
Computational Geometry 23 (2002) 195–207
www.elsevier.com/locate/comgeo

Reporting intersecting pairs of convex polytopes
in two and three dimensions

Pankaj K. Agarwala,∗, Mark de Bergb, Sariel Har-Peledc, Mark H. Overmarsb,
Micha Sharird,e,1, Jan Vahrenholdf,2

a Department of Computer Science, Duke University, Durham, NC 27708-0129, USA
b Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
c Department of Computer Science, DCL 2111, University of Illinois, 1304 West Springfield Ave., Urbana, IL 61801, USA

d School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
e Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
f Westfälische Wilhelms-Universität Münster, Institut für Informatik, 48149 Münster, Germany

Received 6 August 2001; accepted 10 January 2002

Communicated by S. Suri

Abstract

Let P = {P1, . . . ,Pm} be a set ofm convex polytopes inRd , for d = 2,3, with a total ofn vertices. We present
output-sensitive algorithms for reporting allk pairs of indices(i, j) such thatPi intersectsPj . For the planar case
we describe a simple algorithm with running time O(n4/3 log2+ε n+ k), for any constantε > 0, and an improved
randomized algorithm with expected running time O((n logm + k)α(n) logn) (which is faster for small values
of k). For d = 3, we present an O(n8/5+ε + k)-time algorithm, for anyε > 0. Our algorithms can be modified to
count the number of intersecting pairs in O(n4/3 log2+ε n) time for the planar case, and in O(n8/5+ε) time for the
three-dimensional case. 2002 Elsevier Science B.V. All rights reserved.

* Corresponding author. P.A. was supported by Army Research Office MURI grant DAAH04-96-1-0013, by a Sloan
fellowship, by NSF grants EIA-9870724, EIA-997287, and CCR-9732787, and by a grant from the U.S.–Israeli Binational
Science Foundation.

E-mail addresses: pankaj@cs.duke.edu (P.K. Agarwal), markdb@cs.ruu.nl (M. de Berg), sariel@cs.uiuc.edu
(S. Har-Peled), markov@cs.ruu.nl (M.H. Overmars), sharir@cs.tau.ac.il (M. Sharir), jan@math.uni-muenster.de
(J. Vahrenhold).

1 M.S. was supported by NSF Grant CCR-97-32101, by a grant from the Israel Science Fund (for a Center of Excellence in
Geometric Computing), by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University, and by a grant
from the U.S.–Israeli Binational Science Foundation.

2 Part of this work was done while visiting Duke University.

0925-7721/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(02)00049-4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82159649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

196 P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207

1. Introduction

Computing intersections in a set of geometric objects is a fundamental problem in computational
geometry. A basic version of this problem is when the objects are line segments in the plane. Indeed,
computing the intersecting pairs in a set ofn line segments was one of the first problems studied
in computational geometry: Already in 1979, Bentley and Ottmann [8] described an algorithm for
this problem with O((n + k) logn) running time, wherek is the number of intersecting pairs of
segments. Since then much research has been done on this problem, culminating in optimal—that is,
with O(n logn + k) running time—deterministic algorithms by Chazelle and Edelsbrunner [13] and
Balaban [6], and simpler randomized algorithms by Clarkson and Shor [15] and Mulmuley [20].

Another well-studied variant of the problem is the red–blue intersection problem. Here one is given
a set of red segments and a set of blue segments, and the goal is to report all bichromatic intersections.
If there are no monochromatic intersections, then the problem can be solved in O(n logn+ k) time by
applying an optimal standard line–segment intersection algorithm; when the red segments and the blue
segments both form simply connected subdivisions, then the problem can even be solved in O(n + k)

time [16]. The situation becomes considerably more complicated when there are monochromatic
intersections. Applying a standard line–segment intersection algorithm will not lead to an output-sensitive
algorithm because it may report a quadratic number of monochromatic intersections even when there are
no bichromatic intersections. Somehow one has to avoid processing all the monochromatic intersections.
Agarwal and Sharir [4] showed that one can detect whether the two sets intersect in O(n4/3+ε) time.3

Later Agarwal [1] and Chazelle [10] gave O(n4/3 logO(1) n+ k)-time algorithm to report allk red–blue
intersections. Basch et al. [7] presented a deterministic O((n + k)α(n) log3n) algorithm for the case
where the set of red segments is connected and the set of blue segments is connected. This algorithm
also works for the case of Jordan arcs, each pair of which intersect at mostt times; its running time then
becomes O(λt+2(n + k) log3(n)), whereλs(n)—the maximum length of an(n, s) Davenport–Schinzel
sequence—is an almost linear function ofn for any fixeds [22]. The bound for the case of segments was
later improved to O((n+k) log2n log logn) by Brodal and Jacob [9]. Har-Peled and Sharir [18] improved
the general case of Jordan arcs by giving a randomized algorithm with O(λt+2(n+k) logn) running time.

We are interested in the case in which the input consists of convex polygons in the plane. We want
to compute all intersecting pairs of polygons. More formally, we are given a setP = {P1, . . . , Pm} of
m convex polygons inR2 with a total ofn vertices, and we want to report allk pairs of indicesi, j
such thatPi intersectsPj . (The polygons are considered to be 2-dimensional regions, so two polygons
intersect also in the case that one of them is fully contained inside the other.) If each polygonPi has
constant complexity, then the number of intersections between pairs of edges will not exceed the total
number of intersecting pairs of polygons by more than a constant factor, and one can solve the problem in
O(n logn+ k) time, by a straightforward modification of the algorithms mentioned above for reporting
segment intersections. If the given polygons do not have constant complexity, then the problem becomes
considerably harder because the intersection of a pair of the given polygons can have many vertices.
Regarding each input polygon as a collection of segments will thus not lead to an output-sensitive
algorithm in this case.

