in time O(n®°¢ + k), for any constant ¢ > 0.

By replacing the halfplane range-reporting structure at each nodd’ with a halfplane range-
counting structure, we can count all intersecting pairs of polytopeR. idsing MatousSek’s partition-
tree data structure once again, we can preprodgss time O((|E,|%%|N,|?® + |N,|) logn) so that a
halfplane range-counting query can be answered(ihQ|%3/| E,|*3) logn) time. The total time spent
in preprocessingV, summed over all nodes df, is O((|E,|%3|F,|%® + |F,|) log?n), and for an edge
e e E,, |A, N N| can be computed in time @F,|%3/|E,|*/3) logn) by traversingT as above. Putting
every thing together, the time spent in counting the number of paifg,ixx F, so thate N f is the
bottom vertex ofP, N Py is O((| E4|%3| Fy | + | F,]) log?n). As shown in [2], the properties of multi-

206 PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207

level partition trees imply thap ", |E,|%3| F,|¥® = O(n®>*¢). Hence, the total running time of the
algorithm, summed over all pairs A, is O(n®/5+¢"), for anye’ > . We thus conclude the following.

Theorem 3.4. Given a set P of m convex polytopes in R with a total of » vertices, we can count all pairs
of indices (i, j) such that P; and P; intersect, in time O(n®°+¢), for any constant & > 0.

4. Conclusions

In this paper, we presented output-sensitive algorithms for reporting all intersecting pairs among
a set of convex polygons in the plane, and among a set of convex polytopes in three dimensions.
For the planar case, we presented the first near-linear-time algorithm for this problem; its expected
running time is @Q(nlogm + k)a(n) logn). We also proposed a deterministic algorithm with running
time O(n*310g*™® n + k). Our algorithm for the 3-dimensional case runs im®°+ + k) time.

One can also consider the bichromatic version of the problem. Here one is given two sets of
polytopes—the blue polytopes and the red polytopes, say—and the goal is to report all bichromatic pairs
of intersecting polytopes. The challenge is to avoid spending time on the monochromatic intersections. It
seems hard to generalize our near-linear-time algorithm for the planar case to the bichromatic problem,
but the generalization of the deterministic algorithms for the planar and the three-dimensional case is
straightforward.

An open question is whether there exists am®* + k)-time algorithm, where > 0 is a constant,
for reporting allk pairs of intersecting polytopes in a $bf m convex polytopes ifR*.

References

[1] P.K. Agarwal, Partitioning arrangements of lines. Il. Applications, Discrete Comput. Geom. 5 (1990) 533-573.
[2] P.K. Agarwal, J. Erickson, Geometric range searching and its relatives, in: B. Chazelle, J.E. Goodman, R. Pollack (Eds.),
Advances in Discrete and Computational Geometry, American Mathematical Society, Providence, RI, 1999, pp. 1-56.
[3] P.K. Agarwal, J. Matousek, On range searching with semialgebraic sets, Discrete Comput. Geom. 11 (1994) 393-418.
[4] P.K. Agarwal, M. Sharir, Red-blue intersection detection algorithms, with applications to motion planning and collision
detection, SIAM J. Comput. 19 (1990) 297-321.
[5] P.K. Agarwal, M. Sharir, Ray shooting amidst convex polygons in 2D, J. Algorithms 21 (1996) 508-519.
[6] I. Balaban, An optimal algorithm for finding segment intersections, in: Proc. 11th Annu. ACM Sympos. Comput. Geom.,
1995, pp. 211-219.
[7] J. Basch, L.J. Guibas, G. Ramkumar, Reporting red—blue intersections between two sets of connected line segments, in:
J. Diaz, M. Serna (Eds.), Algorithms—ESA96, Springer, Berlin, 1996, pp. 302-319.
[8] J.L. Bentley, T.A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. C-28
(1979) 643-647.
[9] G. Brodal, R. Jacob, Dynamic planar convex hull with optimal query time afidg@ loglogn) update time, in: Proc. 7th
Scand. Workshop Algorithm Theory, 2000, pp. 57-70.
[10] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9 (1993) 145-158.
[11] B. Chazelle, L. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (1986) 133—-162.
[12] B. Chazelle, L. Guibas, D.T. Lee, The power of geometric duality, BIT 25 (1985) 76—90.
[13] B. Chazelle, H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane, J. ACM 39 (1992) 1-54.
[14] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, Algorithms for bichromatic line segment problems and polyhedral
terrains, Algorithmica 11 (1994) 116-132.

PK. Agarwal et al. / Computational Geometry 23 (2002) 195-207 207

[15] K.L. Clarkson, P. Shor, Applications of random sampling in computational geometry, Il, Discrete Comput. Geom. 4 (1989)
387-421.

[16] U. Finke, K. Hinrichs, Overlaying simply connected planar subdivisions in linear time, in: Proc. 11th Annu. ACM Sympos.
Comput. Geom., 1995, pp. 119-126.

[17] P. Gupta, R. Janardan, M. Smid, Efficient algorithms for counting and reporting pairwise intersections between convex
polygons, Inform. Process. Lett. 69 (1999) 7-13.

[18] S. Har-Peled, M. Sharir, On-line point location in planar arrangements and its applications, Discrete Comput. Geom. 26
(2001) 19-40.

[19] J. Matou8ek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom. 10 (1993) 157-182.

[20] K. Mulmuley, A fast planar partition algorithm. |, J. Symbolic Comput. 10 (1990) 253-280.

[21] N. Sarnak, R.E. Tarjan, Planar point location using persistent search trees, Comm. ACM 29 (1986) 669—-679.

[22] M. Sharir, P.K. Agarwal, Davenport—Schinzel Sequences and Their Geometric Applications, Cambridge University Press,
New York, 1995.

[23] S. Suri, P.M. Hubbard, J.F. Hughes, Analyzing bounding boxes for object intersection, ACM Trans. Graphics 18 (1999)
257-277.

