
p ()
URL: http://www.elsevier.nl/locate/entcs/volume86.html 37 pages

A Safe Relational Calculus for
Functional Logic Deductive Databases 1

Jesús M. Almendros-Jiménez 2 Antonio Becerra-Terón 3

Dpto. de Lenguajes y Computación. Universidad de Almeŕıa.
Carretera de Sacramento s/n, La Cañada de San Urbano. 04120-Almeŕıa. Spain

Abstract

In this paper, we present an extended relational calculus for expressing queries in
functional-logic deductive databases. This calculus is based on first-order logic and
handles relation predicates, equalities and inequalities over partially defined terms,
and approximation equations. For the calculus formulas, we have studied syntactic
conditions in order to ensure the domain independence property. Finally, we have
studied its equivalence w.r.t. the original query language, which is based on equality
and inequality constraints.

Key words: Logic Programming, Functional-Logic Programming,
Deductive Databases.

1 Introduction

Functional logic programming is a paradigm which integrates functions into
logic programming, widely investigated during the last years. In fact, many
languages, such as CURRY [12], BABEL [21], and TOY [19], among others,
have been developed around this research area [11]. On the other hand, it is
known that database technology is involved in most software applications. For
this reason, programming languages should include database features in order
to cover with ’real world’ applications. Therefore, the integration of database
technology into functional logic programming may be interesting, in order to
increase its application field.

Relational calculus [9] is a formalism for querying relational databases [8].
It is the basis of high-level database query languages like SQL, and its simplic-
ity has been one of the keys for the wide adoption from database technology.

1 This work has been partially supported by the Spanish project of the Ministry of Science
and Technology “INDALOG” TIC2002-03968.
2 Email:jalmen@ual.es
3 Email:abecerra@ual.es

c©2003 Published by Elsevier Science B. V.

168

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82159505?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Almendros-Jimenez and Becerra-Teron

Relational calculus is based on the use of a fragment of the first-order logic.
Logic formulas in the relational calculus contain logic predicates, which repre-
sent relations, and use equality relations in order to compare attribute values.
Free variables in logic formulas work as search variables. The simplest rela-
tional calculus handles conjunctions, does not support negation, and formulas
are existentially quantified. It allows the handling of tuples belonging to the
cross product and join of two or more input relations. However, disjunctions,
universal quantifications and negation can be included in order to handle the
union of two relations, the complement of a relation (i.e. tuples which do not
belong to a relation), and the difference of two relations (i.e. tuples which
belong to a relation but do not belong to the other one).

On the other hand, functional logic programming is a declarative paradigm
which uses equality constraints as base formalism for querying programs.
Query solving is based on equality constraint solving.

In order to integrate functional logic programming and databases, we pro-
pose: (1) to adapt functional logic programs to databases, by considering a
suitable data model and a data definition language; (2) to consider an extended
relational calculus as query language, which handles the proposed data model;
and finally, (3) to provide semantic foundations to the new query language.

With respect to (1), the underlying data model of functional logic program-
ming is complex from a database point of view [1,7,13,23]. Firstly, types can
be defined by using recursively defined datatypes, as lists and trees. Therefore,
the attribute values can be multi-valued ; that is, more than one value (for
instance, a set of values enclosed in a list) for a given attribute corresponds
to each set of key attributes.

In addition, we have adopted non-deterministic semantics from functional-
logic programming, investigated in the framework CRWL [10]. Under non-
deterministic semantics, values can be grouped into sets, representing the set
of values of the output of a non-deterministic function. Therefore, the data
model is complex in a double sense, allowing the handling of complex values
built from recursively defined datatypes, and complex values grouped into
sets.

Moreover, functional logic programming is able to handle partial and pos-
sibly infinite data. Therefore, in our setting, an attribute can be partially
defined or, even, include possibly infinite information. The first case can be
interpreted as follows: the database can include unknown information o partially
defined information [17]; and the second one indicates that the database can
store infinite information, allowing infinite database instances (i.e. infinite
attribute values or infinite sets of tuples). The infinite information can be
handled by means of partial approximations.