3 The meaning of a bound like this is that for anyε > 0 there exists a constantc= c(ε) that depends onε, so that the bound
holds withc as the constant of proportionality.

P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207 197

Gupta et al. [17] nevertheless developed an output-sensitive algorithm for this case that runs in time
O(n4/3+ε + k). The algorithm first computes a trapezoidal decomposition for each polygon. Then it
computes, using a multi-level partition tree, those pairs of intersecting trapezoids such that the leftmost
intersection point of the trapezoids is also the leftmost intersection point of the corresponding polygons.
This way it is ensured that each intersecting pair of polygons is reported exactly once.

We develop two new algorithms for this problem. The first algorithm is randomized and combines
hereditary segment trees [14] with the above mentioned red–blue intersection algorithm of Har-Peled
and Sharir [18]. Its expected running time is O((n logm+ k)α(n) logn) and it is significantly faster than
the algorithm of Gupta et al. fork = o(n4/3). In addition, the algorithm also works for convex splinegons
(that is, convex shapes whose boundary is composed of Jordan arcs) with only a minor increase in running
time; this is not the case for the algorithm of Gupta et al. Our algorithm can be made deterministic at the
expense of an additional polylogarithmic factor.

Our second algorithm has O(n4/3 log2+ε n+k) running time, for any constantε > 0, and is thus slightly
faster than our first algorithm fork = �(n4/3). It is related to the algorithm of Gupta et al.—it uses
partition trees and similar techniques to search for the rightmost intersection points of intersecting pairs
of polygons—but it is conceptually simpler and it has a slightly better running time.

The main advantage of our approach over Gupta et al.’s is that it generalizes to the 3-dimensional
version of the problem: Given a setP = {P1, . . . , Pm} of m convex polytopes inR3 with a total ofn
vertices, report allk pairs of indices(i, j) such thatPi intersectsPj . For this problem, no subquadratic
algorithm was known except for the special case where the polytopes satisfy two special properties: the
minimum aspect ratio of any bounding box of the polytopes is not too small (thus the polytopes must be
fat), and the scale factor (the ratio of the sizes of the largest and the smallest polytope) is not too large.
In particular, if these two values are constant, Suri et al. [23] gave an algorithm for arbitrary dimension
d with running time O(n logd−1n + k logd−1n). Their algorithm works by first computing all pairs of
bounding boxes that intersect, and then checking for each such pair whether the polytopes themselves
intersect. Under the conditions mentioned above, the number of intersecting bounding boxes is in the
same order of magnitude as the number of intersecting polytopes (up to an additive linear term), which
means their algorithm is efficient. In general, however, the number of intersecting bounding boxes can
be quadratic even when there are no intersections at all among the polytopes.

We generalize our second 2-dimensional algorithm to 3-dimensional space, and obtain an algorithm
with running time O(n8/5+ε + k), for anyε > 0. Such a generalization seems hard for the algorithm of
Gupta et al., as the vertical decomposition of a convex polytope can have quadratic complexity. Note that
our algorithm for the 3-dimensional case has the same running time as the best known algorithm for the
much simpler problem of reporting all intersecting pairs in a set of triangles inR

3 [3].

2. The planar case

Let P = {P1, . . . , Pm} be a set ofm convex polygons in the plane, with a total ofn vertices. For
simplicity, we assume that none of the polygons has a vertical edge and that all the vertex coordinates
are distinct; we can enforce this in O(n logn) time by applying a suitable rotation. We also assume that
no two edges overlap (that is, intersect in more than one point). To this end, we shift such edges slightly
in O(n logn + k) time in a preprocessing step; this can be done in such a way that the collection of
intersecting pairs of polygons does not change.

198 P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207

For a polygonPi , we define�i to be the leftmost point ofPi andri to be the rightmost point ofPi
(since there are no vertical edges,�i and ri are uniquely defined). They partition the boundary ofPi
into two convex chains: theupper chain, denotedUi , and thelower chain, denotedLi . Note that the
rightmost vertex ofPi ∩ Pj is ri , rj , an intersection point ofUi with Lj , or an intersection point ofLi
with Uj .

We first describe an algorithm whose running time is near-linear inn andk, and then a worst-case
optimal algorithm for the case of largek whose running time is O(n4/3 logn+ k).

2.1. A near-linear randomized algorithm

We present a randomized algorithm that reports, in O((n logm + k)α(n) logn) expected time, allk
intersecting pairs of polygons inP. For each polygonPi , we definesi to be the segment connecting�i to
ri ; we callsi thespine of Pi . Let SP denote the set of all the spines.

Our algorithm starts by constructing ahereditary segment treeT on (thex-projections of) the spines
of SP [14]. Each nodev of T is associated with a vertical stripWv and with a subsetSP(v) of spines.
A spinesi intersectingWv is short at v if at least one of its endpoints lies in the interior ofWv, otherwise
it is long. The setSP(v) is the subset of spines that intersectWv and are short at the parent ofv. If v is
the root, thenSP(v)= SP. Let P(v)= {Pi | si ∈ SP(v)}. A polygon is short (respectively, long) atv if its
spine is short (respectively, long) atv. As shown in [14],

∑
v |P(v)| = O(m logm).

