The association of hyperlipidemia and oxidation with cardiovascular disease (CVD) has been well established. Increased lipid or oxidant level in blood might be an important risk factor for the development of CVD. Patients with hypercholesterolemia, hyper-

Antihyperlipidemic and Antioxidant Effects of C-phycocyanin in Golden Syrian Hamsters Fed with a Hypercholesterolemic Diet

Ming-Jyh Sheu1,§, Yao-Yuan Hsieh2,§, Ching-Hsiu Lai1, Chi-Chen Chang2, Chieh-Hsi Wu1,3

§Contributed equally.
1 School of Pharmacy, China Medical University, Taichung, Taiwan.
2 Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan.
3 Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.

ABSTRACT

Hyperlipidemia and oxidation play major roles upon cardiovascular diseases (CVDs). C-phycocyanin (CPC), the major component in blue-green algae, possesses antiinflammatory and radical scavenging properties. Herein we aimed to investigate the effect of CPC upon lipid metabolism and its antioxidant effects. Golden Syrian hamsters were randomly assigned to five groups: (1) control; (2) 0.2% cholesterol; (3) 0.2% cholesterol + 1% lopid; (4) 0.2% cholesterol + 0.25% CPC; and (5) 0.2% cholesterol + 1.25% CPC. All animals were sacrificed after 8-week feeding. Serum cholesterol, triglyceride (TG), low-density lipoprotein (LDL), glutamate-oxaloacetate transaminase (GOT), and glutamate-pyruvate transaminase (GPT) were examined. The diene conjugation in the Cu2+ -mediated oxidation of LDL was measured. The protein levels of several antioxidative enzymes including catalase (CAT), superoxide dismutases (SOD), and glutathione peroxidase (GPx) of liver were assayed. HepG2 cells were cultured in medium containing various concentrations of CPC (0, 1, 15, and 30 μM). The mRNA concentrations of LDL receptor, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG CoA) reductase, SOD-1 and GPx of HepG2 cells in each group were analyzed. CPC was effective in lowering serum cholesterol, total cholesterol (TC), TG, LDL, GOT, and GPT. CPC was found to decrease the malondialdehyde (MDA) equivalents and delay the diene conjugation in the Cu2+ -mediated oxidation of LDL. CPC increase the enzyme expressions of CAT, SOD, and GPx. CPC concentrations were positively correlated with the mRNA level of LDL receptor while the mRNA levels of HMG CoA reductase, SOD-1, and GPx in HepG2 cells were not affected. The lipid-lowering and antioxidation effects of CPC suggest its roles in prevention of CVD and atherosclerotic formation.

Key words: Atherosclerosis, C-phycocyanin, Cholesterol, Lipid, Reactive oxygen species

INTRODUCTION

The association of hyperlipidemia and oxidation with cardiovascular disease (CVD) has been well established. Increased lipid or oxidant level in blood might be an important risk factor for the development of CVD. Patients with hypercholesterolemia, hyper-

Correspondence to:
Prof. Chieh-Hsi Wu. School of Pharmacy, China Medical University, 91 Hsueh-Shih Road, Taichung, Taiwan. Telephone: 886-4-22053366 ext. 5100, 2502, Fax: 886-4-22073709, E-mail: chhswu@mail.cmu.edu.tw

This is an open access article under the CC BY-NC-ND license.
development of CVD. Abnormal ROS production might interfere with vascular function. Free radicals have beneficial or detrimental effects upon vascular wall, which depend on their nature and concentration. ROS such as superoxide anion, hydroxyl radical, and hydrogen peroxide are crucial in inflammatory responses, where they participate in physiological processes such as the arachidonic acid cascade and phagocytosis. The equilibrium between the amounts of ROS produced and scavenged is related with the gamet cell stability and damage. Numerous antioxidants are related with the ROS detoxification, including superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx). SOD and GPx could dispose hydrogen peroxide and other ROS.

C-phycocyanin (CPC), a blue colored, fluorescent protein purified from blue-green algae, is often used as a dietary nutritional supplement. CPC has been associated with antiinflammatory and radical scavenging properties. CPC has also been demonstrated to improve serum lipids and may reduce the risk of CVD. Numerous clinical effects of CPC have been demonstrated, including antiinflammatory activity, antiapoptosis, antioxidant, antiinflammation, etc. However, little is known about the molecular mechanisms of CPC in these aspects. Furthermore, its roles upon cardiovascular system, lipid metabolism, and ROS remain to be explored.

