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Abstract

For μ ∈ (0,1), c � 0, we identify the quantum group SOμ(3) as the universal object in the category
of compact quantum groups acting by ‘orientation and volume preserving isometries’ in the sense of
Bhowmick and Goswami (2009) [4] on the natural spectral triple on the Podles sphere S2

μ,c constructed
by Dabrowski, D’Andrea, Landi and Wagner (2007) in [9].
© 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In a series of articles initiated by [11] and followed by [3,4], we have formulated and studied
a quantum group analogue of the group of Riemannian isometries of a classical or noncommu-
tative manifold. This was motivated by previous work of a number of mathematicians including
Wang, Banica, Bichon and others (see, e.g. [20,21,1,2,5,22] and the references therein), who
have defined quantum automorphism and quantum isometry groups of finite spaces and finite
dimensional algebras. Our theory of quantum isometry groups can be viewed as a natural gener-
alization of such quantum automorphism or isometry groups of ‘finite’ or ‘discrete’ structures to
the continuous or smooth set-up. Clearly, such a generalization is crucial to study the quantum
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symmetries in noncommutative geometry a la Connes [6], and in particular, for a good under-
standing of quantum group equivariant spectral triples.

The group of Riemannian isometries of a compact Riemannian manifold M can be viewed as
the universal object in the category of all compact metrizable groups acting on M , with smooth
and isometric action. Moreover, assume that the manifold has a spin structure (hence in particular
orientable, so we can fix a choice of orientation) and D denotes the conventional Dirac operator
acting as an unbounded self-adjoint operator on the Hilbert space H of square integrable spinors.
Then, it can be proved that the action of a compact group G on the manifold lifts as a unitary
representation (possibly of some group G̃ which is topologically a 2-cover of G, see [7] and [8]
for more details) on the Hilbert space H which commutes with D if and only if the action on the
manifold is an orientation preserving isometric action. Therefore, to define the quantum analogue
of the group of orientation-preserving Riemannian isometry group of a possibly noncommutative
manifold given by a spectral triple (A∞, H,D), it is reasonable to consider a category Q′(D)

of compact quantum groups having unitary (co-)representation, say U , on H, which commutes
with D, and the action on B(H) obtained via conjugation by U maps A∞ into its weak closure.
A universal object in this category, if it exists, should define the ‘quantum group of orientation
preserving Riemannian isometries’ of the underlying spectral triple. Indeed (see [4]), if we con-
sider a classical spectral triple, the subcategory of the category Q′(D) consisting of groups has
the classical group of orientation preserving isometries as the universal object, which justifies
our definition of the quantum analogue. Unfortunately, if we consider quantum group actions,
even in the finite dimensional (but with noncommutative A) situation the category Q′(D) may
often fail to have a universal object. It turns out, however, that if we fix any suitable faithful
functional τR on B(H) (to be interpreted as the choice of a ‘volume form’) then there exists a
universal object in the subcategory Q′

R(D) of Q′(D) obtained by restricting the object-class to
the quantum group actions which also preserve the given functional. The subtle point to note here
is that unlike the classical group actions on B(H) which always preserve the usual trace, a quan-
tum group action may not do so. In fact, it was proved by one of the authors in [10] that given
an object (Q,U) of Q′(D) (where Q is the compact quantum group and U denotes its unitary
co-representation on H), we can find a suitable functional τR (which typically differs from the
usual trace of B(H) and can have a nontrivial modularity) which is preserved by the action of Q.
This makes it quite natural to work in the setting of twisted spectral data (as defined in [10]). It
may also be mentioned that in [4] we have actually worked in slightly bigger category QR(D)

of the so-called ‘quantum family of orientation and volume preserving isometries’ and deduced
that the universal object in QR(D) exists and coincides with that of Q′

R(D).
It is very important to explicitly compute the (orientation and volume preserving) quantum

group of isometries for as many examples as possible. This programme has been successfully
carried out for a number of spectral triples, including classical spheres and tori as well as their
Rieffel deformations. The aim of the present article is to identify SOμ(3) as the quantum group of
orientation and volume preserving isometries for the spectral triples on the Podles spheres S2

μ,c ,
constructed by Dabrowski et al. in [9]. Let us mention here that although the quantum groups
SOμ(3) are ‘deformations’ of the classical SO(3), these are not Rieffel deformations and so the
results and techniques of [4] do not apply.

Our characterization of SOμ(3) as the quantum isometry group of a noncommutative Rieman-
nian manifold generalizes the classical description of the group SO(3) as the group of orientation
preserving isometries of the usual Riemannian structure on the 2-sphere. It may be mentioned
here that in a very recent article [19], P.M. Soltan has characterized SOμ(3) as the universal
compact quantum group acting on the finite dimensional C∗-algebra M2(C) such that the action
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preserves a functional ωμ defined in [19]. In the classical case, we have three equivalent descrip-
tions of SO(3): (a) as a quotient of SU(2), (b) as the group of (orientation preserving) isometries
of S2, and (c) as the automorphism group of M2. In the quantum case the definition of SOμ(3)

is an analogue of (a), so the characterization of SOμ(3) obtained in this paper as the quantum
isometry group, together with Soltan’s characterization, completes the generalization of all three
classical descriptions of SO(3).

2. Notations and preliminaries

2.1. Basics of the theory of compact quantum groups

We begin by recalling the definition of compact quantum groups and their actions from
[24,23]. A compact quantum group (to be abbreviated as CQG from now on) is given by a
pair (S,�), where S is a unital separable C∗ algebra equipped with a unital C∗-homomorphism
� : S → S ⊗ S (where ⊗ denotes the injective tensor product) satisfying

(ai) (� ⊗ id) ◦ � = (id ⊗ �) ◦ � (co-associativity), and
(aii) the linear spans of �(S)(S ⊗ 1) and �(S)(1 ⊗ S) are norm-dense in S ⊗ S .

It is well known (see [24,23]) that there is a canonical dense ∗-subalgebra S0 of S , consisting
of the matrix coefficients of the finite dimensional unitary (co)-representations (to be defined
below) of S , and maps ε : S0 → C (co-unit) and κ : S0 → S0 (antipode) defined on S0 which
make S0 a Hopf ∗-algebra.

A CQG (S,�) is said to (co)-act on a unital C∗ algebra B, if there is a unital C∗-
homomorphism (called an action) α : B → B ⊗ S satisfying the following:

(bi) (α ⊗ id) ◦ α = (id ⊗ �) ◦ α, and
(bii) the linear span of α(B)(1 ⊗ S) is norm-dense in B ⊗ S .

For a Hilbert B-module E, (where B is a C∗ algebra) we shall denote the set of adjointable
B-linear maps on E by L(E). The norm-closure of the linear span of the finite-rank B-linear
maps on E, to be called the set of compact operators on E, will be denoted by K(E). We note
that L(E) = M(K(E)), where M(C) denotes the multiplier algebra of a C∗-algebra C . We shall
also need the ‘leg-numbering’ notation: for an operator X in B(H1 ⊗ H2), X(12) and X(13) will
denote the operators X ⊗ IH2 in B(H1 ⊗ H2 ⊗ H2), and Σ23X12Σ23, respectively, where Σ23
is the unitary on H1 ⊗ H2 ⊗ H2 which flips the two copies of H2.

A unitary (co)-representation of a CQG (S,�) on a Hilbert space H is given by a unitary
element U of M(K(H) ⊗ S) ≡ L(H ⊗ S) satisfying

(id ⊗ �)(U) = U(12)U(13).

Given a unitary representation U we shall denote by αU the ∗-homomorphism αU(X) = U(X ⊗
1S )U∗ for X belonging to B(H). We shall sometimes identify U with the isometric map from
the Hilbert space H to the Hilbert module H ⊗ S which sends a vector ξ of H to U(ξ ⊗ 1),
and may even denote U(ξ ⊗ 1) by Uξ by a slight abuse of notation. We say that a (possibly
unbounded) operator T on H commutes with U if T ⊗ I (with the natural domain) commutes
with U . Such an operator will also be called U -equivariant or S -equivariant if U is understood.
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2.2. The quantum group of orientation preserving Riemannian isometries

We briefly recall the definition of the quantum group of orientation preserving Riemannian
isometries for a spectral triple (of compact type) (A∞, H,D) as in [4]. We consider the category
Q′(A∞, H,D) ≡ Q′(D) whose objects (to be called orientation preserving isometries) are the
triplets (S,�,U), where (S,�) is a CQG with a unitary representation U in H, satisfying the
following:

(i) U commutes with D,
(ii) for every state ω on S, (id ⊗ ω) ◦ αU(a) belongs to (A∞)′′ for all a in A∞.

