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This study examines the use of nonlocal regularisation in a coupled consolidation problem of an exca-
vated slope in a strain softening material. The nonlocal model reduces significantly the mesh dependency
of cut slope analyses for a range of mesh layouts and element sizes in comparison to the conventional
local approach. The nonlocal analyses are not entirely mesh independent, but the predicted response is
much more consistent compared to the one predicted by local analyses. Additional Factor of Safety anal-
yses show that for drained conditions the nonlocal regularisation eliminates the mesh dependence
shown by the conventional local model.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://
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1. Introduction

The modelling of slope failure in a strain softening material
with conventional Finite Element models can be particular chal-
lenging. In a typical finite element analysis the strain developed
along the shear bands is calculated using the displacement infor-
mation computed at the nodes of the elements. This affects both
the shear band thickness and the direction of its development
[1]. The calculated strain is used to assess the degree of softening
experienced by the material at that point. There can be a large dif-
ference, i.e. a high gradient, between displacement and therefore
strain at neighbouring points. The potential strain concentration
at one single point can lead to convergence problems and ambigu-
ities in the development of the slip surface. In addition, the sizes of
the elements in the mesh restrict the minimum size of the shear
band to the distance between two points of known displacement,
i.e. two nodes [2]. For example, if 8-noded two-dimensional ele-
ments are employed, the minimum shear band thickness is
restricted to the width of half an element. These inherent limita-
tions of the finite element method render the solution to be mesh
dependent.

Several approaches have been proposed in the literature to try
and regularize the numerical solution and model rigorously the
shear zone and these can be divided into three main categories;
Cosserat theories [3], gradient theories [3–6] and nonlocal
approaches [1,3,7,8]. The present study focuses on the latter
approach which is particularly attractive because it does not alter
the fundamental governing equations, but it does introduce the
calculation of a nonlocal strain as a variable by spatially averaging
the local strains [9]. This makes the approach of nonlocal strain
regularisation more straightforward to implement in an existing
finite element code, compared to Cosserrat and gradient theories.

The non-local method [10,11] adopts a distribution function
which spreads the strain of the material at a point over a pre-
defined surrounding volume. The local method calculates the
extent of strain softening with reference to the strain at that point
alone. To define the contribution of nonlocal strains to the yielding
of the material requires the additional input of a characteristic
length parameter, which controls the contribution of local strains
to the nonlocal calculation depending on the distance of the local
strains from the calculation point. In the present study the nonlocal
model of Galavi and Schweiger [1] (G&S) is employed in a coupled
consolidation problem of an excavated slope in a strain softening
material aiming to investigate the performance of this nonlocal
approach in terms of mesh dependence and computational cost.
Furthermore the impact of the two nonlocal parameters, the
defined length (DL) and the radius of influence (RI) on the numer-
ical predictions is thoroughly investigated providing guidance for
their use in boundary value problems. The defined length is an
integral parameter of the G&S method which modifies the rate of
softening, while the radius of influence is an optional parameter
which makes the computation more efficient by reducing the num-
ber of local strains referenced in the nonlocal strain calculation.
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2. Mesh dependency of local strain softening slope stability
analyses

As previously discussed, themodelling of slope failure in a strain
softening material with conventional Finite Element models can be
particular challenging, as the solution can be very sensitive to the
adopted mesh discretization. For an assumed problem geometry,
different element layouts can be employed and the mesh is usually
refined around the areas of potential strain concentration leading to
varying element sizes within the FE model. The sensitivity of a local
strain softening model on these two aspects (i.e. the element size
and the elements’ layout) is first demonstrated, before exploring
the use of nonlocal regularisation in strain softening materials. A
parametric study employing both biaxial compression analyses,
Fig. 1. Variation of the angle of shearing resistance u0 and the cohesion interce

Fig. 2. Boundary conditions

Table 1
Summary of biaxial compression analysis for local and nonlocal strain softening models.

Mesh identification & element arrangement Element size (m) Local m

10 � 10 2.1 5–20
20 � 20 1.05 10–40
40 � 40 0.525 20–80
as well as slope stability analyses was carried out for this purpose.
The biaxial compression analyses first examine the role of element
size within a uniformmesh discretisation, while in the slope stabil-
ity analyses both aspects of mesh discretisation are investigated. All
the analyses presented in this paper were carried out in plane strain
with the Finite Element code ICFEP (Imperial College Finite Element
Program) [12], using a strain softening variant of the Mohr-
Coulomb model [13]. This is an elasto-plastic model in which soft-
ening behaviour is facilitated through a variation of the angle of
shearing resistance u0, and the cohesion intercept c0 with the devi-
atoric plastic strain invariant, as shown in Fig. 1. The limits for peak
(up

0, c0p) and residual (ur
0, c0r) strength are specified in themodel by a

percentage value of the deviatoric plastic strain invariant (Ep
d;p, E

p
d;r ,

respectively) which is defined in Eq. (1):
pt c0 with the deviatoric plastic invariant Ep
d adapted from Potts et al. [13].

for biaxial compression.

odel:strain rate peak to residual (%) Nonlocal model:DL values

0.525 m 1.05 m 2.1 m

Ratio of DL over element size

– – 1:1
– 1:1 1:2
1:1 1:2 1:4
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Ep
d ¼

2ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðep1 � ep2Þ2 þ ðep2 � ep3Þ2 þ ðep3 � ep1Þ2

q
ð1Þ

where ep1, ep2; ep3 are the principal plastic strains.
Eight–noded isoparametric elements with reduced integration

were used and an accelerated modified Newton-Raphson scheme
with a sub-stepping stress point algorithm was employed to solve
the nonlinear finite element equations [12].