The clinical application of CPC and its mechanism through which CPC improves CVD have yet to be fully elucidated. In this survey, we designed to determine the effects of CPC upon the cholesterol, lipid, and ROS metabolism. We aimed to investigate the effects of CPC on the lipid and ROS metabolism of hamster fed with a high cholesterol diet. To the best of our knowledge, this survey is the first report in these related aspects.

MATERIALS AND METHODS

Animal preparation

A total of 56 male Golden Syrian hamsters (7 weeks old) were randomly assigned to five groups including (1) control; (2) 0.2% cholesterol; (3) 0.2% cholesterol + 1% lopid; (4) 0.2% cholesterol + 0.25% CPC; and (5) 0.2% cholesterol + 1.25% CPC. The ambient temperature was maintained between 22 and 24°C and the animals were kept on an artificial 12-h light–dark cycle. All protocols were approved by the Institutional Animal Care and Use Committee of China Medical University, Taichung, Taiwan. After 8-week feeding, all hamsters were sacrificed.

Measurement of plasma lipid level

The blood samples were collected in EDTA-coated glass tubes and centrifuged at 1000×g for 15 min at 4°C. The plasma was then separated and the total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) concentrations were assayed by commercial kits (Randox, San Diego, CA, USA). The protocols are described briefly as follows. TG detection: Serum was processed by enzymatic GPO-PAP method by using lipoproteinlipase, glycerol-kinase, glycerol-3-phosphate oxidase, and peroxidase to form a final product 4-(o-benzoquinone-monoimido) phenazine with pink red color. The concentration of TG can then be determined at 500 nm. TC detection: Serum was processed by enzymatic CHOD-PAP method. Olyethylene-glycol-(p-(1,1,3,3,-tetramethy-buty1)-phenyl)-ether and olyethyleneglycol monoalkyl ether were used to release cholesterol from lipoprotein release. Cholesterol was then hydrolyzed by cholesterol esterase followed by reaction with cholesterol oxidase to produce H₂O₂, which was then catalyzed by peroxidase and reacted with 4-aminotipyrin and phenol to yield pale red color Quinoneimine. The concentration of TC can then be determined at 500 nm. HDL-C detection: The VLDL and LDL in the plasma were precipitated by phosphotungastic acid and Mg²⁺ followed by 1000×g centrifugation for 15 min. The concentration of HDL in the supernatant was determined by the enzymatic CHOD-PAP method as described in the TC assay. LDL detection: The LDL in the plasma was precipitated by polyvinylsulfate followed by 1000×g centrifugation for 15 min. The cholesterol level other than LDL in the supernatant was determined by enzymatic DHOD-PAP method. The LDL concentration can then be determined by subtracting the supernatant cholesterol from TC level.

Copper-induced oxidation of LDL

LDL was then isolated by single-step nonequilibrium density gradient ultracentrifugation (Beckman TL-100, Beckman, Palo Alto, CA, USA) using a TLV-100 vertical rotor at 100,000 rpm for 30 min at 10°C. The isolated LDL fraction was desalted by passing it through a gel filtration column (Econo-Pac 10 DG, Bio Rad Laboratories, CA, USA). LDL was collected in 0.7 ml of phosphate buffered saline (PBS). The protein concentration of the eluate was measured using bovine serum albumin as standard. For the oxidation experiment, the LDL preparations were diluted with PBS to contain 0.05 g/l protein (~0.1 μmol/l LDL). Oxidation was started by adding 10 μl of freshly prepared 0.167 mmol/l CuSO₄ to 1.0 ml of LDL solution in a 1 cm quartz cuvette. Oxidation was determined as the production of hydroperoxides with conjugated double bonds (conjugated dienes) by continuously (at 1 min intervals for 8 h) monitoring the change in absorbance at 234 nm at 37°C. Several indices were obtained from the absorbance versus time curves: the initial absorbance of the sample was recorded to assess the baseline level of conjugated dienes (BDC, μmol/l) formed in the circulation prior to the isolation of LDL. The lag time (min) was determined from the intercept of lines drawn through the linear portions of the lag phase and the propagation phase.