The category Q′(D) may not have a universal object in general, as pointed out in [4]. In case

there is a universal object, we shall denote it by Q̃ISO+(D), with the corresponding representa-

tion U , say, and we denote by QISO+(D) the Woronowicz subalgebra of Q̃ISO+(D) generated
by the elements of the form 〈ξ ⊗1, αU (a)(η⊗1)〉, where ξ, η belong to H, a belongs to A∞ and

〈·,·〉 is the Q̃ISO+(D)-valued inner product of H ⊗ Q̃ISO+(D). The quantum group QISO+(D)

will be called the quantum group of orientation-preserving Riemannian isometries of the spectral
triple (A∞, H,D).

Although the category Q′(D) may fail to have a universal object, we can always get a universal
object in suitable subcategories which will be described now. Suppose that we are given an invert-
ible positive (possibly unbounded) operator R on H which commutes with D. Then we consider
the full subcategory Q′

R(D) of Q′(D) by restricting the object class to those (S,�,U) for which
αU satisfies (τR ⊗ id)(αU (X)) = τR(X)1 for all X in the ∗-subalgebra generated by operators of
the form |ξ 〉〈η|, where ξ, η are eigenvectors of the operator D which by assumption has discrete
spectrum, and τR(X) = Tr(RX) = 〈η,Rξ 〉 for X = |ξ 〉〈η|. We shall call the objects of Q′

R(D)

orientation and (R-twisted) volume preserving isometries. It is clear (see Remark 2.9 in [4]) that
when Re−tD2

is trace-class for some t > 0, the above condition is equivalent to the condition that
αU preserves the bounded normal functional Tr(·Re−tD2

) on the whole of B(H). It is shown in

[4] that the category Q′
R(D) always admits a universal object, to be denoted by Q̃ISO+

R(D), and
the Woronowicz subalgebra generated by {〈ξ ⊗ 1, αW (a)(η ⊗ 1)〉: ξ, η ∈ H, a ∈ A∞} (where

W is the unitary representation of Q̃ISO+
R(D) in H) will be denoted by QISO+

R(D) and called
the quantum group of orientation and (R-twisted) volume preserving Riemannian isometries of
the spectral triple.

2.3. SUμ(2) and the Podles spheres

Fix μ in (0,1). The C∗ algebra underlying the CQG SUμ(2) is defined as the universal uni-
tal C∗ algebra generated by α, γ such that α∗α + γ ∗γ = 1, αα∗ + μ2γ γ ∗ = 1, γ γ ∗ = γ ∗γ ,
μγα = αγ , μγ ∗α = αγ ∗.

The CQG structure is given by the following fundamental representation:
( α −μγ ∗

γ α∗
)
.

The coproduct is defined by:

�(α) = α ⊗ α − μγ ∗ ⊗ γ,

�(γ ) = γ ⊗ α + α∗ ⊗ γ.
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The Haar state of SUμ(2) will be denoted by h and the corresponding G.N.S. Hilbert space
will be denoted by L2(SUμ(2)). We will call the unital ∗-subalgebra of SUμ(2) (without any
norm-closure) generated by α,γ the ‘co-ordinate Hopf ∗-algebra’ of SUμ(2) and denote it by
O(SUμ(2)) as in [17].

We now recall the definition of the Podles sphere from [9] (see also the original article [15]
by Podles).

For c � 0, let t in (0,1] be given by c = t−1 − t . Let [n] ≡ [n]μ = μn−μ−n

μ−μ−1 , n ∈ N.

The Podles sphere S2
μ,c is defined to be the universal unital C∗ algebra generated by elements

x−1, x0, x1 satisfying the relations:

x−1(x0 − t) = μ2(x0 − t)x−1,

x1(x0 − t) = μ−2(x0 − t)x1,

−[2]x−1x1 + (
μ2x0 + t

)
(x0 − t) = [2]2(1 − t),

−[2]x1x−1 + (
μ−2x0 + t

)
(x0 − t) = [2]2(1 − t).

The involution on S2
μ,c is given by

x∗−1 = −μ−1x1, x∗
0 = x0.

We note that S2
μ,c as defined above is the same as χq,α′,β in [13, p. 124] with q = μ, α′ = t ,

β = t2 + μ−2(μ2 + 1)2(1 − t).
Thus, from the expressions of x−1, x0, x1 given in [13, p. 125], it follows that S2

μ,c can be
realized as a ∗-subalgebra of SUμ(2) by setting:

x−1 = μα2 + ρ(1 + μ2)αγ − μ2γ 2

μ(1 + μ2)
1
2

, (1)

x0 = −μγ ∗α + ρ
(
1 − (

1 + μ2)γ ∗γ
) − γ α∗, (2)

x1 = μ2γ ∗2 − ρμ(1 + μ2)α∗γ ∗ − μα∗2

(1 + μ2)
1
2

, (3)

where ρ2 = μ2t2

(μ2+1)2(1−t)
.

Taking

A = 1 − t−1x0

1 + μ2
, B = μ

(
1 + μ2)− 1

2 t−1x−1,

one obtains (see [9]) that the C∗ algebra S2
μ,c coincides with the original description given in [15],

i.e., the universal C∗ algebra generated by elements A and B satisfying the relations:

A∗ = A, AB = μ−2BA,

B∗B = A − A2 + cI, BB∗ = μ2A − μ4A2 + cI.
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We will denote by O(S2
μ,c) the co-ordinate ∗-algebra of S2

μ,c, i.e. the unital ∗-subalgebra gener-
ated by A, B .

We recall from [17] the Hopf ∗-algebra Uμ(su(2)) which is generated by elements F , E, K ,
K−1 with defining relations:

KK−1 = K−1K = 1, KE = μEK, FK = μKF,

EF − FE = (
μ − μ−1)−1(

K2 − K−2)

with involution E∗ = F , K∗ = K and comultiplication:

�(E) = E ⊗ K + K−1 ⊗ E, �(F) = F ⊗ K + K−1 ⊗ F, �(K) = K ⊗ K.

The counit is given by ε(E) = ε(F ) = ε(K − 1) = 0 and antipode S(K) = K−1, S(E) = −μE,
S(F ) = −μ−1F .

There is a dual pairing 〈.,.〉 of Uμ(su(2)) and O(SUμ(2)), for which the nonzero values of the
pairing among the generators are given below:

〈
K±1, α∗〉 = 〈

K∓1, α
〉 = μ± 1

2 , 〈E,γ 〉 = 〈
F,−μγ ∗〉 = 1.

The left action  and right action � of Uμ(su(2)) on SUμ(2) are given by:

f  x = 〈f,x(2)〉x(1), x � f = 〈f,x(1)〉x(2), x ∈ O
(
SUμ(2)

)
, f ∈ Uμ

(
su(2)

)
,

where we have used the Sweedler notation �(x) = x(1) ⊗ x(2).
The actions satisfy the following:

(f  x)∗ = S(f )∗  x∗, (x � f )∗ = x∗ � S(f )∗,

f  xy = (f(1)  x)(f(2)  y), xy � f = (x � f(1))(y � f(2)).

The action on generators is given by:

E  α = −μγ ∗, E  γ = α∗, E  γ ∗ = E  α∗ = 0,

F  (−μγ ∗) = α, F  α∗ = γ, F  α = F  γ = 0,

K  α = μ− 1
2 α, K  (

γ ∗) = μ
1
2 γ ∗, K  γ = μ− 1

2 γ, K  α∗ = μ
1
2 α∗;

γ � E = α, α∗ � E = −μγ ∗, α � E = γ ∗ � E = 0,

α � F = γ, −μγ ∗ � F = α∗, γ � F = α∗ � F = 0,

α � K = μ− 1
2 α, γ ∗ � K = μ− 1

2 γ ∗, γ � K = μ
1
2 γ, α∗ � K = μ

1
2 α∗.

We recall an alternative description of S2 from [18] which we are going to need.
μ,c
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Let

Xc = μ
1
2
(
μ−1 − μ

)−1
c− 1

2
(
1 − K2) + EK + μFK, c > 0,

X0 = 1 − K2.