2.1. Biaxial compression analyses

The biaxial compression analyses, compress a quadrilateral
mesh from two opposing sides, whilst leaving the two other oppos-
ing sides free to deform. The two lines of symmetry of the problem
permit a quarter of it to be analysed, as shown in Fig. 2 together
with the adopted boundary conditions. The initial conditions con-
sist of a vertical stress of 50 kPa imposed on the top horizontal
boundary and a 100 kPa horizontal stress applied along the right
hand side lateral boundary. Restricting the horizontal displace-
ment of the top mesh boundary in Fig. 2(b) and imposing an equal
vertical displacement to all nodes along this boundary was suffi-
cient for a slip surface to form.

London Clay was chosen as a representative strain softening
material. Kovacevic [14] and Potts et al. [15] employed local strain
softening analyses to model London Clay cuttings with the peak
Table 2
Model parameters for biaxial compression and cutting slope analyses [14,15].

Problem analysed Property Assumed value

Biaxial compression & slope
stability

Bulk Unit weight, c 18.8 kN/m3

Peak strength (bulk) c0p = 7 kPa, up
0 = 20�

Residual strength c0r = 2 kPa, ur
0 = 13�

Poisson’s ratio, l 0.2
Angle of dilation, w 0�
Young’s modulus, E 25(p0 + 100) (min

4000 kPa)

Biaxial compression Plastic deviatoric
strain, Ed

Varied

Slope stability Plastic deviatoric
strain, Ed

Peak 5%, residual 20%

Coefficient of
permeability, k

k0 = 5 � 10�10 m/s

b = 0.003 m2/kN

Fig. 3. Biaxial compression analyses with local strain softening empl
strength properties retained up to a plastic deviatoric strain of
5% and then linearly reducing to their residual values which are
reached at a plastic deviatoric strain of 20%. This produced a real-
istic failure time and mechanism that agreed with field data for
cutting slopes of the same dimensions in London Clay. It should
be noted that due to the mesh dependency of the local method,
these strain limits are only appropriate for the element sizes
employed in the original analyses of Kovacevic [14] and Potts
et al. [15]. Their adopted softening rate and the associated strain
softening limits were based on comparisons of experimental data
with simple shear finite element simulations. The displacements
for the limits of softening obtained in the simple shear analyses
were related to the size of the elements used in the mesh for the
cutting analyses in Potts et al. [15], with 2 m by 1 m elements
beneath the slope surface.

Based on the work of Kovacevic [14] and Potts et al. [15], in the
present study the 5% and 20% strain limits for a local strain soften-
ing analysis are employed with a mesh with elements sized 2.1 m
by 2.1 m (10 � 10 elements), to give an appropriate softening rate
for London Clay. Three square mesh layouts of the form shown in
Fig. 2 were considered, with 10 � 10, 20 � 20 and 40 � 40 ele-
ments as summarised in Table 1. However, the mesh is 21 m by
21 m in size to produce element sizes of 2.1 m, 1.05 m and
0.525 m. In order to maintain a consistent softening rate in all
the local analyses, the strain limits are scaled so that for each con-
sidered element size the softening limits are reached for the same
displacement. With smaller element sizes, the softening limits for
the mesh dependent local percentage strain softening model must
be varied to produce the same softening rate, by maintaining the
same displacement at which the softening limits are reached. The
local strain softening model can be manipulated in this way, but
only for this type of analysis with a mesh that has a regular square
format. Therefore, for the 20 � 20 mesh with elements half the
size, twice the limits are specified as 10% and 40% and similarly
for the 40 � 40 mesh, 20% and 80% strain limits are specified. The
biaxial compression analyses are drained and the adopted proper-
ties for the London Clay are given in Table 2.

Fig. 3 presents the reaction load on the top of the mesh given
the applied vertical displacement for all the biaxial compression
analyses. As expected, the local analyses with the altered softening
limits for the different element sizes produce coinciding results.
This confirms that the softening rate in the local strain softening
oying 21 m by 21 m meshes with varying numbers of elements.



Fig. 4. Index of meshes for excavated slope analyses, arranged by mesh layout and element width. Measurements are specified for elements beneath excavated slope area.
The area to be excavated is shaded grey.