Moreover, we have adopted the handling of negation from functional logic
programming, studied in the framework CRWLF [20]. As a consequence, the
data model, here proposed, also handles non-existent information, and partially
non-existent information.

169

Almendros-Jimenez and Becerra-Teron

Finally, we propose a data definition language which, basically, consists on
database schema definitions, database instance definitions and (lazy) function
definitions. A database schema definition includes relation names, and a set
of attributes for each relation. For a given database schema, the database
instances define key and non-key attribute values, by means of (constructor-
based) conditional rewriting rules [10,20], where conditions handle equality
and inequality constraints. In addition, we can define a set of functions.
These functions will be used by queries in order to handle recursively defined
datatypes, also named interpreted functions in a database setting. As a con-
sequence, “pure” functional-logic programs can be considered as a particular
case of our programs.

With respect to (2), typically the query language of functional logic lan-
guages is based on the solving of conjunctions of (in)equality constraints, which
are defined w.r.t. some (in)equality relations over terms [10,20].

Our relational calculus will handle conjunctions of atomic formulas, which
are relation predicates, (in)equality relations over terms, and approximation
equations in order to handle interpreted functions. Logic formulas are ei-
ther existentially or universally quantified, depending on whether they include
negation or not.

However, it is known in database theory that a suitable query language
must ensure the property of domain independence [2]. A query is domain
independent, whenever the query satisfies, properly, two conditions: (a) the
query output over a finite relation is also a finite relation; and (b) the output
relation only depends on the input relations. In general, it is undecidable, and
therefore syntactic conditions have to be developed in such a way that, only
the so-called safe queries (satisfying these conditions) ensure the property of
domain independence. For instance, [1] and [22] propose syntactic conditions,
which allow the building of safe formulas in a relational calculus with complex
values and linear constraints, respectively. In this line, we have developed
syntactic conditions over our query language, which allow the building of the
so-called safe formulas satisfying the property of domain independence.

Extended relational calculi have been studied as alternative query lan-
guages for deductive databases [1,18], and constraint databases [6,14,15,16,22].
Our extended relational calculus is in the line of [1], in which deductive
databases handle complex values in the form of set and tuple constructors.
In our case, we generalize the mentioned calculus for handling complex values
built from (arbitrary) recursively defined datatypes.

In addition, our calculus is similar to the calculi for constraint databases,
in the sense of allowing the handling of infinite databases. However, in the
framework of constraint databases, infinite databases model infinite objects by
means of (linear) equations and inequations, and intervals which are handled
in a symbolic way. Here, infinite databases are handled by means of laziness
and partial approximations. Moreover, we handle constraints which consist
on equality and inequality relations over complex values.

170

Almendros-Jimenez and Becerra-Teron

Finally, and w.r.t. (3), we will show that our relational calculus is equiva-
lent to a query language based on (in)equality constraints, similar to existent
functional logic languages.

Furthermore, we have developed theoretical foundations for the database
instances, by defining a partial order which represents an approximation order-
ing over database instances, and a suitable fix point operator which computes
the least database instance (w.r.t. the approximation ordering) satisfying a
set of conditional rewriting rules.

Finally, remark that this work goes towards the design of a functional logic
deductive language for which an operational semantics [3,5], and a relational
algebra [4] have already been studied.

The organization of this paper is as follows. Section 2 describes the data
model; section 3 presents the extended safe relational calculus; section 4 de-
fines a safe functional-logic query language and states the equivalence of both
query languages; section 5 establishes the domain independence property; and
finally, section 6 defines the least database satisfying a set of conditional rules.

2 The Data Model

Our data model consists on complex values and partial information, which
can be handled in a data definition language based on conditional constructor-
based rewriting rules.

2.1 Complex Values

In our framework, we consider two main kinds of partial information: unde-
fined information (ni), represented by ⊥, which means information unknown,
although it may exist, and nonexistent information (ne), represented by F, which
means that the information does not exist.