One has �(Xc) = 1 ⊗ Xc + Xc ⊗ K2. Moreover, we have the following [18, p. 9]:

Theorem 2.1. We have,

O
(
S2

μ,c

) = {
x ∈ O

(
SUμ(2)

)
: x � Xc = 0

}
.

A basis of the vector space O(S2
μ,c) is given by {Ak,AkBl,AkB∗m, k � 0, l,m > 0}.

Thus, any element of O(S2
μ,c) can be written as a finite linear combination of elements of the

form Ak,AkBl,AkB∗l .
Let ψ be the densely defined linear map on L2(SUμ(2)) defined by ψ(x) = x � Xc.

Lemma 2.2. The map ψ is closable and we have S2
μ,c ⊆ Ker(ψ) where ψ is the closed exten-

sion of ψ and S2
μ,c denotes the Hilbert subspace generated by S2

μ,c in L2(SUμ(2)). Moreover,

O(S2
μ,c) = O(SUμ(2)) ∩ Ker(ψ) = O(SUμ(2)) ∩ Ker(ψ).

Proof. From the expression of Xc, it is clear that O(SUμ(2)) ⊆ Dom(ψ∗) implying that ψ is
closable, hence Ker(ψ) is closed. The lemma now follows from the observation that O(S2

μ,c) =
Ker(ψ) ⊆ Ker(ψ). �

We end this subsection with a discussion on the CQG SOμ(3) as described in [16].
It is the universal unital C∗ algebra generated by elements M , N , G, C, L satisfying:

L∗L = (I − N)
(
I − μ−2N

)
, LL∗ = (

I − μ2N
)(

I − μ4N
)
, G∗G = GG∗ = N2,

M∗M = N − N2, MM∗ = μ2N − μ4N2, C∗C = N − N2,

CC∗ = μ2N − μ4N2, LN = μ4NL, GN = NG, MN = μ2NM,

CN = μ2NC, LG = μ4GL, LM = μ2ML, MG = μ2GM, CM = MC,

LG∗ = μ4G∗L, M2 = μ−1LG, M∗L = μ−1(I − N)C, N∗ = N.

This CQG can be identified with a Woronowicz subalgebra of SUμ(2) by taking:

N = γ ∗γ, M = αγ, C = αγ ∗, G = γ 2, L = α2.

The canonical action of SUμ(2) on S2
μ,c , i.e. the action obtained by restricting the coproduct of

SUμ(2) to the subalgebra S2 , is actually a faithful action of SOμ(3). On the subspace spanned
μ,c
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by {x−1, x0, x1} this action is given by the following SOμ(3)-valued 3 × 3-matrix:

Z′ :=
⎛
⎝

α2 −μ(1 + μ−2)
1
2 αγ ∗ μ2γ ∗2

(1 + μ−2)
1
2 αγ I − μ(μ + μ−1)γ ∗γ −μ(1 + μ−2)

1
2 γ ∗α∗

γ 2 (1 + μ−2)
1
2 γ α∗ α∗2

⎞
⎠ .

3. Spectral triples on the Podles spheres and their quantum isometry groups

3.1. Description of the spectral triples

We now recall the spectral triples on S2
μ,c discussed in [9] (see also [17] for the case c = 0).

Let s = −c− 1
2 λ−, λ± = 1

2 ± (c + 1
4 )

1
2 .

For all j in 1
2N,

uj = (
α∗ − sγ ∗)(α∗ − μ−1sγ ∗) . . .

(
α∗ − μ−2j+1sγ ∗),

wj = (α − μsγ )
(
α − μ2sγ

)
. . .

(
α − μ2j sγ

)
,

u−j = E2j  wj ,

u0 = w0 = 1,

y1 = (
1 + μ−2) 1

2
(
c

1
2 μ2γ ∗2 − μγ ∗α∗ − μc

1
2 α∗2),

Nl
kj = ∥∥F l−k  (

y1
l−|j |uj

)∥∥−1
.

Define vl
k,j = Nl

k,jF
l−k  (y

l−|j |
1 uj ), l ∈ 1

2N0, j, k = −l,−l + 1, . . . , l.

Let MN be the Hilbert subspace of L2(SUμ(2)) with the orthonormal basis {vl
m,N : l = |N |,

|N | + 1, . . . , m = −l, . . . , l}.
Set

H = M− 1
2
⊕ M 1

2
,

and define a representation π of S2
μ,c on H by

π(xi)v
l
m,N = α−

i (l,m;N)vl−1
m+i,N + α0

i (l,m;N)vl
m+i,N + α+

i (l,m;N)vl+1
m+i,N ,

where α−
i , α0

i , α+
i are as defined in [9].

We will often identify π(S2
μ,c) with S2

μ,c .
Finally by Proposition 7.2 of [9], the following Dirac operator D gives a spectral triple

(O(S2
μ,c), H,D) which we are going to work with:

D
(
vl

m,± 1
2

) = (c1l + c2)v
l

m,∓ 1
2

where c1, c2 belong to R, c1 �= 0.
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It is easy to see that the action of SUμ(2) on itself keeps the subspace H invariant and so
induces a unitary representation, say U0 on H.

We define a positive, unbounded operator R on H by R(vn

i,± 1
2
) = μ−2ivn

i,± 1
2
.

Proposition 3.1. αU0 preserves the R-twisted volume. In particular, for x belonging to π(S2
μ,c)

and t > 0, we have h(x) = τR(x)
τR(1)

, where τR(x) := Tr(xRe−tD2
), and h denotes the restriction

of the Haar state of SUμ(2) to the subalgebra S2
μ,c , which is the unique SUμ(2)-invariant state

on S2
μ,c.

Proof. It is enough to prove that τR is αU0 -invariant. Define R0(v
n

i,± 1
2
) = μ−2i∓1vn

i,± 1
2
, and note

that it has been observed in [12] that Tr(R0e
−tD2

) < ∞ (for all t > 0) and one has

(τR0 ⊗ id)
(
U0(x ⊗ 1)U0

∗) = τR0(x).1,

for all x in B(H), where τR0(x) = Tr(xR0e
−tD2

).
Let us denote by P 1

2
,P− 1

2
the projections onto the closed subspaces generated by {vl

i, 1
2
} and

{vl

i,− 1
2
} respectively. Moreover, let τ± be the functionals defined by τ±(x) = Tr(xR0P± 1

2
e−tD2

).

We observe that R0, e−tD2
and U0 commute with P± 1

2
so that for x belonging to B(H),

(τ± ⊗ id)
(
αU0(x)

) = (τR0 ⊗ id)
(
αU0(xP± 1

2
)
) = τR0(xP± 1

2
)1 = τ±(x)1,

i.e. τ± are αU0 -invariant. Moreover, since we have RP± 1
2

= μ±R0P± 1
2
, the functional τR coin-

cides with μ−1τ+ + μτ−, hence is αU0 -invariant. �
Theorem 3.2. (SUμ(2),�,U0) is an object in Q′

R(D).

Proof. The above spectral triple is equivariant with respect to this representation (see [9]) and it
preserves τR by Proposition 3.1, which completes the proof. �

We now note down some useful facts for later use.

Remark 3.3. Using the definition of vl
i,j and , we observe:

1. The eigenspaces of D corresponding to (c1l + c2) and −(c1l + c2) are span{vl

m, 1
2

+
vl

m,− 1
2
: −l � m � l} and span{vl

m, 1
2
− vl

m,− 1
2
: −l � m � l} respectively.

2. The eigenspace of |D| corresponding to the eigenvalue (c1.
1
2 + c2) is span{α,γ,α∗, γ ∗}.

Remark 3.4.

1. π(A)vl
m,N belongs to Span{vl−1

m,N , vl
m,N , vl+1

m,N },
π(B)vl

m,N belongs to Span{vl−1
m−1,N , vl

m−1,N , vl+1
m−1,N },

π(B∗)vl belongs to Span{vl−1 , vl , vl+1 }.
m,N m+1,N m+1,N m+1,N
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2. π(Ak)(vl
m,N ) belongs to Span{vl−k

m,N , vl−k+1
m,N , . . . , vl+k

m,N }.
3. π(Am′

Bn′
)(vl

m,N ) belongs to Span{vl−m′−n′
m−n′,N , v

l−(n′+m′−1)

m−n′,N , . . . , vl+n′+m′
m−n′,N }.