Fig. 5. Typical finite element mesh and boundary conditions.
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model is element size dependant and that in problems with uni-
form mesh discretisation one can achieve the desired softening
rate by adjusting the element size and strain softening limits
appropriately.

2.2. Slope stability analyses

In order to investigate the mesh dependency of the local strain
softening model predictions in cases with varying element sizes
and layouts, a set of eleven meshes were considered, as shown in
Fig. 4. These meshes are all designed to simulate an excavated
slope 10 m high with a 1 in 3 gradient (vertical to horizontal)
and three of the considered layouts can be employed to simulate
vertical stabilisation piles, Fig. 4(a)–(h), which is a common stabil-
isation scenario in slope stability FE analysis. It should be noted
that in all the presented cutting analyses a coupled consolidation
formulation is adopted unless otherwise stated, which allows the
modelling of the generation of excess pore fluid pressures during
excavation and their subsequent equilibration with time.
The same soil properties for London Clay as specified in Table 2
are considered for the cutting analyses, but with a variation of
Young’s modulus, E with confining pressure p0 (instead of the con-
stant value of E which was used in biaxial compression analyses).
In addition, only one strain rate was specified with the peak
strength properties being retained up to a plastic deviatoric strain
of 5% and then linearly reducing to their residual values, which are
reached at a plastic deviatoric strain of 20%. A typical FE mesh with
the slope dimensions and the associated mechanical and hydraulic
boundary conditions is shown in Fig. 5. No horizontal displacement
was allowed on the vertical boundaries, whereas the bottom
boundary was fixed in both horizontal and vertical directions.
Before the excavation of the slope, initial stresses are specified in
the soil using a bulk unit weight of c = 18.8 kN/m3 and a uniform
coefficient of lateral earth pressure, K0 = 2.0. The pore water pres-
sures are hydro-static with 10 kPa suction specified at the ground
surface, following the average height expected for the phreatic sur-
face in the UK [16]. The bottom and side boundaries are imperme-
able. The permeability, k of the soil is modelled as isotropic and is



Fig. 6. Change in horizontal displacement with time for cutting analyses employing the local strain softening model and various meshes.

Fig. 7. The impact of DL on the weighting function distribution.
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linked to the mean effective stress, p0 using the non-linear relation-
ship in Eq. (2) [17].

k ¼ k0e�bp0 ð2Þ
The slope was excavated in horizontal layers over 0.25 years.

This unloads the soil surrounding the excavation and the low per-
meability of the soil creates negative pore water pressures. After
excavation 10 kPa suction is applied at the free boundary. Time
and consolidation allow these excess pore water pressures to
slowly dissipate. The changes in pore water pressures and strain
softening behaviour of the stiff clay eventually lead to failure of
the slope. The point of failure is defined as the last increment of
the analysis that will converge with a time step of 0.01 years. Ini-
tially time steps of 1 year are employed and the size of the incre-
mental step is reduced as slope failure is approached.

The computed response employing the local strain softening
model is presented in Fig. 6 in terms of horizontal displacement
variation with time for the mid-slope surface point. The results
are shown to be extremely mesh dependent both in terms of the
time to failure and the movement of the slope between excavation
and failure. The range of time to failure varies from 14 years for the
inclined elements mesh with 1 m wide slope elements, Fig. 4(j), to
a slope that did not show signs of failure 250 years after excavation
when employing the base pile mesh layout and 0.525 mwide slope
elements, Fig. 4(f). In contrast, the same base pile mesh layout with
1.05 m wide slope elements, Fig. 4(e) reached failure in less than
30 years. Two of the analyses employing the mid-slope pile mesh
layout produce similar results, with 1.05 m wide elements, Fig. 4
(b) and 0.525 m elements, Fig. 4(c). Slope failure for these meshes
occurred after 140 years and 160 years respectively (failure points
are not shown in the graph). However, the 2.1 m wide elements for
this same layout, took only 40 years to reach failure.
3. Mesh dependency of non-local strain softening slope stability
analyses

The biaxial compression and cutting analyses presented so far
demonstrate clearly the significant mesh dependency of conven-
tional local strain softening models. On the other hand, non-local
models have been implemented in several numerical codes as a
regularisation tool for slip surface or fracture formation. Summers-
gill [18] considered three nonlocal approaches, the original formu-
lation of Eringen [7], the Over-nonlocal of Vermeer and Brinkgreve
[8] and the G&S of Galavi and Schweiger [1], in biaxial compression
simulations showing that the G&S suffered the least mesh depen-
dency. However, the slip surface developed in biaxial compression
analyses are kinematically constrained and therefore the conclu-
sions of such analyses are not directly applicable to any boundary
value problem. In the present study, the mesh dependency of the
G&S method is examined not only in biaxial compression, but also
in the coupled consolidation problem of the excavated slope. The
latter is an example of an analysis which does not predetermine
the location of the slip surface and therefore provides no kinematic
restraint on slip surface development.
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3.1. The non-local G&S method