Now, let’s suppose a complex value, storing information about job salary
and salary bonus, by means of a data constructor (like a record) s&b(Salary,
Bonus). Then, we can additionally consider the following kinds of partial
information:

s&b(3000, 100) totally defined information, expressing that a person’s salary is 3000 C,

and his(her) salary bonus is 100 C

s&b(⊥, 100) partially undefined information (pni), expressing that a person’s salary bonus

is known, that is 100 C, but not his(her) salary

s&b(3000,F) partially nonexistent information (pne), expressing that a person’s salary is

3000 C, but (s)he has no salary bonus

Over these kinds of information, the following (in)equality relations can be
defined as follows:

(1) = (syntactic equality), expressing that two values are syntactically equal ;

171

Almendros-Jimenez and Becerra-Teron

for instance, the relation s&b(3000,⊥) = s&b(3000,⊥) is satisfied.

(2) ↓ (strong equality), expressing that two values are equal and totally de-
fined ; for instance, the relation s&b(3000, 25) ↓ s&b(3000, 25) holds, and
the relations s&b(3000,⊥) ↓ s&b(3000, 25) and s&b(3000, F) ↓ s&b(3000,
25) do not hold.

(3) ↑ (strong inequality), where two values are (strongly) different, if they are
different in their defined information; for instance, the relation s&b(3000,
⊥) ↑ s&b(2000, 25) is satisfied, whereas the relation s&b(3000, F) ↑
s&b(3000, 25) does not hold.

In addition, we will consider their negations, that is, �=, �↓ and �↑, which
represent a syntactic inequality, (weak) inequality and (weak) equality relation,
respectively. Next, we will formally define the above equality and inequality
relations.

Assuming constructor symbols c, d, . . . DC = ∪nDCn each one with an as-
sociated arity, and the symbols ⊥, F as special cases with arity 0 (not included
in DC), and a set V of variables X,Y, . . ., we can build the set of c-terms
with ⊥ and F, denoted by CTermDC,⊥,F(V). C-terms are complex values in-
cluding variables which implicitly are universally quantified. We denote by
cterms(t) the set of (sub)terms of t. In addition, we can use substitutions
SubstDC,⊥,F = {θ | θ : V → CTermDC,⊥,F(V)}, in the usual way, where the
domain of a substitution θ, denoted by Dom(θ), is defined as usual. id de-
notes the identity. The above (in)equality relations can be formally defined
as follows.

Definition 2.1 [Relations over Complex Values [20]] Given c-terms t, t′:

(1) t = t′ ⇔def t and t′ are syntactically equal;

(2) t ↓ t′ ⇔def t = t′ and t ∈ CTermDC(V);

(3) t ↑ t′⇔def they have a DC-clash, where t and t′ have a DC-clash whether
they have different constructor symbols of DC at the same position.

In addition, their negations can be defined as follows:

(1’) t �= t′ ⇔def t and t′ have a DC ∪ {F}-clash;

(2’) t �↓ t′ ⇔def t or t′ contains F as subterm, or they have a DC-clash;

(3’) �↑ is defined as the least symmetric relation over CTermDC,⊥,F(V) satis-
fying: X �↑ X for all X ∈ V, F �↑ t for all t, and if t1 �↑ t′1, ..., tn �↑ t′n, then
c(t1, ..., tn) �↑ c(t′1, ..., t′n) for c ∈ DCn.

Given that complex values can be partially defined, a partial ordering ≤
can be considered. This ordering is defined as the least one satisfying: ⊥ ≤ t,
X ≤ X, and c(t1, ..., tn) ≤ c(t′1, ..., t′n) if ti ≤ t′i for all i ∈ {1, ..., n} and
c ∈ DCn. The intended meaning of t ≤ t′ is that t is less defined or has
less information than t′. In particular, ⊥ is the bottom element, given that ⊥
represents undefined information (ni), that is, information more refinable can

172

Almendros-Jimenez and Becerra-Teron

exist. In addition, F is maximal under ≤ (F satisfies the relations ⊥ ≤ F and
F ≤ F), representing nonexistent information (ne), that is, no further refinable
information can be obtained, given that it does not exist.