We assume thatSP(v) andP(v) are clipped to withinWv. At each nodev of the tree, we will report
all pairs(i, j) with the following property:

the rightmost intersection point ofPi andPj lies insideWv andPi is long atv. (�)

The following lemma is straightforward from the structure of hereditary segment trees.

Lemma 2.1. For every pair of intersecting polygons Pi and Pj , there is exactly one node v of T at which
property (�) holds.

Let kv be the number of pairs that satisfy property (�) at a nodev. Then
∑

v kv = k. Our procedure will
ensure that a pair(i, j) is reported only once, at the node where (�) is satisfied, but it will spend roughly
O(logn) time for each intersecting pair.

Fix a nodev. Let PL ⊆ P(v) denote the subset of long polygons atv, and letPS ⊆ P(v) denote the
subset of short polygons atv. Denote the set of spines ofPL by SPL, the set of their upper chains by
UL, and the set of their lower chains byLL. The setsSPS , US , andLS are defined analogously forPS .
Again, all these objects are clipped to withinWv . Letnv denote the total number of edges in (the clipped)
PL andPS . As above, the structure of hereditary segment trees implies that

∑
v nv = O(n logm). Finally,

we defineRS to be the set of right endpoints of the spines inSP(v) that lie in the interior ofWv. Note
that every point inRS is the right endpoint of an (unclipped) original spine inSP. Letµv be the number
of intersection points betweenSPL andSP(v) ∪ ∂P(v)—ignoring, of course, “intersections” between a
spine and itself—plus the number of intersection points between the upper (respectively lower) chains of
PL and the lower (respectively upper) chains ofP(v), where∂P(v)= {∂P | P ∈ P(v)}.

Lemma 2.2.
∑

v∈T µv = O(k).

P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207 199

Proof. Let σ be an intersection point of a spinesi ∈ SPL(v) and another spinesj ∈ SP(v); σ is one of
the intersection points counted byµv . We claim thatv is the only node at whichσ is counted byµv . It is
obvious thatσ cannot be counted by a nodew other than an ancestor or a descendent ofv, as the vertical
strip Ww associated withw has to contain the intersection pointσ . Since neithersi nor sj belongs to
SPL(w) for any ancestorw of v, σ will not by counted byµw . On the other hand,si does not belong to
SP(u) for any descendentu of v, soσ will not be counted by any descendent ofv either. Hencev is the
only node at whichσ is counted. A similar claim holds for an intersection point ofSPL(v) and∂P(v) or
of upper (respectively lower) chains ofPL(v) and lower (respectively upper) chains ofP(v). Since there
are O(k) intersection points between two spines, between a spine and a polygonal chain, and between
upper and lower polygonal chains, the lemma follows.✷

Since all the vertex coordinates are distinct, there exists at most one spine inSP(v) whose right
endpointri lies on the right boundary ofWv . We can easily compute in O(nv) time all polygons of
P(v) that containri . We now describe how we report all the other pairs that satisfy (�) at v.

We construct, in O(nv lognv + µv) time, the arrangementA = A(SPL) of the spines of the long
polygons [13]. We also add the vertical lines boundingWv to A. Each facef of A is a convex polygon,
so we can compute the intersections between a line and∂f in O(lognv) time. We preprocessA, in
O((nv + µv) lognv) time, for planar point-location queries [21]. For each edgee of P(v), we locate its
left endpoint inA and then trace it throughA, spending O(lognv) time at each face ofA thate intersects.

For each facef ∈ A, we report the pairs(i, j) that satisfy (�) at v and for which the rightmost point
of Pi ∩ Pj lies insidef . This is accomplished in the following three stages.

(a) Report all pairs(i, j) such thatPi ∈ PL contains the right endpointrj ∈RS andrj ∈ f .
(b) Report all pairs(i, j) such that the lower chain ofPi ∈ PL intersects the upper chain ofPj ∈ P(v)

and the rightmost point of their intersection lies insidef .
(c) Report all pairs(i, j) such that the upper chain ofPi ∈ PL intersects the lower chain ofPj ∈ P(v)

and the rightmost point of their intersection lies insidef .

It is easily verified that stages (a)–(c) indeed report all the desired intersections. Since (b) and (c) are
symmetric, we omit the description of (c).

Containments of rightmost points. Let R(f) ⊂ RS be the subset of right endpoints that lie insidef .
Using the point-location structure we have constructed forA, the setsR(f) can be found in O(nv lognv)
time in total. We wish to report all pairs(i, j) such thatrj ∈ R(f) lies insidePi ∈ PL. Let P(f)⊆ PL
denote the set of long polygons that containf in their interior (i.e., for a polygonP ∈ P(f), we have
f ⊆ P), and letQ(f)⊆ PL denote the set of polygons whose boundaries intersectf . Let nf denote the
number of vertices of the polygons inQ(f) that lie insidef , and letn′

f denote the number of edges in
Q(f) that intersectf but their endpoints do not lie insidef . Then∑

f

nf � nv and
∑
f

n′
f � µv. (2)

Obviously,|Q(f)| � nf +n′
f . Since we have already traced the edges ofPL(v) throughA, we haveQ(f)

at our disposal. However, we do not storeP(f) explicitly for each facef because the resulting storage
could be quite large.