4. π(ArB∗s)(vl
m,N ) belongs to Span{vl−s−r

m+s,N , vl−s−r+1
m+s,N , . . . , vl+s+r

m+s,N }.

We shall now proceed to show that QISO+
R(D) is isomorphic with SOμ(3). Let (Q̃,U) be an

object in the category Q′
R(D) of CQG s acting by orientation and R-twisted volume preserving

isometries on this spectral triple and Q be the Woronowicz C∗ subalgebra of Q̃ generated by
〈(ξ ⊗ 1), αU (a)(η ⊗ 1)〉Q̃, for ξ, η in H, a in S2

μ,c (where 〈·,·〉Q̃ is the Q̃-valued inner product

of H ⊗ Q̃). We shall denote αU by φ from now on.
The proof has two main steps: first, we prove that φ is ‘linear’, in the sense that it keeps the

span of {1,A,B,B∗} invariant, and then we shall exploit the facts that φ is a ∗-homomorphism
and preserves the canonical volume form on S2

μ,c, i.e. the restriction of the Haar state of
SUμ(2).

Remark 3.5. The first step does not make use of the fact that φ preserves the R-twisted volume,
so linearity of the action follows for any object in the bigger category Q′(D).

3.2. Linearity of the action

For a vector v in H, we shall denote by Tv the map from B(H) to L2(SUμ(2)) given by
Tv(x) = xv ∈ H ⊂ L2(SUμ(2)). It is clearly a continuous map with respect to the strong operator
topology on B(H) and the Hilbert space topology of L2(SUμ(2)).

For an element a in SUμ(2), we consider the right multiplication Ra as a bounded linear map
on L2(SUμ(2)). Clearly the composition RaTv is a continuous linear map from B(H) (with the
strong operator topology) to the Hilbert space L2(SUμ(2)). We now define

T = Rα∗Tα + μ2Rγ Tγ ∗ .

Lemma 3.6. For any state ω on Q̃ and x in S2
μ,c, we have T (φω(x)) = φω(x) ≡ R1(φω(x))

belonging to S2
μ,c ⊆ L2(SUμ(2)), where φω(x) = (id ⊗ ω)(φ(x)).

Proof. It is clear from the definition of T (using αα∗ +μ2γ γ ∗ = 1) that T (x) = x ≡ R1(x) for x

in S2
μ,c ⊂ B(H), where x in the right-hand side of the above denotes the identification of x ∈ S2

μ,c

as a vector in L2(SUμ(2)). Now, the lemma follows by noting that for x in S2
μ,c , φω(x) belongs

to (S2
μ,c)

′′, which is the closure of S2
μ,c in the strong operator topology, and the continuity of T

in this topology discussed before. �
Let

V l = Span
{
vl′
i,± 1

2
, −l′ � i � l′, l′ � l

}
.

Since Span{vl

i,± 1
2
,−l � i � l} is the eigenspace of |D| corresponding to the eigenvalue c1l + c2,

U and U∗ must keep V l invariant for all l.
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Lemma 3.7. There is some finite dimensional subspace V of O(SUμ(2)) such that

Rα∗(φω(A)v
1
2

j,± 1
2
), Rγ (φω(A)v

1
2

j,± 1
2
) belong to V for all states ω on Q̃.

The same holds when A is replaced by B or B∗.

Proof. We prove the result for A only, since a similar argument will work for B and B∗.

We have φ(A)(v
1
2

j,± 1
2
⊗ 1) = U(π(A) ⊗ 1)U∗(v

1
2

j,± 1
2
⊗ 1).

Now, U∗(v
1
2

j,± 1
2

⊗ 1) belongs to V 1
2 ⊗ Q̃, and then using the definition of π as well as Re-

mark 3.4, we observe that (π(A) ⊗ 1)U∗(v
1
2

j,± 1
2

⊗ 1) belongs to Span{vl′
j,± 1

2
: −l′ � j � l′,

l′ � 3
2 } ⊗ Q̃ = V 3

2 ⊗ Q̃. Again, U keeps V 3
2 ⊗ Q̃ invariant, so Rα∗(φω(A)v

1
2

± 1
2
) belongs to

Span{vα∗: v ∈ V 3
2 }. Similarly, Rγ (φω(A)(v

1
2

± 1
2
)) belongs to Span{vγ : v ∈ V 3

2 }. So, the lemma

follows for A by taking V = Span{vα∗, vγ : v ∈ V 3
2 } ⊂ O(SUμ(2)). �

Since α,γ ∗ belong to Span{v
1
2

j,± 1
2
}, we have the following immediate corollary:

Corollary 3.8. There is a finite dimensional subspace V of O(SUμ(2)) such that for every state
(hence for every bounded linear functional) ω on Q̃, we have T (φω(A)) belongs to V . A similar
conclusion holds for B and B∗ as well.

Proposition 3.9. φ(A), φ(B), φ(B∗) belong to O(S2
μ,c) ⊗alg Q.

Proof. We give the proof for φ(A) only, the proof for B,B∗ being similar. From Corollary 3.8
and Lemma 3.6 it follows that for every bounded linear functional ω on Q̃, T (φω(A)) belongs to
V ∩S2

μ,c ⊂ O(SUμ(2))∩Ker(ψ) and hence V ∩S2
μ,c = V ∩ O(S2

μ,c), where V is the finite dimen-
sional subspace mentioned in Corollary 3.8. Clearly, V ∩ O(S2

μ,c) is a finite dimensional subspace
of O(S2

μ,c) implying that there must be finite m, say, such that for every ω, T (φω(A)) belongs
to Span{Ak,AkBl,AkB∗l : 0 � k, l � m}. Denote by W the (finite dimensional) subspace of
B(H) spanned by {Ak,AkBl,AkB∗l : 0 � k, l � m}. Since for every state (and hence for every
bounded linear functional) ω on Q̃, we have T (φω(A)) = R1(φω(A)) ≡ φω(A)1, it is clear that
φω(A) belongs to W for every ω in Q̃∗. Now, let us fix any faithful state ω on the separable unital
C∗-algebra Q̃ and embed Q̃ in B(L2(Q,ω)) ≡ B(K). Thus, we get a canonical embedding of
L(H ⊗ Q̃) in B(H ⊗ K). Let us thus identify φ(A) as an element of B(H ⊗ K), and then by choos-
ing a countable family of elements {q1, q2, . . .} of Q̃ which is an orthonormal basis in K = L2(ω),
we can write φ(A) as a weakly convergent series of the form

∑∞
i,j=1 φij (A) ⊗ |qi〉〈qj |. But

φij (A) = (id ⊗ ωij )(φ(A)), where ωij (·) = ω(q∗
i · qj ). Thus, φij (A) belongs to W for all i, j ,

and hence the sequence
∑n

i,j=1 φij (A) ⊗ |qi〉〈qj | ∈ W ⊗ B(K) converges weakly, and W being
finite dimensional (hence weakly closed), the limit, i.e. φ(A), must belong to W ⊗ B(K). In
other words, if A1, . . . ,Ak denotes a basis of W , we can write φ(A) = ∑k

i=1 Ai ⊗ Bi for some
Bi ∈ B(K).

We claim that each Bi must belong to Q̃. For any trace-class positive operator ρ in H, say
of the form ρ = ∑

λj |ej 〉〈ej |, where {e1, e2, . . .} is an orthonormal basis of H and λj � 0,
j
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∑
j λj < ∞, let us denote by ψρ the normal functional on B(H) given by x �→ Tr(ρx), and it is

easy to see that it has a canonical extension ψ̃ρ := (ψρ ⊗ id) on L(H ⊗ Q̃) given by ψ̃ρ(X) =∑
j λj 〈ej ⊗ 1,X(ej ⊗ 1)〉Q̃, where X belongs to L(H ⊗ Q̃) and 〈·,·〉Q̃ denotes the Q̃-valued

inner product of H ⊗ Q̃. Clearly, ψ̃ρ is a bounded linear map from L(H ⊗ Q̃) to Q̃. Now,
since A1, . . . ,Ak in the expression of φ(A) are linearly independent, we can choose trace class
operators ρ1, . . . , ρk such that ψρi

(Ai) = 1 and ψρi
(Aj ) = 0 for j �= i. Then, by applying ψ̃ρi

on φ(A) we conclude that Bi belongs to Q̃. But by definition, Q is the Woronowicz subalgebra
of Q̃ generated by 〈ξ ⊗ 1, φ(x)(η ⊗ 1)〉Q̃, with η, ξ belonging to H and x in O(S2

μ,c), and hence
it follows that Bi belongs to Q. �
Proposition 3.10. φ keeps the span of 1,A,B,B∗ invariant.