A fully nonlocal model treats both stress and strain as nonlocal
components. However, when the model is employed as a regular-
isation tool, it is common to adopt a partial nonlocal constitutive
relation in which only the nonlocal plastic strains control the soft-
ening [1]. One of the first formulations for nonlocal plastic strains
is presented in Eq. (3). This was proposed by Eringen [7] for strain
hardening applications and by Bazant et al. [19] in a strain soften-
ing damage model.

ep� ðxnÞ ¼ 1
Vx

ZZZ
xðx0nÞep x0n

� �� �
dx01dx

0
2dx

0
3 ð3Þ

where ep is the = accumulated plastic deviatoric strain, ⁄ denotes
the nonlocal parameter, xn is the global coordinate at which the cal-
culation of the nonlocal plastic strain, ep⁄ is required, whereas x0

n

refers to all the surrounding locations, i.e. the location of reference
strain, with n = 1, 2, 3. Therefore, ep(x0

n) equals the reference (i.e.
local) strain at the reference location. The weighting function, x
(x0

n) is defined for all the reference locations, but it is centred at
the location xn. The weighting function (see Eq. (4)) in the case of
the G&S method has been designed to limit the central concentra-
tion of strains, assuming that the development of the slip surface
is influenced by the directly surrounding areas and not by the con-
centrated strain at the centre of the slip surface.

xðx0nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0n � xnÞTðx0n � xnÞ

q
DL2

exp �ðx0n � xnÞTðx0n � xnÞ
DL2

" #
ð4Þ

The defined length, DL, influences the distribution of the
weighting function as shown in Fig. 7. A higher DL is expected to
result in a wider slip surface with a lower maximum nonlocal
strain. This affects the rate of strain softening, as the same input
of local strain will result in a lower nonlocal strain for a larger
defined length and therefore a slower rate of softening. The inte-
gral of the weighting function in the three dimensions x1, x2 and
x3 is referred to as the reference volume, Vx, as shown in Eq. (5).
This is used to normalise the calculation of the nonlocal strain
and for the G&S distribution is equal to approximately one. The lat-
ter attribute of the function ensures that a uniform field of strain
would remain unmodified.

Vx ¼
ZZZ

xðx0nÞdx01dx02dx03 ð5Þ
Fig. 8. Biaxial compression analyses with local and nonlocal strain softenin
3.2. Comparison of nonlocal and local strain softening analyses

In this section both the biaxial compression and the cutting
analyses are repeated with the G&S model to investigate to what
extent nonlocal regularisation reduces the mesh dependency.
3.2.1. Biaxial compression analyses
The biaxial compression analyses were repeated with the G&S

model considering a range of DL values as summarised in Table 1.
The appropriate range of DL values to investigate is influenced by
the element sizes in the meshes. A suitable DL value should be at
least equal to or larger than the element size, to include sufficient
strain reference points. However, it will be demonstrated that sub-
ject to the above restriction for a given DL, the softening rate is not
influenced by element size and therefore the element sizes of the
mesh employed for the biaxial compression analyses can be of
any size. The second nonlocal parameter the radius of influence,
RI, is taken as three times the DL. RI is an optional parameter that
limits the distance from the calculation point of the neighbouring
strains that will be included in the nonlocal strain calculation
and therefore reduces the computational cost. In Fig. 7, it can be
seen that at a distance greater than 3 times DL from the calculation
point, the contribution of local strain to the nonlocal strain calcu-
lation is extremely small. The selected value of RI is also justified
based on the parametric investigation of Summersgill [18], who
for biaxial compression showed that an RI equal to three times
the defined length, DL, achieves the same accuracy as an analysis
with no RI specified, i.e. where all neighbouring strains contribute
to the calculation of a nonlocal strain no matter how far away they
are from the position for which the nonlocal strain is being evalu-
ated. The role of RI, is investigated in detail in the last part of this
study.

Fig. 8 presents the reaction load on the top of the mesh for the
applied vertical displacement for all the biaxial compression anal-
yses (local and non-local). As expected, the value of DL influences
significantly the softening rate, but for a given value of DL the soft-
ening rate is constant irrespective of the number or size of ele-
ments. These results demonstrate the low mesh dependency of
the nonlocal method, but also the importance of selecting an
appropriate value of DL which matches the target softening rate.
The DL = 1.05 m analyses produce a close match to local strain soft-
ening results and therefore a suitable DL to represent the softening
rate of London Clay. It should be clarified that the softening rate
g employing 21 m by 21 m meshes with varying numbers of elements.



Fig. 9. Change in horizontal displacement with time for cutting analyses employing the nonlocal strain softening method with DL = 2.1 m and various meshes.

Fig. 10. Mesh Index for 6 multiple pile layout meshes with a variation of element sizes as defined in Table 3 for an excavated slope 10 m high with a 1 in 3 (vertical to
horizontal) slope and 16 m wide base of excavation.