TBARS levels

Malondialdehyde in plasma was determined by a modification of the method of Huang et al. Briefly, the assay mixture consisted of 25 μl of the plasma, 2.5 μl of 60 mM CuSO₄, and 22.5 μl of H₂O and was incubated for 4 hours at 37°C. The mixture was then mixed with 0.35 ml of 20% trichloroacetic acid (TCA) and 0.35 ml of 0.67% thiobarbituric acid (TBA) and was heated for 30 min at 70°C. After centrifugation at 10,000 rpm for 2.5 min, the supernatant was assayed spectrophotometrically at 540 nm. Since other aldehydic compounds in the sample may be measured, the plasma malondialdehyde (MDA) content was
expressed as thiobarbituric acid-reactive substances (TBARS, MDA equivalent) in nM.

Measurement of enzymatic activities of SOD, CAT, and GSH-Px in liver
Liver proteins for enzymatic activity assay were extracted from tissue treated with or without CPC according to the previously published protocols.\(^{15}\) SOD activity was assayed by a commercial kit Ransod (Randox, San Diego, CA, USA). Enzyme activity of SOD was defined as one U to inhibit the reducing rate of 2-(iodophenyl)-3-(4-nitrophenol)-5-phenyltetrazolium chloride by 50%. The SOD activity is denoted as U/mg protein. GSH-Px activity was assayed by a commercial kit Ransod (Randox, San Diego, CA, USA). Enzyme activity of GSH-Px was defined as one U to oxidize 1 μmol nicotinamide adenine dinucleotide phosphate (NADPH) in 1 min. The GSH-Px activity is denoted as μU/mg protein. The assay of CAT was based on the protocol published by Aebi.\(^{16}\) The CAT activity is denoted as U/mg protein.

Cell culture
Human hepatocellular carcinoma cell line (HepG2) were purchased from Food Industry Research and Development Institute (Hsinchu, Taiwan) and cultured in Dulbecco’s modified eagle medium (DMEM) for further study. DMEM medium was composed with 10,000 units/ml penicillin/streptomycin, NaHCO, and 10 % fetal bovine serum (FBS). The culture of HepG2 cells were performed as previously described.\(^{17}\) The addition of different concentration of CPC (0.5 % FBS, 1, 15, 30 μM) in each culture cells was made to observed the influences of CPC upon HepG2 cell growth. After 2 week culture, the HepG2 cells were harvested.

Real-Time PCR analysis
Total RNAs of HepG2 cells were extracted with Trizol reagent (Invitrogen). One microgram of each total RNA was reverse transcribed into cDNA using the RNA PCR kit (Invitrogen) using oligo (dT) primer. The reaction was carried out at 50°C for 60 min. The reverse transcriptase was inactivated with incubation at 98°C for 5 min and kept at 4°C.

The following real-time polymerase chain reaction (PCR) was performed according to the manufacture protocol (Boehringer Mannheim). The reverse transcription reaction products were measured by PCR analysis, using mRNA encoding rat b-actin as an internal standard. All PCR reactions were performed as follows: 1 μl of cDNA was used for amplification with 1 U Taq DNA polymerase (Qiagen, Hilden, Germany), 5 μl PCR buffer, 5 μl 10 mM dNTPs (each), and 1 pmol of each specific upstream and downstream primer. The individual primer sequences and PCR conditions were designed as shown in Table 3 (16). The real-time PCR for glyceraldehyde 3-phosphate dehydrogenase (GAPDH), SOD1, GPx, low-density lipoprotein receptor (LDLR), and HMG-CoA reductase (or 3-hydroxy-3-methyl-glutaryl-CoA reductase or HMGCR) was performed as previously described.\(^{17}\) The primer pairs (forward and reverse primers) used in real-time PCR to determine the pharmacological effects of CPC on 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, SOD-1, and GPx were shown [Table 1].

Statistical analysis
All data in each group are presented as mean ± standard deviation (SD). The lipid levels and mRNA levels for GAPDH, SOD-1, GPx, LDLR, and HMGCR in each group were determined and compared. The SAS system (version 8.1, SAS Institute Inc., Cary, North Carolina, USA) with unpaired Student’s t-test was utilized for statistical analyses. A P-value <0.05 was considered statistically significant.