Proof. We prove the result for φ(A) only, the proof for the other cases being quite similar.
Using Proposition 3.9, we can write φ(A) as a finite sum of the form:

∑
k�0

Ak ⊗ Qk +
∑

m′,n′,n′ �=0

Am′
Bn′ ⊗ Rm′,n′ +

∑
r,s,s �=0

ArB∗s ⊗ R′
r,s .

Let ξ = vl
m0,N0

.

We have that U(ξ) belongs to Span{vl
m,N , m = −l, . . . , l, N = ± 1

2 }. Let us write

U(ξ ⊗ 1) =
∑

m=−l,...,l,N=± 1
2

vl
m,N ⊗ ql

(m,N),(m0,N0)
,

where ql
(m,N),(m0,N0)

belong to Q. Since αU preserves the R-twisted volume, we have:

∑
m′,N ′

ql
(m,N),(m′,N ′)q

l∗
(m,N),(m′,N ′) = 1. (4)

It also follows that U(Aξ) belongs to Span{vl′
m,N, m = −l′, . . . , l′, l′ = l −1, l, l +1, N = ± 1

2 }.
Recalling Remark 3.4, we have

φ(A)U(ξ ⊗ 1) =
∑

k,m=−l,...,l,N=± 1
2

Akvl
m,N ⊗ Qkq

l
(m,N),(m0,N0)

+
∑

m′,n′, n′ �=0,m=−l,...,l,N=± 1
2

Am′
Bn′

vl
m,N ⊗ Rm′,n′ql

(m,N),(m0,N0)

+
∑

r,s, s �=0,m=−l,...l,N=± 1
2

ArB∗svl
m,N ⊗ R′

r,sq
l
(m,N),(m0,N0)

.

Let m′
0 denote the largest integer m′ such that there is a nonzero coefficient of Am′

Bn′
, n′ � 1

in the expression of φ(A). We claim that the coefficient of v
l−m′

0−n′
m−n′,N in φ(A)U(ξ ⊗ 1) is

Rm′ ,n′ql .

0 (m,N),(m0,N0)
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Indeed, the term v
l−m′

0−n′
m−n′,N can arise in three ways: it can come from a term of the form

Am′′
Bn′′

vl
m,N or Akvl

m,N or ArB∗svl
m.N for some m′′, n′′, k, r, s.

In the first case, we must have l−m′
0 −n′ = l−m′′ −n′′ + t , 0 � t � 2m′′ and m−n′ = m−n′′

implying m′′ = m′
0 + t , and since m′

0 is the largest integer such that Am′
0Bn′

appears in φ(A), we

only have the possibility t = 0, i.e. v
l−m′

0−n′
m−n′,N appears only in Am′

0Bn′
.

In the second case, we have m − n′ = m implying n′ = 0 – a contradiction. In the last case,
we have m − n′ = m + s so that −n′ = s which is only possible when n′ = s = 0 which is again
a contradiction.

It now follows from the above claim, using Remark 3.4 and comparing coefficients in the
equality U(Aξ ⊗ 1) = φ(A)U(ξ ⊗ 1), that Rm′

0,n
′ql

(m,N),(m0,N0)
= 0 for all n′ � 1, for all m,N

when m′
0 � 1. Now varying (m0,N0), we conclude that the above holds for all (m0,N0). Us-

ing (4), we conclude that

Rm′
0,n

′
∑
m′,N ′

ql
(m,N),(m′,N ′)q

l∗
(m,N),(m′,N ′) = 0 for all n′ � 1,

that is, Rm′
0,n

′ = 0 for all n′ � 1 if m′
0 � 1. Proceeding by induction on m′

0, we deduce Rm′,n′ = 0
for all m′ � 1, n′ � 1.

Similarly, we have Qk = 0 for all k � 2 and R′
r,s = 0 for all r � 1, s � 1.

Thus, φ(A) belongs to Span{1,A,B,B∗,B2, . . . ,Bn,B∗2, . . . ,B∗m}. But the coefficient of
vl−n′
m−n′,N in φ(A)U(ξ ⊗ 1) is R0,n′ . Arguing as before, we conclude that R0,n′ = 0 for all n′ � 2.

In a similar way, we can prove R′
0,n′ = 0 for all n′ � 2. �

In view of the above, let us write:

φ(A) = 1 ⊗ T1 + A ⊗ T2 + B ⊗ T3 + B∗ ⊗ T4, (5)

φ(B) = 1 ⊗ S1 + A ⊗ S2 + B ⊗ S3 + B∗ ⊗ S4, (6)

for some Ti, Si in Q.

3.3. Identification of SOμ(3) as the quantum isometry group

In this subsection, we shall use the facts that φ is a ∗-homomorphism and it preserves the
R-twisted volume to derive relations among Ti, Si in (5), (6).

Lemma 3.11.

T1 = 1 − T2

1 + μ2
,

S1 = −S2

1 + μ2
.

Proof. We have the expressions of A and B in terms of the SUμ(2) elements from Eqs. (1), (2)
and (3). From these, we note that h(A) = (1+μ2)−1 and h(B) = 0. By recalling Proposition 3.1,
we use (h⊗ id)φ(A) = h(A).1 and (h⊗ id)φ(B) = h(B).1 to have the above two equations. �
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Lemma 3.12.

T ∗
1 = T1, T ∗

2 = T2, T ∗
4 = T3.

Proof. It follows by comparing the coefficients of 1,A and B respectively in the equation
φ(A∗) = φ(A). �
Lemma 3.13.

S∗
2S2 + c

(
1 + μ2)2

S∗
3S3 + c

(
1 + μ2)2

S∗
4S4

= (1 − T2)
(
μ2 + T2

) − c
(
1 + μ2)2

T3T
∗
3 − c

(
1 + μ2)2

T ∗
3 T3 + c

(
1 + μ2)2

.1, (7)

−2S∗
2S2 + (

1 + μ2)S∗
3S3 + μ2(1 + μ2)S∗

4S4

= (
μ2 + 2T2 − 1

)
T2 − μ2(1 + μ2)T3T

∗
3 − (

1 + μ2)T ∗
3 T3, (8)

S∗
2S2 − S∗

3S3 − μ4S∗
4S4 = −T 2

2 + μ4T3T
∗
3 + T ∗

3 T3, (9)

S∗
2S4 + S∗

3S2 = −(
μ2 + T2

)
T ∗

3 + T ∗
3 (1 − T2), (10)

S∗
2S3 + μ2S∗

4S2 = −T2T3 − μ2T3T2, (11)

S∗
4S3 = −T 2

3 . (12)

Proof. It follows by comparing the coefficients of 1,A,A2,B∗,AB and B2 in the equation
φ(B∗B) = φ(A) − φ(A2) + cφ(I) and then using Lemmas 3.11 and 3.12. �
Lemma 3.14.

−S2(1 − T2) + c
(
1 + μ2)2

S3T
∗
3 + c

(
1 + μ2)2

S4T3

= −μ2(1 − T2)S2 + cμ2(1 + μ2)2
T3S4 + cμ2(1 + μ2)2

T ∗
3 S3, (13)

S2 − 2S2T2 + (
1 + μ2)(μ2S3T

∗
3 + S4T3

)

= μ2S2 − 2μ2T2S2 + μ4(1 + μ2)T3S4 + μ2(1 + μ2)T ∗
3 S3, (14)

−S2T3 + S3(1 − T2) = −μ2T3S2 + μ2(1 − T2)S3, (15)

−S2T
∗
3 + S4(1 − T2) = μ2(1 − T2)S4 − μ2T ∗

3 S2, (16)

S2T3 + μ2S3T2 = μ2(T2S3 + μ2T3S2
)
, (17)

S3T3 = μ2T3S3, (18)

S4T
∗
3 = μ2T ∗

3 S4. (19)

Proof. It follows by equating the coefficients of 1,A,B,B∗,AB,B2 and B∗2 in the equation
φ(BA) = μ2φ(AB) and then using Lemmas 3.11 and 3.12. �
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Lemma 3.15.