200 P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207

We first describe how to deal with the polygons inP(f). Note that every point inR(f) lies inside
every polygon inP(f), so we can report every pair inP(f) × R(f). We do this for all facesf in a
single plane sweep, as described below. In fact, the algorithm will report a superset of these pairs: a pair
Pi, rj with rj ∈ f will be reported if and only if the intersection off with the vertical line throughrj is
contained in the intersection ofPi with that line. This clearly holds for all polygons inP(f), but it may
also hold for some of the polygons inQ(f). Hence, when we are dealing with the polygons fromQ(f)

we have to make sure that we do not report any pair for the second time. This is easy to do, as we can
afford to spend O(lognv) time to check a pair.

We now come to the plane sweep. The sweep is from left to right. While we sweep, we maintain
the following information. First of all, we have a balanced binary search treeT1 storing all the long
spines in the order in which they intersect the sweep lineλ. We also maintain a segment treeT2. Its
elementary intervals are of the form[i : i + 1], for 1� i < nv. The segment tree stores the intersections
of the polygons inPL with λ in the following way. Number the faces ofA that are intersected byλ from
bottom to top asf0, . . . , fr , for somer � nv. Suppose that the intersection ofλ with the lower (upper)
boundary of a given polygonP lies infl (fu). If l < u, we store forP the interval[l : u] in T2. Otherwise
l = u, andP is currently not stored inT2. Note that these structures can be easily built in O(nv lognv)
time when the sweep starts (andλ is at the left boundary of the stripWv). There are three types of events
during the sweep.

The first type is a vertex ofA. At such an event we updateT1 in O(lognv) time. The second type of
event is an intersection of the boundary of a polygonP ∈ PL with an edge ofA. When this happens, the
interval we stored forP in T2 has to be changed. This can be done in O(lognv) time. The third type of
event is when we reach a pointrj ∈RS . We then search withrj in T1 to see in which facef it lies. With
that information we can search inT2 and report all polygonsP such thatf ∩ λ ⊂ P ∩ λ. In total, the
sweep takes time O((nv +µv + kv) lognv).

Next, for every pointrj ∈R(f), we report the polygons inQ(f) that containrj . We build aunion tree
Ψ on the polygons inQ(f), which is a minimum-height binary tree whose leaves store the polygons of
Q(f). Each nodeξ of Ψ is associated with the subsetQξ ⊆ Q(f) of polygons that are stored at the leaves
of the subtree rooted atξ . Let νξ be the total number of vertices of the polygons inQξ that lie in the
interior off , and letν′

ξ be the number of edges of the polygons inQξ that intersectf but both of whose
endpoints do not lie insidef ; we have∑

ξ

νξ = O(nf lognv) and
∑
ξ

ν′
ξ = O(n′

f lognv).

For any polygonP ∈ Q(f) either its upper or its lower boundary intersectsf , but not both, because the
spine ofP does not intersect the interior off . We partitionQξ into two subsetsQ+

ξ ,Q
−
ξ ; a polygonP ∈

Qξ belongs toQ+
ξ (respectivelyQ−

ξ) if the upper (respectively lower) chain ofP intersects the interior of
f . We construct the lower envelopeLξ of the lower chains of the intersection polygons{P ∩f | P ∈Q−

ξ }
and the upper envelopeUξ of the upper chains of the intersection polygons{P ∩ f | P ∈Q+

ξ }. We store
only those portions of the envelopes which lie in the interior off . These portions have O((νξ +ν′

ξ)α(nv))

breakpoints, where a breakpoint is a vertex of a polygon, an intersection point of two lower (upper)
chains, or an intersection point of∂f and an edge of a polygon. If we have already computed the lower
and upper envelopes of the children ofξ , thenLξ ,Uξ can be computed in an additional O((νξ +ν′

ξ)α(nv))

time. We store the sequences of breakpoints ofLξ and ofUξ in an array, sorted from left to right. For
each breakpoint, we store the segment that appears on the envelope immediately to its left if the envelope

P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207 201

lies in the interior off to the left of the breakpoint; otherwise we mark that the envelope appears on∂f

to the left of the breakpoint. We also apply fractional cascading [11] so that if we know the breakpoint
of Lξ (respectivelyUξ) that lies immediately to the right of a givenx-coordinatex0, we can compute, in
O(1) time, the corresponding breakpoints at the children ofξ . The total time spent in preprocessingΨ is
O((nf + n′

f)α(nv) lognv).
For each pointrj ∈ R(f), we find all polygons inQ(f) containingrj by traversingΨ in a top-down

manner. Suppose we are at a nodeξ of Ψ . Sincef is not crossed by any spine,rj lies in a polygon
P ∈Q+

ξ (respectivelyP ∈Q−
ξ) if and only if rj lies below (respectively above) the upper (respectively

lower) chain ofP ∩ f . We thus find the breakpoints ofLξ ,Uξ that lie immediately to the right ofrj . We
can then decide in O(1) time whetherrj lies inside any polygon ofQξ , by determining whether it lies
belowUξ or aboveLξ . If rj does not lie in any polygon ofQξ , we stop. Ifξ is a leaf andrj lies inside the
only polygon, sayPi , in Qξ , then we return the pair(i, j). If ξ is not a leaf andrj lies inside a polygon
of Qξ , we recursively visit the children ofξ . Supposerj lies insidekj polygons ofQ(f), then the query
procedure visits O(1+ kj lognv) nodes ofΨ . It spends O(lognv) time at the root and O(1) at any other
node, so the time spent in processingrj is O((1+ kj) lognv). Hence, the algorithm spends

O

((
(nf + n′

f)α(nv)+
∑

rj∈R(f)
(1+ kj)

)
lognv

)

time at the facef . Summing over all the faces ofA and using (2), we obtain that the total time spent in
reporting the pairs that satisfy condition (a), over all facesf of A, is O((nv +µv + kv)α(nv) lognv).