Table 3
Variation of element sizes and number for the multiple pile layout meshes with different discretisations.

Mesh identification Element size (width to height) Number of elements Reference in Fig. 10

Below base of excavation Below slope of excavation

Largest elements (as in Fig. 4g) 1 m � 1 m 1.2 m � 1 m 1460 (a)
Smallest elements (as in Fig. 4h) 0.5 m � 0.5 m 0.6 m � 0.5 m 5840 (b)
Thin below base 0.5 m � 1 m 1.2 m � 1 m 2180 (c)
Short with thin below base 0.5 m � 0.5 m 1.2 m � 0.5 m 3560 (d)
Thin below slope 1 m � 1 m 0.6 m � 1 m 2360 (e)
Short with thin below slope 1 m � 0.5 m 0.6 m � 0.5 m 3920 (f)

F.C. Summersgill et al. / Computers and Geotechnics 82 (2017) 187–200 193
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adopted in the local analyses is considered as the benchmark rate,
because is consistent with the simple shear tests simulations of
Potts et al. [15]. As previously discussed, Potts et al. [15] showed
that this softening rate results in a realistic prediction of the time
to failure and failure mechanism that agreed with field data for
10 m high cutting slopes with a 1 in 3 gradient in London Clay. It
should be also noted that the selection of DL in granular materials
is normally related to the mean grain size. For example, Galavi and
Schweiger [1] suggest DL to be 10–20 times the mean grain diam-
eter in dense sands. For boundary value problems in FE and in par-
ticular in clay materials such a correlation with the mean grain size
becomes impractical, as the element size in any direction should be
at most equal to DL for the nonlocal calculation to be effective.
Therefore in agreement with Galavi and Schweiger [1] the selec-
tion of DL can be based on the softening rate although this might
result in unrealistically large shear band thickness.

Another interesting point of the biaxial compression results is
that for the same large value of imposed vertical displacement
and after material softening has finished for the nonlocal analyses
(see for example the case of DL = 1.05), the local results exhibit a
higher reaction load. This reaction load for the local results contin-
ues to decrease long after the residual plateau in Fig. 8 has been
reached by the nonlocal analyses. However, the continued reduc-
tion in reaction load occurs at a much slower rate creating a shal-
lower gradient than the initial softening gradient for the local
results. These observations are presumably related to the inherent
differences in the way the softening parameter (i.e. the deviatoric
plastic strain) is calculated in the two approaches.

3.2.2. Slope stability analyses
The cutting analyses presented previously were repeated with

the nonlocal G&S method, using the same strain softening limits.
In this set of analyses, the nonlocal G&S method employs a defined
length, DL of 2.1 m with a radius of influence, RI of 6.3 m (i.e. as
previously RI is equal to three times the DL). It should be noted that
the minimum value employed for DL should be equal to the
Fig. 11. Accumulated local plastic deviatoric strain contours illustrating the effect of elem
last converged increment.
maximum element size found in the meshes. Therefore a DL of
2.1 m, is the smallest value that could be used given the size of
the elements in the meshes employed (see Fig. 4). These analyses
seek to evaluate the mesh dependence of the nonlocal method.
The selection of an appropriate DL and therefore time to failure
is addressed subsequently.

The computed response for the nonlocal model is presented in
Fig. 9 in terms of horizontal displacement variation with time for
the mid-slope surface point. In contrast to the corresponding local
results (Fig. 6), the nonlocal analyses demonstrate a more consis-
tent response for the various considered meshes. The range of time
to failure is only 40 years, between 61 and 97 years after excava-
tion, as opposed to a range of more than 250 years for the local
analyses. Excluding the inclined element meshes and the multiple
location pile mesh with 0.5 m elements, the range of time to failure
reduces to only 10 years. The increase in horizontal displacement
of the mid-slope with time is more gradual and continuous with-
out the sudden changes in the speed of slope movement exhibited
by some local analyses in Fig. 6. These sudden changes in displace-
ments are particularly evident for the local analyses employing the
mid-slope pile layout with 2.1 m width slope elements, Fig. 4(a),
and the inclined elements mesh with 0.5 m height elements,
Fig. 4(k). In the first 5 years the nonlocal results are very similar,
but the local displacement analyses have already diverged. Overall
there is a small variation in the horizontal displacement of mid-
slope over time, although the shape produced in Fig. 9 is similar
for all of the nonlocal strain softening analyses. These analyses also
result in a similar horizontal displacement value at failure, indicat-
ing that the failure mechanism and the location of the slip surface
should be similar.