−S2S
∗
4 − S3S

∗
2 = μ2(1 + μ2)T3 − μ4(1 − T2)T3 − μ4T3(1 − T2), (20)

S2S
∗
4 + μ2S3S

∗
2 = −μ4T2T3 − μ6T3T2, (21)

S3S
∗
4 = −μ4T 2

3 . (22)

Proof. The lemma is proved by equating the coefficient of B,AB,B2 in the equation φ(BB∗) =
μ2φ(A) − μ4φ(A2) + cφ(I) and then using Lemmas 3.11 and 3.12. �

Now, we compute the antipode, say κ of Q.
To begin with, we note that {x−1, x0, x1} is a set of orthogonal vectors. Moreover, they have

the same norm. The first assertion being easier, we prove below the second one.

Lemma 3.16.

h
(
x∗−1x−1

) = h
(
x∗

0x0
) = h

(
x∗

1x1
)

= t2(1 − μ2)(1 − μ6)−1[
μ2 + t−1(μ4 + 2μ2 + 1

) + t
(−μ4 − 2μ2 − 1

)]
.

Proof. We have x∗−1x−1 = t2μ−2(1 + μ2)(A − A2 + cI), x∗
0x0 = t2(1 − 2(1 + μ2)A + (1 +

μ2)2A2), x∗
1x1 = t2(1 + μ2)(μ2A − μ4A2 + cI).

We recall from [18] that for all bounded Borel function f on σ(A),

h
(
f (A)

) = γ+
∞∑

n=0

f
(
λ+μ2n

)
μ2n + γ−

∞∑
n=0

f
(
λ−μ2n

)
μ2n,

where λ+ = 1
2 + (c + 1

4 )
1
2 , λ− = 1

2 − (c + 1
4 )

1
2 , γ+ = (1 − μ2)λ+(λ+ − λ−)−1, γ− = (1 −

μ2)λ−(λ− − λ+)−1.
The lemma follows by applying this relation to the above expressions of x∗−1x−1, x∗

0x0,
x∗

1x1. �
If x′−1, x′

0, x′
1 is the normalized basis corresponding to {x−1, x0, x1}, then from (5) and (6)

along with the fact that each of the vectors x−1, x0, x1 has the same norm, it follows that

φ
(
x′−1

) = x′−1 ⊗ S3 + x′
0 ⊗ −μ−1(1 + μ2)− 1

2 S2 + x′
1 ⊗ −μ−1S4,

φ
(
x′

0

) = x′−1 ⊗ −μ
(
1 + μ2) 1

2 T3 + x′
0 ⊗ T2 + x′

1 ⊗ (
1 + μ2) 1

2 T4,

φ
(
x′

1

) = x′−1 ⊗ −μS∗
4 + x′

0 ⊗ (
1 + μ2)− 1

2 S∗
2 + x′

1 ⊗ S∗
3 .

Since φ is kept invariant by the Haar state h of SUμ(2) and φ keeps the span of the or-
thonormal set {x′−1, x

′
0, x

′
1} invariant too, we get a unitary representation of the CQG Q on the

span of {x′−1, x
′
0, x

′
1}. If we denote by Z the M3(Q)-valued unitary corresponding to this unitary

representation with respect to the ordered basis {x′ , x′ , x′ }, we get by using T4 = T ∗ from
−1 0 1 3
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Lemma 3.12 the following:

Z =
⎛
⎜⎝

S3 −μ
√

1 + μ2T3 −μS∗
4

−S2

μ
√

1+μ2
T2

S∗
2√

1+μ2

−μ−1S4

√
1 + μ2T ∗

3 S∗
3

⎞
⎟⎠ .

Recall that (see, for example, [14]), the antipode κ on the matrix elements of a finite dimen-
sional unitary representation Uα ≡ (uα

pq) is given by κ(uα
pq) = (uα

qp)∗. Thus, the antipode κ is
given by:

κ(T2) = T2, κ(T3) = S∗
2

μ2(1 + μ2)
, κ(S2) = μ2(1 + μ2)T ∗

3 ,

κ(S3) = S∗
3 , κ(S4) = μ2S4, κ

(
T ∗

3

) = S2

1 + μ2
,

κ
(
S∗

2

) = (
1 + μ2)T3, κ

(
S∗

3

) = S3, κ
(
S∗

4

) = μ−2S∗
4 .

Now we derive some more relations by applying the anti-homomorphism κ on the relations
obtained earlier.

Lemma 3.17.

−2μ4(1 + μ2)3
T ∗

3 T3 + μ2(1 + μ2)2
S∗

3S3 + μ4(1 + μ2)2
S4S

∗
4

= μ2(1 + μ2)T2
(
μ2 + 2T2 − 1

) − μ2S2S
∗
2 − S∗

2S2, (23)

μ4(1 + μ2)4
T ∗

3 T3 − μ2(1 + μ2)2
S∗

3S3 − μ6(1 + μ2)2
S4S

∗
4

= −μ2(1 + μ2)2
T 2

2 + μ4S2S
∗
2 + S∗

2S2, (24)

μ2(1 + μ2)2
S4T3 + μ2(1 + μ2)2

T ∗
3 S3 = −S2

(
μ2 + T2

) + (1 − T2)S2, (25)

S4S3 = − −S2
2

μ2(1 + μ2)2
. (26)

Proof. The relations follow by applying κ on (8), (9), (10) and (12) respectively. �
Lemma 3.18.

−μ2(1 − T2)T
∗
3 + cS2S

∗
3 + cS∗

2S4 = −μ4T ∗
3 (1 − T2) + cμ2S4S

∗
2 + cμ2S∗

3S2, (27)

S3S2 = μ2S2S3, (28)

S2S4 = μ2S4S2, (29)

−S∗
2T ∗

3 + (1 − T2)S
∗
3 = −μ2T ∗

3 S∗
2 + μ2S∗

3 (1 − T2), (30)

−S2T
∗
3 + (1 − T2)S4 = μ2S4(1 − T2) − μ2T ∗

3 S2. (31)

Proof. The relations follow by applying κ on (13), (18), (19), (15) and (16) respectively. �
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Lemma 3.19.

S3S4 = − μ2S2
2

(1 + μ2)2
, (32)

−μ2(1 + μ2)2
S∗

4T ∗
3 − μ2(1 + μ2)2

T3S
∗
3

= μ2(1 + μ2)S∗
2 − μ4S∗

2 (1 − T2) − μ4(1 − T2)S
∗
2 , (33)

(
1 + μ2)2

S∗
4T ∗

3 + μ2(1 + μ2)2
T3S

∗
3 = −μ2S∗

2T2 − μ4T2S
∗
2 . (34)

Proof. The relations follow by applying κ on (22), (20) and (21) respectively. �
Remark 3.20. It follows from (26) and (32) that μ4S4S3 = S3S4.

Lemma 3.21.

S∗
2S2 = (1 − T2)

(
μ2 + T2

)
.

Proof. Subtracting the equation obtained by multiplying c(1 + μ2) with (8) from (7), we have

(
1 + 2c

(
1 + μ2))S∗

2S2 + c
(
1 + μ2)2(1 − μ2)S∗

4S4

= (1 − T2)
(
μ2 + T2

) − c
(
1 + μ2)(μ2 + 2T2 − 1

)
T2

+ c
(
1 + μ2)2(

μ2 − 1
)
T3T

∗
3 + c

(
1 + μ2)2

.1. (35)

Again, by adding (7) with c(1 + μ2)2 times (9) gives

(
1 + c

(
1 + μ2)2)

S∗
2S2 + c

(
1 − μ4)(1 + μ2)2

S∗
4S4

= (1 − T2)
(
μ2 + T2

) − c
(
1 + μ2)2

T 2
2 + c

(
1 + μ2)2(

μ4 − 1
)
T3T

∗
3 + c

(
1 + μ2)2

.1. (36)

Subtracting the equation obtained by multiplying (μ2 + 1) with (35) from (36) we obtain

−(
μ2 + c

(
1 + μ2)2)

S∗
2S2

= (1 − T2)
(
μ2 + T2

) − c
(
1 + μ2)2

T 2
2

− (
1 + μ2)(1 − T2)

(
μ2 + T2

) − cμ2(1 + μ2)2
.1 + c

(
1 + μ2)2(

μ2 + 2T2 − 1
)
T2.