Intersections between long lower chains and upper chains. For a facef of A, letL(f) denote the set
of maximal connected portions of the chains inLL that lie insidef , letU(f) denote the set of maximal
connected portions of upper chains of (short and long) polygons inP(v) that lie insidef , and letSP(f)

denote the set of portions of short spines insidef . Since we have traced the edges ofP(v) throughA,
the setsL(f) andU(f) are already available for all facesf . We will report all pairs(i, j) that satisfy
(�) and whose rightmost intersection points lie insidef .

The endpoints of all chains inL(f) lie on ∂f because they are portions of long chains. LetAf be the
set of edges that constituteL(f) and∂f ; setaf = |Af |. The union ofAf is connected. If both endpoints
of a chainγ ∈ U(f) lie in the interior off , thenγ is the entire upper chain of a short polygonPj . In
this case, we add a vertical segmentσj from the right endpointrj of Pj downwards until it meets∂f .
LetBf denote the union of the set of edges that constituteU(f) and∂f , and the set of vertical segments
that we have just added; setbf = |Bf |. By construction, the union ofBf is also connected because all
the upper chains inU(f) are connected to∂f after introducing the vertical segments. Since the unions
of Af and ofBf are both connected, we can use the randomized algorithm of Har-Peled and Sharir [18]
to compute allIf intersection points between the segments ofAf and ofBf that lie in the interior off ,
in O((af + bf + If)α(nv) lognv) expected time.

We report a pair(i, j) if there exists an edgeei of Pi in Af and an edgeej of Pj in Bf such
that the intersection point ofei and ej (one of theIf intersections that we have computed) is the
rightmost vertex ofPi ∩ Pj . The total expected running time spent in reporting the pairs that satisfy
property (b) is

∑
f O((af + bf + If)α(nv) lognv). Each endpoint of a segment ofAf or of Bf is

a vertex ofP(v), an intersection point of a long spine and an edge ofP(v), or the lower endpoint
of a vertical segmentσj . Therefore,

∑
f (af + bf) = O(nv + µv). The expected running time is thus

O((nv +µv + ∑
f If)α(nv) lognv).

202 P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207

We call an intersection point ofe ∈ Af and e′ ∈ Bf real if e is an edge of a lower chain inL(f)
ande′ is an edge of an upper chain inU(f); otherwise we call the intersection pointvirtual. Each real
intersection point is an intersection point ofLL and the upper chains ofP(v), so the total number of real
intersection points, summed over all faces ofA, is O(µv). Since∂f does not intersect the relative interior
of any segment inU(f) or L(f), a virtual intersection point is an intersection pointe ∩ e′, wheree is
an edge of the lower chain of a long polygonPi ande′ is the vertical segmentσj emanating from the
right endpointrj of (the upper chain of) a short polygonPj . We can ignore intersections on∂f because
they correspond to degenerate intersections betweenAf andBf , and, in any case, their number is only
O(µv). SincePi is a long polygon, its spinesi is in SPL. Therefore,si lies above the interior of the face
f and thus aboverj . The intersection ofe andσj implies thatrj is insidePi . We charge the intersection
point e ∩ e′ to the pair(i, j). Each pair(i, j) is charged by at most one virtual intersection point and the
pair (i, j) is reported atv, therefore the total number of virtual intersection points, summed over all faces
of A, is at mostkv. Hence,

∑
f If = O(kv +µv), and the total expected time spent in executing stage (b)

is O((nv + kv +µv)α(nv) lognv).
We have thus described procedures for reporting all intersecting pairs that satisfy properties (a)–(c)

at a nodev of T . The total expected time we spend atv is O((nv + kv + µv)α(nv) lognv). Since∑
v nv = O(n logm),

∑
v kv = k, and

∑
v µv = O(k) (Lemma 2.2), we obtain our first main result.

Theorem 2.3. Let P = {P1, . . . , Pm} be m convex polygons in the plane with a total of n vertices. All k
pairs of indices (i, j) such that Pi intersects Pj can be reported in O((n logm+ k)α(n) logn) expected
time.

Remark 2.4.

(i) To get a worst-case time bound instead of an expected time bound, we can replace the algorithm of
Har-Peled and Sharir [18] used in the second part of the algorithm by an algorithm of Basch et al. [7].
This will increase the time bound by a polylogarithmic factor.

(ii) The algorithm also works for splinegons, whose boundaries are composed of Jordan arcs instead of
straight edges, provided the splinegons are still convex. Ift is the maximum number of intersection
points between any pair of Jordan arcs that form the boundaries of the splinegons, the running time
of the algorithm is O((λt+2(n) logm+ λt+2(k)) logn).

2.2. An alternative deterministic algorithm

Let Pi andPj be two intersecting polygons inP. Recall that the rightmost vertex ofPi ∩ Pj is ri , rj ,
an intersection point of the upper chain ofPi with the lower chain ofPj , or an intersection point of the
lower chain ofPi with the upper chain ofPj . Using this observation, we can report the intersecting pairs
of the given polygons as follows.