RESULTS

CPC effectively inhibits lipid profiles
CPC was effective in lowering serum TC, TG, and LDL [Table 2]

<table>
<thead>
<tr>
<th>Normal group</th>
<th>Cholesterol group</th>
<th>1% Lopid group</th>
<th>0.25% CPC group</th>
<th>1.25% CPC group</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC, mg/dl</td>
<td>141±4.65***</td>
<td>308±4.86</td>
<td>253±13.38**</td>
<td>225±6.09***</td>
</tr>
<tr>
<td>TG, mg/dl</td>
<td>66±5.04***</td>
<td>164±18.24</td>
<td>126±10.82</td>
<td>92±12.29**</td>
</tr>
<tr>
<td>LDL, mg/dl</td>
<td>34±1.15***</td>
<td>157±5.75</td>
<td>113±10.33</td>
<td>82±4.66***</td>
</tr>
<tr>
<td>GOT, U/L</td>
<td>46±2.59***</td>
<td>122±12.72</td>
<td>81±10.92***</td>
<td>54±3.70***</td>
</tr>
<tr>
<td>GPT, U/L</td>
<td>74±2.26***</td>
<td>258±6.83</td>
<td>122±7.76***</td>
<td>165±4.56***</td>
</tr>
</tbody>
</table>

*significantly different (P<0.01) when compared with cholesterol group by Student’s t-test. **significantly different (P<0.001) when compared with cholesterol group.
in hamsters. In comparing the cholesterol group, we observed the facts that CPC at both concentrations (0.25% and 1.25%) effectively inhibited TC, TG, and LDL serum levels [Table 2].

Assessment of liver functions in GOT and GPT serum activities

CPC significantly reduces glutamate-oxaloacetate transaminase (GOT) and glutamate-pyruvate transaminase (GPT) [Table 2] in hamsters. In comparing the cholesterol group, we observed the facts that CPC at both concentrations (0.25% and 1.25%) effectively reduced the serum concentrations of GOT and GPT [Table 2].

CPC delays the copper-induced oxidation of LDL

Our results demonstrated that CPC delayed the diene conjugation in the Cu²⁺-mediated oxidation as lag time was found to be increased [Table 3]. The lag time for cholesterol, 0.25%, and 1.25% CPC groups were 213.3, 251.7, and 275 min, respectively.

CPC reduces TBARS levels in hamster plasma

The MDA content, a measure of lipid peroxidation, was assayed in the form of TBARS as previously described.[14] Cholesterol ingestion was associated with increase of MDA equivalent formation. CPC at 0.25% and 1.25% both significantly reduced the formation of TBARS (MDA equivalents) when compared with the cholesterol group [Figure 1].

Measurement of antioxidant enzymes activities of SOD, GPx, and CAT in liver

The activities of SOD, GPx, and CAT of animals in hypercholesterolemia status decreased [Figures 2-4]. Our result demonstrated that CPC at 1.25% effectively increased the activities of SOD, GPx, and catalase, respectively [Figures 2-4].

CPC effects on LDL receptor, HMG CoA reductase, SOD-1, and GPx mRNA levels

The concentrations of CPC addition were positively correlated with the mRNA levels of LDL receptor in HepG2 cells [Figure 5]. CPC at 30 μM appeared to increase levels of mRNA of LDL receptor. The lower concentrations of CPC (1 and 15

Figure 1. The inhibitory effects of CPC on MDA equivalent formation in hamsters fed with various diets. "***" significantly different (P<0.001) when compared with cholesterol group.

Figure 2. The effects of CPC on SOD enzyme activity of hamsters fed with various diets. "*" significantly different (P<0.05) when compared with cholesterol group by Student’s t-test. "**" significantly different (P<0.01) when compared with cholesterol group.

Figure 3. The activities of GSH-Px in hamsters were increased by CPC treatment. "*" significantly different (P<0.05) when compared with cholesterol group.

Figure 4. The activities of catalase in hamsters were increased by CPC treatment. "**" significantly different (P<0.01) when compared with cholesterol group.
μM) were nonsignificantly influencing upon LDL receptor. In contrast, the concentrations of CPC addition were not associated with the mRNA levels of HMG CoA reductase, SOD-1, and GPx in Hep G2 cells [Figures 6-8]. The concentrations of HMG CoA reductase, SOD-1, and GPx in each group were nonsignificantly different [Figures 6-8].

DISCUSSION

CPC is one of the major biliproteins isolated from microalgae Spirulina. CPC has been found to have an antiinflammatory activity and exert beneficial effect in various diseases. The inhibitory activity of CPC on nitric oxide (NO), inducible nitric oxide synthase
Cholesterol
213.33 251.67 0.25% CPC [19]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