The right-hand side can be seen to equal −(μ2 + c(1 + μ2)2)(1 − T2)(μ
2 + T2).

Thus, S∗
2S2 = (1 − T2)(μ

2 + T2). �
Lemma 3.22.

μ2(1 + μ2)2
T ∗

3 T3 = (1 − T2)
(
μ2 + T2

)
, (37)

(
1 + μ2)2

T3T
∗
3 = (1 − T2)

(
1 + μ2T2

)
, (38)

S2S
∗
2 = μ2(1 − T2)

(
1 + μ2T2

)
. (39)
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Proof. Applying κ on Lemma 3.21, we obtain (37).
Unitarity of the matrix Z ((2,2) position of the matrix Z∗Z) gives μ2(1 + μ2)T ∗

3 T3 + T 2
2 +

(1 + μ2)T3T
∗
3 = 1.

Using (37) we deduce −(1 + μ2)2T3T
∗
3 = (T2 − 1)(1 + μ2T2). Thus we obtain (38).

Applying κ on (38), we deduce (39). �
Lemma 3.23.

S∗
4S4 = S4S

∗
4 = (

1 + μ2)−2
μ2(1 − T2)

2.

Proof. Adding (23) and (24), we have:

−μ4(1 + μ2)3(1 − μ2)T ∗
3 T3 + μ4(1 + μ2)2(1 − μ2)S4S

∗
4

= −μ2(1 + μ2)(1 − μ2)T2(1 − T2) − μ2(1 − μ2)S2S
∗
2 .

Using μ2 �= 1, we obtain,

−μ4(1 + μ2)3
T ∗

3 T3 + μ4(1 + μ2)2
S4S

∗
4 = −μ2(1 + μ2)T2(1 − T2) − μ2S2S

∗
2 .

Now using (37) and (39), we reduce the above equation to

μ4(1 + μ2)2
S4S

∗
4 = −μ2(1 − T2)

(
T2 + μ2T2 + μ2 + μ4T2

) + μ2(1 + μ2)(1 − T2)
(
μ2 + T2

)

= μ6(1 − T2)
2.

Thus,

S4S
∗
4 = μ6

μ4(1 + μ2)2
(1 − T2)

2

= μ2

(1 + μ2)2
(1 − T2)

2.

Applying κ , we have S∗
4S4 = μ2

(1+μ2)2 (1 − T2)
2.

Thus, S∗
4S4 = S4S

∗
4 = μ2

(1+μ2)2 (1 − T2)
2. �

Lemma 3.24.

μ2(1 + μ2)2
S∗

3S3 = (
μ2 + T2

)[
μ2(1 + μ2) − (1 − T2)

]
.

Proof. Using Lemma 3.21 in (7), we have

S∗
3S3 + T ∗

3 T3 + T3T
∗
3 + S∗

4S4 = 1. (40)

The lemma is derived by substituting the expressions of T ∗
3 T3, T3T

∗
3 and S∗

4S4 from (37), (38)
and Lemma 3.23 in Eq. (40). �
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Lemma 3.25.

(
1 + μ2)2

S3S
∗
3 = (

1 + μ2T2
)(

1 + μ2 − μ4(1 − T2)
)
.

Proof. By unitarity of the matrix Z, in particular equating the (1,1)-th entry of ZZ∗ to 1 we get
S3S

∗
3 +μ2(1 +μ2)T3T

∗
3 +μ2S∗

4S4 = 1. Then the lemma follows by using (38) and Lemma 3.23
in the above equation. �
Lemma 3.26.

−S∗
2S3 = (

μ2 + T2
)
T3.

Proof. By applying the adjoint and then multiplying by μ2 on (10) we have μ2S∗
2S3 +μ2S∗

4S2 =
−μ2T3(μ

2 + T2) + μ2(1 − T2)T3. Subtracting this from (11) we have (1 − μ2)S∗
2S3 = −T2T3 −

μ2T3T2 + μ2T3(μ
2 + T2) − μ2(1 − T2)T3 which implies −S∗

2S3 = (μ2 + T2)T3 as μ2 �= 1. �
Lemma 3.27.

S2(1 − T2) = μ2(1 − T2)S2.

Proof. Applying κ to Lemma 3.26 and then taking adjoint, we have

μ2(1 + μ2)2
T ∗

3 S3 = −(
μ2 + T2

)
S2. (41)

Adding (33) and (34) and then taking adjoint, we get (by using μ2 �= 1)

μ2(1 + μ2)2
T3S4 = μ4(1 − T2)S2. (42)

Moreover, (25) gives

μ2(1 + μ2)2
S4T3 = −S2

(
μ2 + T2

) + (1 − T2)S2 − μ2(1 + μ2)2
T ∗

3 S3.

Using (41), the right-hand side of this equation turns out to be S2(1 − T2).
Thus,

(
1 + μ2)2

S4T3 = μ−2S2(1 − T2). (43)

Again, application of adjoint to Eq. (33) gives:

μ2(1 + μ2)2
S3T

∗
3 = −μ2(1 + μ2)2

T3S4 − μ2(1 + μ2)S2 + μ4(1 − T2)S2 + μ4S2(1 − T2).

Using (42), we get

(
1 + μ2)2

S3T
∗ = −S2

(
1 + μ2T2

)
. (44)
3
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Using (41)–(44) to Eq. (14), we obtain:

S2 − 2S2T2 − (
1 + μ2)−1

μ2S2
(
1 + μ2T2

) + μ−2(1 + μ2)−1
S2(1 − T2)

= μ2S2 − 2μ2T2S2 + (
1 + μ2)−1

μ6(1 − T2)S2 − (
1 + μ2)−1(

μ2 + T2
)
S2.

This gives

μ2(1 + μ2)[(S2 − S2T2) − (
μ2S2 − μ2T2S2

)] − μ2(1 + μ2)(S2T2 − μ2T2S2
)

− μ4S2 − μ6S2T2 + S2(1 − T2) − μ8(S2 − T2S2) + μ4S2 + μ2T2S2 = 0.

Thus,

μ2(1 + μ2)[S2(1 − T2) − μ2(1 − T2)S2
] + S2(1 − T2) − μ2(S2 − T2S2)

+ μ6[S2(1 − T2) − μ2(1 − T2)S2
] − μ6(1 − T2)S2 + μ4S2(1 − T2)

+ μ2(S2(1 − T2) − μ2(1 − T2)S2
) = 0.

On simplifying, (μ6 + 2μ4 + 2μ2 + 1)(S2(1 − T2) − μ2(1 − T2)S2) = 0, which proves the
lemma as 0 < μ < 1. �
Lemma 3.28.

T3(1 − T2) = μ2(1 − T2)T3, (45)

S3S
∗
4 = μ4S∗

4S3. (46)

Proof. Eq. (45) follows by applying κ on Lemma 3.27 and then taking adjoint.
We have S∗

4S3 = −T 2
3 from (12). On the other hand we have S3S

∗
4 = −μ4T 2

3 from (22).
Combining these two, we get (46). �
Lemma 3.29.

S4T2 = T2S4.

Proof. Subtracting (31) from (16) we get the required result. �
Lemma 3.30.

T3S2 = S2T3.

Proof. By applying adjoint on (30) and then subtracting it from (15) we obtain S2T3 −
T3S2 = 0. �
Lemma 3.31.

S3(1 − T2) = μ4(1 − T2)S3.
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Proof. By adding (15) with (17) we obtain

S3(1 − T2) + μ2S3(T2 − 1) = μ2(μ2 − 1
)
T3S2.

Thus, using μ2 �= 1,

S3(1 − T2) = −μ2T3S2. (47)

Moreover, by taking adjoint of (30), we obtain μ2(1 − T2)S3 = μ2S2T3 − T3S2 + S3(1 − T2).
Thus,

μ4(1 − T2)S3 = μ4S2T3 − μ2T3S2 + μ2S3(1 − T2).

Hence, to prove the lemma it suffices to prove:

S3(1 − T2) = μ4S2T3 − μ2T3S2 + μ2S3(1 − T2).

After using T3S2 = S2T3 obtained from Lemma 3.30 we get this to be the same as (1−μ2)S3(1−
T2) = μ2(μ2 − 1)T3S2. This is equivalent to S3(1 − T2) = −μ2T3S2 (as μ2 �= 1) which follows
from (47). �
Proposition 3.32. The map SOμ(3) → Q sending M , L, G, N , C to −(1 + μ2)−1S2, S3,
−μ−1S4, (1 + μ2)−1(1 − T2), μT3 respectively is a CQG homomorphism.