Let V = {ri | 1 � i � m}. We first report all intersecting pairs of polygons for which the rightmost
vertex of the intersection polygon is the rightmost vertex of one of the two polygons. A vertexri is the
rightmost vertex ofPi ∩ Pj if and only if ri ∈ Pj . For eachPi , we therefore reportPi ∩ V . Using the
range-searching data structure of Matoušek [19], for given parametersm � s � m2 andε > 0, we pre-
processV , in time O(m1+ε + s logε m), into a data structure of size O(s), so that allµi points ofPi ∩ V

P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207 203

can be reported in time O(|Pi|(m/√s) log3m+µi). Since
∑m

i=1 |Pi | = n, the total time spent in this step
is

O
(
m1+ε + s logε m+ (mn/

√
s) log3m+µ

)
,

whereµ = ∑m
i=1 |Pi ∩ V | � k. Choosings = max{m2/3n2/3 log2m,m2}, the running time becomes

O(m2/3n2/3 log2+ε m+ n log3m+µ).
Next, we report the pairs(i, j) such that the rightmost vertex ofPi ∩ Pj is an intersection point of an

edge ofPi with an edge ofPj . LetU be the set of segments in the upper chains of the polygons inP, and
letL be the set of segments in the lower chains of these polygons. We compute allν intersecting pairs of
segments betweenU andL. This can be accomplished in O(n4/3 log2/3n+ ν) time [1,10]. Suppose that
an edgee of the upper chain ofPi and an edgee′ of the lower chain ofPj intersect. We check in O(1)
time whethere ∩ e′ is the rightmost vertex ofPi ∩ Pj , and, if so, report the pair(i, j). Since an upper
chain intersects a lower chain in at most two points, the number of intersections betweenU andL is at
most 2k, wherek is the number of intersecting pairs of polygons inP.

Hence, we obtain the following result.

Theorem 2.5. Let P be a set of m convex polygons in the plane with a total of n vertices. All k pairs of
indices (i, j) such that Pi intersects Pj can be reported in O(n4/3 log2+ε n+ k) time, for any ε > 0.

Remark 2.6. As in Agarwal and Sharir [5], we can use a more sophisticated data structure to improve
the running time of the algorithm to O(m2/3n2/3 logc n+ n1+ε + k), for an appropriate constantc and for
anyε > 0.

The data structure by Matoušek in [19] can count the number of points lying inside ak-gon in time
O(k(m2/3/n1/3) · log2m) time using O(m2/3n2/3 log2+ε m + m1+ε) preprocessing. Moreover, a minor
variant of the algorithm of Chazelle [10] can count, in O(n4/3 logn) time, the number of intersection
points betweenL and U that correspond to the rightmost intersection points of the corresponding
polygons. Hence, we obtain the following.

Theorem 2.7. Let P be a set of convex polygons in the plane with a total of n vertices. The number of
pairs of indices (i, j) such that Pi intersects Pj can be counted in O(n4/3 log2+ε n) time, for any ε > 0.

3. The three-dimensional case

Let P = {P1, . . . , Pm} be a set ofm convex polytopes inR3 with a total ofn vertices. We present an
algorithm, with running time O(n8/5+ε + k), for anyε > 0, which reports allk pairs of indices(i, j) such
thatPi intersectsPj . Our approach is similar to the algorithm described in Section 2.2. We compute the
bottom vertex, i.e., the vertex with the minimumz-coordinate, of each nonempty intersection polytope
Pij = Pi ∩ Pj , and report the corresponding pairs(i, j). The bottom vertex of an intersection polytope
Pij is the bottom vertex ofPi , the bottom vertex ofPj , the intersection point of an edge ofPi and a face
of Pj , or the intersection point of a face ofPi and an edge ofPj . In the two latter cases, the intersection
has to satisfy a few additional properties, which we describe and exploit below.

Let bi be the bottom vertex ofPi , and letV = {bi | 1� i �m}. We first report all pairs(i, j) such that
the bottom vertex ofPij is the bottom vertex ofPi or of Pj . A vertexbi ∈ V is the bottom vertex ofPij if

204 P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207

Fig. 1. An arcγpq and a spherical triangle�pqr .

and onlybi ∈ Pj . Therefore, for eachPj ∈ P, we need to compute and reportPj ∩V . As in Section 2.2, we
can accomplish this in time O(m3/4n3/4 logc n+µ), for some constantc, whereµ= ∑m

i=1 |Pj ∩ V | � k,
using the range-searching algorithm of Matoušek [19].

Next, we report all pairs(i, j) such that the bottom vertex of (the nonempty)Pij is an edge-face
intersection. LetE andF denote the sets of edges and of faces, respectively, of the polytopes inP. Using
the partition-tree data structure of Agarwal and Matoušek [3], we can compute, in O(n8/5+ε) time, for
anyε > 0, a family of pairsF = {(E1,F1), . . . , (Er,Fr)}, such that

(i) Eα ⊆E andFα ⊆ F , for all 1� α � r ;
(ii) every edge inEα crosses every face ofFα , for all 1� α � r ;

(iii) for every crossing edge-face pair(e, f) ∈E × F , there is anα so thate ∈Eα andf ∈ Fα ; and
(iv)

∑u
α=1(|Eα| + |Fα|)= O(n8/5+ε).

We will describe an algorithm that, for a given pair(Eα,Fα), computes, in time O((|Eα| +
|Fα |) log2n+ νi), all νi pairs(e, f) ∈Eα ×Fα such thate∩ f is the bottom vertex of the corresponding
intersection polytope. Repeating this procedure for all pairs ofF , we report, in time O(n8/5+ε + ν) (for a
slightly larger, but still arbitrarily smallε > 0), all ν pairs(i, j) such that the bottom vertex ofPij is the
intersection of an edge-face pair.