Nevertheless, the nonlocal method has shown some mesh
dependency for the four distinct mesh layouts that were consid-
ered in Fig. 4, in terms of predicting the time to failure and move-
ments. The results for the same mesh layout with a variation in
element size provided consistent results, except for the multiple
pile layout meshes. The element sizes employed in the two meshes
ent discretisation on the position of the slip surface for six nonlocal analyses for the
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of that layout are 1.2 m � 1 m and 0.6 m by 0.5 m for Fig. 4
(g) and (h) respectively. To further investigate the mesh depen-
dency of the local and nonlocal G&S methods in terms of number
of elements, the same multiple pile layout mesh is used with a
variation in element size and distribution to apply finer discretisa-
tion in different areas beneath the excavation. These additional
meshes are presented in Fig. 10 and the variation in element sizes
is listed in Table 3. For these analyses the nonlocal parameters
were changed, adopting a DL = 1.0 m and a corresponding
RI = 3.0 m, while all other parameters remained unchanged. As
previously discussed, a suitable DL value should be at least equal
to or larger than the element size, to include sufficient local devi-
atoric plastic strain reference points. Hence, the finer element dis-
cretisation employed in this set of analyses, allowed the use of a
smaller DL which corresponds to a faster softening rate and hence
shorter time to failure. This value is consistent with the investiga-
tion of a suitable strain softening rate for London Clay slopes pre-
viously discussed and presented in Fig. 8.
Fig. 12. Horizontal displacement of the mid-slope point over time for analyses employ
models with six meshes of varying discretisation.
Fig. 11 plots contours of accumulated local plastic deviatoric
strains for the last converged increment for the 6 nonlocal analyses
corresponding to the meshes shown in Fig. 10. Overall the contour
plots show the formation of two dominant slip surfaces. Clearly
their location is more consistent amongst the analyses with the
finest vertical discretisation (i.e. Fig. 11b, d, f), while the coarser
meshes show a variation in the development of the slip surfaces.

The predicted horizontal displacement variation with time for
the mid-slope surface point is shown in Fig. 12 both for the local
and the nonlocal methods. The nonlocal results show that for a
DL of 1 m, the analyses employing the coarsest (Fig. 10a or Fig. 4g)
and finest (Fig. 10b or Fig. 4h) produce the fastest and slowest
times to failure, 38 and 85 years respectively. The remaining four
meshes, Fig. 10(c)–(f) produce failure times between these times.
The change in horizontal displacement over time varies for each
analysis resulting in a displacement just prior to failure of about
0.5 m for the three shortest analyses and of 0.6–0.65 m for the
three analyses with the longest times to failure. Clearly, these anal-
ing (a) the local and (b) the nonlocal G&S (DL = 1 m and RI = 3 m) strain softening



(a) Largest
elements

(b) Smallest
elements

(c) Thin below
base

(d) Short with
thin below base

(e) Thin below
slope

(f) Short with thin
below slope
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Fig. 13. Factor of Safety values evaluated immediately after excavation computed with the local and nonlocal strain-softening methods.

Fig. 14. The effect of varying the radius of influence, RI within a strain softening cutting analysis of DL = 1.0 m.
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yses demonstrate somemesh dependency for the nonlocal method,
however the nonlocal strain softening method still provides a sig-
nificant improvement over the local strain softening model. This is
demonstrated by the results from 6 local method analyses employ-
ing the meshes in Fig. 10. There is a significant variation for local
analyses, in time to failure from 15 years up to 270 years and hor-
izontal displacement from 0.35 m to 0.85 m. The relative develop-
ment of horizontal displacement just prior to failure is also
inconsistent for all the local analyses compared to the nonlocal
results. Clearly, the local strain softening results are very mesh
dependent.

4. Mesh dependency of factor of safety predictions

The analyses presented so far indicate that the prediction of the
time to failure is very sensitive to the adopted mesh discretisation
when the local strain softening model is employed, while even the
time to failure predictions of the non-local G&S model show some
mesh sensitivity. In order to further investigate the mesh depen-
dency characteristics of both local and non-local methods, Factor
of Safety (FoS) analyses were performed immediately after excava-
tion for the 6 meshes shown in Fig. 10.

Potts and Zdravković [20] showed that the most consistent
approach in computing the Factor of Safety in FE analysis is to start
the analysis with the characteristic strength and at relevant stages
of the analysis to gradually increase the safety factor (i.e. the mate-
rial factor on shear strength) until failure in the soil is fully mobi-
lised. In each increment of the analysis a larger factor of safety
(hence lower strength properties) is adopted until failure is
reached. The factor of safety is applied by reducing the strength
properties of the soil by a factor, F, as shown in Eqs. (6) and (7):

c0 ¼ c0in
Fs

ð6Þ

u0 ¼ tan�1 tanu0
in

Fs

� �
ð7Þ

where Fs is the current Factor of Safety and c0in andu0
in are the values

of cohesion and angle of shearing resistance respectively in the
beginning of the FoS analysis.



Fig. 15. Strain distribution for a vertical cross sections passing through the mid-
slope point for the last increment of the cutting analyses varying the RI parameter.
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In the present study the strength reduction started once the
excavation was completed. The FoS was incrementally increased
from an initial value of 1.0 until the factored strength resulted in
an unstable slope. The time and associated pore pressure changes
are stopped on the increment prior to the first factor of safety
increment (i.e. at the end of excavation) and the remaining FoS
analysis is drained. Excavation is simulated over a time period of
0.25 years and although consolidation is permitted during this per-
iod, the time is too short to allow any significant drainage in the
low permeability London Clay. In each increment of the analysis,
it is the current strength that is factored and so when a strength
has been reduced using a strain softening model, the reduced
strength is factored. The strain softening behaviour is therefore still
captured by the FoS analyses.