Proof. It is enough to check that the map is ∗-homomorphic, since the coproducts on SOμ(3)

and Q are determined in terms of the fundamental unitaries Z′ and Z respectively, and the map
described in the statement of the proposition sends (ij)-th entry of Z′ to the (ij)-th entry of Z

for all (ij).
Now, it can easily be checked that the proof of the homomorphic property of the given map

reduces to verification of the relations on Q as derived in Lemmas 3.21–3.31 along with the
following equations:

S3S4 = μ4S4S3, (48)

S3S2 = μ2S2S3, (49)

S2S4 = μ2S4S2, (50)

S3S4 = − μ2

(1 + μ2)
2
S2

2 , (51)

which follow from Remark 3.20, (28), (29), (32) respectively. �
Theorem 3.33. We have the isomorphism:

QISO+
R

(
O

(
S2

μ,c

)
, H,D

) ∼= SOμ(3).
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Proof. SUμ(2) is an object in Q̃ISO+
R(D) as remarked before, and thus one gets a surjective

morphism from Q̃ISO+
R(D) to SUμ(2) which clearly maps QISO+

R(D) onto SOμ(3), identi-
fying the latter as a quantum subgroup of QISO+

R(D). Let us denote the surjective map from
QISO+

R(D) to SOμ(3) by Π . On the other hand, Proposition 3.32 implies that QISO+
R(D) is a

quantum subgroup of SOμ(3), and the corresponding surjective CQG morphism from SOμ(3)

onto QISO+
R(D) is clearly seen to be the inverse of Π , thereby completing the proof. �

Remark 3.34. Theorem 3.33 shows that for a fixed μ, the quantum isometry group QISO+
R(D)

of S2
μ,c does not depend on c. This may appear somewhat surprising, but let us remark that in

the classical situation (that is for μ = 1), c corresponds to the radius of the sphere and S2
1,c are

isomorphic as C∗ algebras for all c � 0. We refer the reader to [13, p. 126], for the details regard-
ing this. Although in the noncommutative case, that is, when μ �= 1, we do get non-isomorphic
C∗-algebras S2

μ,c for different choices of c, one may still think that the parameter c in some
sense determines the ‘radius’ of the noncommutative sphere, and thus one should get the same
(quantum) isometry group for different choices of c.

In view of the above, it seems impossible to ‘reconstruct’ the quantum homogeneous spaces
S2

μ,c from the quantum isometry groups SOμ(3). In this context, it may be mentioned that for

μ �= 1, although all S2
μ,c are quantum homogeneous spaces corresponding to SOμ(3), only S2

μ,0
arises as a quotient of SOμ(3) by a quantum subgroup (see [16] for more details). Thus, it is
perhaps possible to somehow ‘reconstruct’ S2

μ,0 from the quantum group SOμ(3).

3.4. Existence of Q̃ISO+(D)

For the above spectral triple, we have been unable to settle the issue of the existence of

Q̃ISO+(D) which is the universal object (if it exists) in the category Q′(D) mentioned in Sec-
tion 1. Nevertheless, we shall show that if a universal object in Q′(D) exists, then QISO+(D)

must coincide with SOμ(3).

Lemma 3.35. If Q̃ISO+(D) exists, its induced action on S2
μ,c , say α0, must preserve the state h

on the subspace spanned by {1,A,B,B∗,AB,AB∗,A2,B2,B∗2}.

Proof. Let W0 = C.1, W 1
2

= Span{1,A,B,B∗},

W 3
2

= Span
{
1,A,B,B∗,AB,AB∗,A2,B2,B∗2}.

We note that the proof of Proposition 3.10 and the lemmas preceding it do not use the assump-
tion that the action is R-twisted volume preserving, so the proof of Proposition 3.10 goes through
verbatim implying that α0 keeps invariant the subspace spanned by {1,A,B,B∗} and hence it
preserves W 3

2
as well. Let W 3

2
= W 1

2
⊕ W ′ be the orthogonal decomposition with respect to the

Haar state (say h0) of QISO+(D). Since SOμ(3) is a sub-object of QISO+(D), there is a CQG
morphism π from QISO+(D) onto SOμ(3) satisfying (id ⊗ π)α0 = �, where � is the SOμ(3)

action on S2
μ,c. It follows from this that any QISO+(D)-invariant subspace (in particular W ′) is

also SOμ(3)-invariant. On the other hand, it is easily seen that on W 3 , the SOμ(3)-action de-

2
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composes as W 1
2

⊕ W ′′ (orthogonality with respect to h, the Haar state of SOμ(3)), where W ′′
is a five-dimensional irreducible subspace.

We claim that W ′ = W ′′, which will prove that the QISO+(D)-action α0 has the same h-
orthogonal decomposition as the SOμ(3)-action on W 3

2
, so preserves C.1 and its h-orthogonal

complements. This will prove that α0 preserves the Haar state h on W 3
2
.

We now prove the claim. Observe that V := W ′ ∩ W ′′ is invariant under the SOμ(3)-action
but due to the irreducibility of � on the vector space W ′ or W ′′, it has to be zero or W ′ = W ′′.
Now, dim(V ) = 0 implies dim(W ′)+dim(W ′′) = 5+5 > 9 = dim(W 3

2
) which is a contradiction

unless W ′ = W ′′. �
Theorem 3.36. If Q̃ISO+(D) exists, then we must have that QISO+(D) ∼= SOμ(3).

Proof. In the proof of Lemma 3.35, it was noted that Proposition 3.10 follows under the assump-
tion of the present theorem. To complete the proof of the theorem, we just need to observe that
the other lemmas used for proving Theorem 3.33 require the conclusion of Lemma 3.35 as the
only extra ingredient. �

Let us conclude the article with brief explanation of the technical difficulties regarding the

issue of existence of Q̃ISO+(D). Let R′ be a positive, invertible operator commuting with D

such that τR′ �= τR and let φ′ denote the action of QISO+
R′(D) on S2

μ,c. The problem of existence

of Q̃ISO+(D) is closely related to the question whether it is possible to identify QISO+
R′(D) as

a quantum subgroup of SOμ(3) for a general R′. By Theorem 3.36, a negative answer of this
question will prove that Q′(D) does not have a universal object.

Now, as has been noted in Remark 3.5, φ′ is linear, that is, it keeps the span of {1,A,B,B∗}
invariant and hence it is given by an expression similar to Eqs. (5) and (6) with Ti, Si replaced
by some T ′

i , S
′
i which generate QISO+

R′(D) as a C∗-algebra. We can in principle write down
all the relations satisfied by these generators, proceeding as in Section 3.3. These relations will
be analogous to Eqs. (7)–(34), and in fact, the relations which make use of the homomorphism
property only remain unchanged. However, the ones making use of the fact that φ′ preserves
τR′ will change, since τR′ is in general different from τR . In particular, the expression of the
antipode will change, which will affect all the relations starting from (23). We need to have a
deeper and systematic understanding of the relations satisfied by T ′

i , S′
i for a general R′, and

possibly study their representations in concrete Hilbert spaces, to decide whether QISO+
R′(D) is

a quantum subgroup of SOμ(3) or not. We are not yet able to do this.

Moreover, even if Q̃ISO+(D) exists, although we can identify QISO+(D) with the well-

known quantum group SOμ(3), it is not so easy to explicitly compute Q̃ISO+(D). If U denotes

the unitary representation corresponding to Q̃ISO+(D), the fact that U commutes with D implies
that U must preserve each of the two-dimensional eigenspaces span{vl

m, 1
2

+ vl

m,− 1
2
: m = ± 1

2 }
and span{vl

m, 1
2

− vl

m,− 1
2
: m = ± 1

2 } of D. Suppose that (qij )i,j=1,2 and (rij )i,j=1,2 are the ma-

trices (with entries in Q̃ISO+(D)) of U corresponding to these two spaces respectively. Then it

is clear that as a C∗ algebra Q̃ISO+(D) will be generated by qij , rij ’s as well as the generators
Ti, Si of SOμ(3). However, the mutual relations among these generating elements have to be
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determined from the fact that U preserves each of the eigenspaces of D. In principle one gets
infinitely many such relations which are quite complicated and it is not clear how to simplify
them.
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