Consider a pair(Eα,Fα) from the familyF . For each edgee ∈ Eα (respectively, each facef ∈ Fα),
let Pe ∈ P (respectively,Pf ∈ P) be the polytope containinge (respectively,f). Let S2 be the unit sphere
of directions inR

3, and letχ = (0,0,−1) be the south pole ofS2. For two pointsp,q ∈ S
2 that are not

antipodal, letγpq ⊂ S
2 be the shorter arc of the great circle passing throughp andq. For three points

p,q, r ∈ S
2, no two of which are antipodal, let�pqr be the smaller spherical triangle formed by the arcs

γpq, γqr , andγpr . See Fig. 1.
Let nf denote the outward unit normal of a facef . For an edgee, let γe be the great circular arc on

S
2 representing all outward normals to the planes supportingPe at e. The endpointsξ andη of γe are

the outward normals of the faces ofPe incident upone, andγe = γξη. For an edgee ∈ Eα and a face
f ∈ Fα , let τef = �ξηnf be the spherical triangle formed byγe, γξnf , andγηnf ; τef is the set of outward
normals supportingPe ∩ Pf at the vertexe ∩ f . The following lemma is straightforward but crucial to
our analysis.

Lemma 3.1. For a pair (e, f) ∈Eα × Fα , the intersection point e ∩ f is the bottom vertex of Pe ∩ Pf if
and only if χ ∈ τef .

P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207 205

In order to find the edge-face pairs with the above property, we define a spherical triangle�e for each
edgee ∈ Eα as follows. Letp andq be the antipodal points of the endpoints ofγe, and letγ e be the
antipodal arc ofγe, i.e., the set of points that are antipodal to the points onγe. We define�e to be the
spherical triangle�pqχ , which is bounded by the arcsγ e, γpχ , andγqχ . We also defineWe to be the
spherical wedge that contains the arcγ e and is formed by the meridians passing throughp andq. Finally,
letHe be the hemisphere containing�e and bounded by the great circle containingγe andγ e (this circle
is the set of normals to the planes passing through the edgee). Then�e =He ∩We.

It can be easily checked thatχ ∈ τef if and only if nf ∈ �e, which implies the following lemma.

Lemma 3.2. For a given pair (e, f) ∈ Eα × Fα , the intersection point e ∩ f is the bottom vertex of
Pe ∩ Pf if and only if nf ∈ �e.

Let = = {�e | e ∈ Eα} andN = {nf | f ∈ Fα}. For each�e ∈=, we wish to report�e ∩N . Recall
that�e =We ∩He. We thus preprocessN into a two-level data structure—the first level reports, for any
query�e, all points ofWe ∩N as the union of O(log |Fα|) canonical subsets, and the second level reports
all points of the canonical subsets that lie insideHe. More precisely, we proceed as follows. We sort the
points inN by their longitudes and construct a minimum-height binary treeT on the sorted point set
(we omit the easy details concerning the handling of the circularity of this order). Each nodeu of T is
associated with the subsetNu ⊆ N of points that are stored at the leaves of the subtree rooted atu. We
preprocessNu for hemisphere reporting queries, where each query reports all points ofNu lying inside a
query hemisphereH ⊂ S

2. By using a halfplane range-reporting structure [12], we can preprocessNu, in
O(|Nu| log |Nu|) time, into a data structure of size O(|Nu|), so that a hemisphere query can be answered
in O(log|Nu|+ t) time, wheret is the output size. We attach this structure atu as its secondary structure.
The total time spent in preprocessingN is O(|Fα| log2 |Fα|). For an edgee ∈ Eα , we report�e ∩N as
follows. By searching with the longitudes of the endpoints ofγ e, we first find, in O(log|Fα|) time, a
setUe of O(log|Fα|) nodes ofT , so that

⋃
u∈Ue Nu =We ∩ N . For each nodeu ∈ Ue, we report alltu

points ofNu ∩ �e in O(log|Fα| + tu) time, by searching withHe in the secondary structure attached
to u. Therefore the total time spent in reporting allte points of�e ∩N is O(log2 |Fα| + te). Hence, the
overall time spent in reporting allν pairs ofEα × Fα such thate ∩ f is the bottom vertex ofPe ∩ Pf is
O((|Eα| + |Fα|) log2 |Fα | + ν).

Summing up all the bounds, and replacingε by a slightly larger (but still arbitrarily small) constant,
we obtain the following.

Theorem 3.3. Given a set P of m convex polytopes in R
3 with a total of n vertices, we can report all k

pairs of indices (i, j) such that Pi and Pj intersect, in time O(n8/5+ε + k), for any constant ε > 0.

By replacing the halfplane range-reporting structure at each nodeu ∈ T with a halfplane range-
counting structure, we can count all intersecting pairs of polytopes inP. Using Matoušek’s partition-
tree data structure once again, we can preprocessNu in time O((|Eα|2/3|Nu|2/3 + |Nu|) logn) so that a
halfplane range-counting query can be answered in O((|Nu|2/3/|Eα|1/3) logn) time. The total time spent
in preprocessingN , summed over all nodes ofT , is O((|Eα|2/3|Fα |2/3 + |Fα|) log2n), and for an edge
e ∈ Eα , |�e ∩N | can be computed in time O((|Fα|2/3/|Eα|1/3) logn) by traversingT as above. Putting
every thing together, the time spent in counting the number of pairs inEα × Fα so thate ∩ f is the
bottom vertex ofPe ∩ Pf is O((|Eα|2/3|Fα |2/3 + |Fα|) log2n). As shown in [2], the properties of multi-

206 P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207

level partition trees imply that
∑u

i=1 |Eα|2/3|Fα|2/3 = O(n8/5+ε). Hence, the total running time of the
algorithm, summed over all pairs inF , is O(n8/5+ε′), for anyε′ > ε. We thus conclude the following.