Fig. 13 compares the FoS values after excavation as predicted by
the local and the nonlocal approaches. The local model results
clearly show a significant variation of the FoS values, ranging from
1.370 to 1.507. On the other hand, the nonlocal predictions show
negligible mesh dependence with FoS values ranging only from
1.408 to 1.436. The similarity of the nonlocal FoS results for all
examined meshes indicates that it is the consolidation process that
is responsible for the mesh dependence seen in the predictions of
the time to failure. In the consolidation analyses the formation of
the slip surface was found to be very sensitive to the pore pressure
distribution leading to some mesh dependence even when nonlo-
cal regularisation was employed. However, the nonlocal regulari-
sation eliminated the mesh dependence in the case of the
drained FoS analyses where the softening is triggered through
the strength reduction.
DL = 1 m.

2 For interpretation of color in Fig. 17, the reader is referred to the web version of
this article.
5. Radius of influence and relative computational cost

The radius of influence, RI, is an optional parameter that limits
the distance from the calculation point of the neighbouring strains
that will be included in the nonlocal strain calculation. A small RI
reduces the time of the analysis by reducing the number of ele-
ments that will be included in the nonlocal calculation. Summers-
gill [18] investigated the sensitivity of nonlocal biaxial
compression analyses on RI, showing that for an RI three times
DL or greater, the reaction load response and strain distribution
is almost indistinguishable from an analysis performed with no
RI specified, i.e. where all neighbouring strains contribute to the
calculation of a nonlocal strain no matter how far away they are
from the position for which the nonlocal strain is being evaluated.

In the present study the impact of RI both in the accuracy of the
solution and the computation cost is examined for the stiff clay
cutting analyses. The same soil properties for London Clay as spec-
ified in Table 2 are adopted herein for the mesh shown in Fig. 10c
(thin below base) with a DL = 1.0 m and various values of RI. The
radius of influence was specified as 3.0 m, 4.5 m and 6.0 m and
the results are compared against an analysis with no RI specified.
The horizontal displacement of the midslope point with time for
these four analyses is presented in Fig. 14. The analyses results
agree until approximately 20 years after excavation, but show a
modest variation from that point onwards. The RI = 3.0 m and no
RI analyses give failure at just over 40 years, for RI = 4.5 m and
6.0 m the failure is just over 35 years, within one year of each
other. The relative development of slip surfaces within the slope
can be used to explain the difference in horizontal displacement
with time. The accumulated local plastic deviatoric strain distribu-
tion for the last converged increment for these four analyses is
shown for a vertical cross section through the mid-slope point in
Fig. 15. The corresponding strain contours for the entire model of
these analyses are presented in Fig. 16. Figs. 15 and 16 serve to
demonstrate the impact of RI on the failure mechanism, indicating
a wider variation of results than was expected based on the biaxial
compression results of Summersgill [18].

The sensitivity of the excavated slope results to the RI parame-
ter suggests that the development of strains and therefore slip sur-
faces within a slope still show a variability when employing the
nonlocal strain softening model. It should be noted that these anal-
yses employ the coupled consolidation formulation and as previ-
ously discussed, the non-local method shows a mesh dependence
in that case. In any case though, the critical slip surface is the same
for all four analyses and it is only a secondary deeper slip surface
that has developed to a different extent for each analysis and this
has caused the difference in the results. The secondary slip surfaces
vary in terms of position and development of local and nonlocal
strains before slope failure. The analyses with the greatest concur-
rent development of slip surfaces, RI = 3 m and no RI, take the long-
est time to reach failure. The strains developed are shown for no RI
in Fig. 16(d) and RI = 3 m in Fig. 16(a) and both in Fig. 15. The
development of multiple slip surfaces seems to prolong the soften-
ing in the slope analyses. The position and strains on the critical
slip surface do agree, (see Fig. 15), providing confidence in the
repeatability of the results.