Theorem 3.4. Given a set P of m convex polytopes in R
3 with a total of n vertices, we can count all pairs

of indices (i, j) such that Pi and Pj intersect, in time O(n8/5+ε), for any constant ε > 0.

4. Conclusions

In this paper, we presented output-sensitive algorithms for reporting all intersecting pairs among
a set of convex polygons in the plane, and among a set of convex polytopes in three dimensions.
For the planar case, we presented the first near-linear-time algorithm for this problem; its expected
running time is O((n logm + k)α(n) logn). We also proposed a deterministic algorithm with running
time O(n4/3 log2+ε n+ k). Our algorithm for the 3-dimensional case runs in O(n8/5+ε + k) time.

One can also consider the bichromatic version of the problem. Here one is given two sets of
polytopes—the blue polytopes and the red polytopes, say—and the goal is to report all bichromatic pairs
of intersecting polytopes. The challenge is to avoid spending time on the monochromatic intersections. It
seems hard to generalize our near-linear-time algorithm for the planar case to the bichromatic problem,
but the generalization of the deterministic algorithms for the planar and the three-dimensional case is
straightforward.

An open question is whether there exists an O(m2−ε + k)-time algorithm, whereε > 0 is a constant,
for reporting allk pairs of intersecting polytopes in a setP of m convex polytopes inR4.

References

[1] P.K. Agarwal, Partitioning arrangements of lines. II. Applications, Discrete Comput. Geom. 5 (1990) 533–573.
[2] P.K. Agarwal, J. Erickson, Geometric range searching and its relatives, in: B. Chazelle, J.E. Goodman, R. Pollack (Eds.),

Advances in Discrete and Computational Geometry, American Mathematical Society, Providence, RI, 1999, pp. 1–56.
[3] P.K. Agarwal, J. Matoušek, On range searching with semialgebraic sets, Discrete Comput. Geom. 11 (1994) 393–418.
[4] P.K. Agarwal, M. Sharir, Red-blue intersection detection algorithms, with applications to motion planning and collision

detection, SIAM J. Comput. 19 (1990) 297–321.
[5] P.K. Agarwal, M. Sharir, Ray shooting amidst convex polygons in 2D, J. Algorithms 21 (1996) 508–519.
[6] I. Balaban, An optimal algorithm for finding segment intersections, in: Proc. 11th Annu. ACM Sympos. Comput. Geom.,

1995, pp. 211–219.
[7] J. Basch, L.J. Guibas, G. Ramkumar, Reporting red–blue intersections between two sets of connected line segments, in:

J. Diaz, M. Serna (Eds.), Algorithms—ESA’96, Springer, Berlin, 1996, pp. 302–319.
[8] J.L. Bentley, T.A. Ottmann, Algorithms for reporting and counting geometric intersections, IEEE Trans. Comput. C-28

(1979) 643–647.
[9] G. Brodal, R. Jacob, Dynamic planar convex hull with optimal query time and O(logn log logn) update time, in: Proc. 7th

Scand. Workshop Algorithm Theory, 2000, pp. 57–70.
[10] B. Chazelle, Cutting hyperplanes for divide-and-conquer, Discrete Comput. Geom. 9 (1993) 145–158.
[11] B. Chazelle, L. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica 1 (1986) 133–162.
[12] B. Chazelle, L. Guibas, D.T. Lee, The power of geometric duality, BIT 25 (1985) 76–90.
[13] B. Chazelle, H. Edelsbrunner, An optimal algorithm for intersecting line segments in the plane, J. ACM 39 (1992) 1–54.
[14] B. Chazelle, H. Edelsbrunner, L. Guibas, M. Sharir, Algorithms for bichromatic line segment problems and polyhedral

terrains, Algorithmica 11 (1994) 116–132.

P.K. Agarwal et al. / Computational Geometry 23 (2002) 195–207 207

[15] K.L. Clarkson, P. Shor, Applications of random sampling in computational geometry, II, Discrete Comput. Geom. 4 (1989)
387–421.

[16] U. Finke, K. Hinrichs, Overlaying simply connected planar subdivisions in linear time, in: Proc. 11th Annu. ACM Sympos.
Comput. Geom., 1995, pp. 119–126.

[17] P. Gupta, R. Janardan, M. Smid, Efficient algorithms for counting and reporting pairwise intersections between convex
polygons, Inform. Process. Lett. 69 (1999) 7–13.

[18] S. Har-Peled, M. Sharir, On-line point location in planar arrangements and its applications, Discrete Comput. Geom. 26
(2001) 19–40.

[19] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom. 10 (1993) 157–182.
[20] K. Mulmuley, A fast planar partition algorithm. I, J. Symbolic Comput. 10 (1990) 253–280.
[21] N. Sarnak, R.E. Tarjan, Planar point location using persistent search trees, Comm. ACM 29 (1986) 669–679.
[22] M. Sharir, P.K. Agarwal, Davenport–Schinzel Sequences and Their Geometric Applications, Cambridge University Press,

New York, 1995.
[23] S. Suri, P.M. Hubbard, J.F. Hughes, Analyzing bounding boxes for object intersection, ACM Trans. Graphics 18 (1999)

257–277.