The decision of which value of RI to employ for the slope anal-
yses should not be made solely on the similarity of the results to a
no RI analysis, a consideration of the time efficiency RI provides is
also of interest. Fig. 17 compares the Central Processing Unit (CPU)
time in terms of excavation CPU time, total CPU time and total CPU
time per increment. For each of these three types of time data, the
comparison is made as both a percentage of the analysis with no RI
(red2, smaller values) and as percentage of the RI = 6 m analysis time
(blue, larger values). The time result for an analysis with the same
soil and model parameters, but employing a local strain softening



Fig. 16. Local plastic deviatoric strain contours for excavated slopes analyses with various values for the RI parameter. DL = 1 m, excavation 10 m deep for the last converged
increment.
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model provides further context to assess the time cost of a nonlocal
strain softening model and the use of the RI parameter to reduce this
time. The analysis employing the local strain softening model is fas-
ter than the nonlocal strain softening analyses, although it leads to
only a 50% time saving compared to the RI = 3 m analyses. The
RI = 3 m analyses are performed in just over 50% of the time for
RI = 6 analyses and 70–80% of the RI = 4.5 m analyses. This is a signif-
icant time improvement if a large set of slope analyses are to be per-
formed. However, even a large RI of 6 m, 6 times the DL value,
provides a significant time saving of around 90% compared to the
analysis with no RI. If the final position of the secondary slip surfaces
in the slope is important, a RI larger than 6 multiples of DL may pro-
vide the required result and would still provide a significant time
improvement over not specifying an RI.

The value of RI for this type of analysis should be selected in
consideration of the importance of the development of secondary
slip surfaces, as well as the comparative time saving provided by
the RI value. The use of a radius of influence, RI provides a consid-
erable time advantage, especially for boundary value problems in
finite element analyses. An RI of three times the DL value should
provide reasonable accuracy of results, as the given form of the
weighting function implies that the contribution of strains at three
DL from the point of calculation is very small.
4. Conclusions

In the present study, the use of nonlocal regularisation is exam-
ined in a coupled consolidation problem of an excavated slope in a
strain softening material. The considered boundary value problem
allows for a thorough evaluation of the nonlocal regularisation
approach, as it does not entail any kinematic restraint on the slip
surface development and therefore the location of the slip surface
is not predetermined. Following the recommendations of Sum-
mersgill [18], who showed the superiority of the G&S nonlocal
strain softening model over two other nonlocal approaches, the
G&S method was employed exclusively herein. This model requires
the specification of one additional parameter, the defined length
DL, which influences the rate of softening. In addition, the optional
radius of influence parameter, RI, can be specified to reduce the
number of local strains referenced in the nonlocal strain calcula-
tion and thus increase the efficiency of the analyses.



Fig. 17. Comparison of time for slope analyses to be performed, comparing the use of local strain softening model to nonlocal G&S strain softening model and selected RI
value. (a) CPU time to perform excavation of slope during 25 increments (b) total CPU time for analyses, the number of increments varies for each analysis (c) total CPU time
per increment.
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The mesh dependency of both the G&S and the conventional
local strain softening model was investigated initially for biaxial
compression analyses modelling London Clay and then for a range
of mesh layouts and element sizes in cutting slope analyses mod-
elling the same material. The biaxial compression results showed
that the softening rate in the local strain softening model is ele-
ment size dependant and that in problems with uniform element
discretisation one can achieve the desired softening rate by adjust-
ing accordingly the element size and strain softening limits. In the
present study the ‘‘target” softening rate for London Clay is based
on the findings of Potts et al. [15] resulting from a calibration of
their local strain softening analyses on simple shear tests. The non-
local biaxial compression results showed negligible mesh depen-
dence, confirmed the influence of DL on the softening rate and
therefore highlighted the importance of selecting an appropriate
value of DL. The DL = 1.05 m analyses produced a close match to
the ‘‘target” softening rate and therefore this value is considered
suitable to represent the softening rate of London Clay. It should
be noted that this value is specific to the material softening prop-
erties specified herein and with consideration of the application to
the subsequent cutting analyses.

In the cutting analyses, the local strain softening results are
very dependent on the adopted mesh layout (i.e. element arrange-
ment) and the number of elements. The nonlocal strain softening
constitutive model makes a significant improvement on the mesh
dependency for a range of mesh layouts and element sizes. The
nonlocal analyses are not entirely mesh independent, but the pre-
dicted time to failure and horizontal displacement over time are
much more consistent compared to analyses that employ the local
strain softening constitutive model.

A further parametric study which focused on the computation
of the Factor of Safety after excavation for various mesh arrange-
ments, showed that for drained conditions the nonlocal regularisa-
tion actually eliminates the mesh dependence shown by the
conventional local strain softening model. The similarity of the
nonlocal FoS results for all examined meshes indicates that it is
the consolidation process that is responsible for the mesh depen-
dence observed in the previous predictions of the time to failure.

Finally a range of RI values was examined in cutting analyses in
order to investigate the impact of this parameter on the accuracy of
the solution and the computational cost. An RI of 3 multiples of DL
was found to provide a suitable compromise between accuracy and
time saving. When applied to a slope analysis with DL = 1 m, the
RI = 3 m analysis took 5–6% of the time for the no specified RI anal-
ysis, 50–60% of the RI = 6 m analysis and approximately twice as
long as the conventional local analysis. The RI parameter was
found to have an effect on the secondary slip surfaces developed
in the slope, although overall the results and the critical slip sur-
face were similar. Overall, the present study shows the superiority
of the nonlocal approach over the conventional local method and
the necessity of its use in strain softening problems.
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