Now, we can consider sets of (partial) c-terms SET (CTermDC,⊥,F (V))
which, in our framework, will be used for representing multi-valued attributes
and the output from non-deterministic functions. We denote by cterms(CV)
the set of (sub)terms of the c-terms of CV ∈ SET (CTermDC,⊥,F.

Given that these sets can be infinite and c-terms can be also infinite, we
need to define a partial order over sets representing an approximation ordering
over (possibly infinite) sets of c-terms. The approximation ordering is defined
as follows: CV1 � CV2, where CV1, CV2 ∈ SET (CTermDC,⊥,F (V)), iff for all
t1 ∈ CV1 there exists t2 ∈ CV2 such that t1 ≤ t2, and for all t2 ∈ CV2 there
exists t1 ∈ CV1 such that t1 ≤ t2. The defined order is such that CV1ψ � CV2ψ
if CV1 � CV2 for every substitution ψ. Finally, we can define over sets of c-
terms the following equality and inequality relations.

Definition 2.2 [Relations over Sets of Complex Values] Given CV1 and CV2 ∈
SET (CTermDC,⊥,F(V)):

(1) CV1 �� CV2 holds, whenever at least one finite value in CV1 and CV2 is
strongly equal ; and

(2) CV1 <> CV2 holds, whenever at least one value in CV1 and CV2 is strongly
different ;

and their negations:

(1’) CV1 ��� CV2 holds, whenever all values in CV1 and CV2 are weakly differ-
ent ; and

(2’) CV1 </> CV2 holds, whenever all values in CV1 and CV2 are weakly equal.

2.2 Data Definition Language

We propose a data definition language which, basically, consists on database
schema definitions, database instance definitions and (lazy) function defini-
tions.

A database schema definition includes relation names, and a set of at-
tributes for each relation. For a given database schema, the database instances
define key and non-key attribute values, by means of (constructor-based) con-
ditional rewriting rules, where conditions handle equality and inequality con-
straints. In addition, we can define a set of functions. These functions will be
used by queries in order to handle recursively defined datatypes, also named
interpreted functions in a database setting.

Definition 2.3 [Database Schemas] Assuming a Milner’s style polymorphic
type system, a database schema S is a finite set of relation schemas R1, . . . , Rp
in the form of Rj(A1 : T1, . . . , Ak : Tk, Ak+1 : Tk+1, . . . , An : Tn), 1 ≤ j ≤
p, wherein the relation names are a pairwise disjoint set, and the relation

173

Almendros-Jimenez and Becerra-Teron

schemas R1, . . . , Rp include a pairwise disjoint set of typed attributes 4 (A1 :
T1, . . . , An : Tn).

In the relation schema R, A1, . . . , Ak represent key attributes and Ak+1,
. . . , An are non-key attributes, denoted by the sets Key(R) and NonKey(R),
respectively. Key values are supposed to identify each tuple of the relation. Fi-
nally, we denote by nAtt(R) = n and nKey(R) = k, the number of attributes
and key attributes defined in R, respectively.

Definition 2.4 [Databases] A database D is a triple (S,DC, IF), where S
is a database schema, DC = ∪n≥0DC

n is a set of constructor symbols, and
IF = ∪n≥0IF

n represents a set of interpreted function symbols.

We denote the set of defined schema symbols (i.e. relation and non-key
attribute symbols) by DSS(D), and the set of defined symbols by DS(D) (i.e.
DSS(D) together with IF). As an example of database, we can consider the
following one:

S

person job(name : people, age : nat, address : dir, job id : job, boss : people)

job information(job name : job, salary : nat, bonus : nat)

person boss job(name : people, boss age : cbossage, job bonus : cjobbonus)

peter workers(name : people, work : job)

DC

john : people, mary : people, peter : people

lecturer : job, associate : job, professor : job

add : string× nat → dir

b&a : people× nat → cbossage

j&b : job× nat → cjobbonus

IF
{
retention for tax : nat → nat

where S includes the schemas person job (storing information about people
and their jobs) and job information (storing generic information about jobs),
and the “views” person boss job, and peter workers, which will take key
values from the set of key values defined for person job.

The first view includes, for each person, the pairs in the form of records
constituted by: (a) his/her boss and boss’ age, by using the complex c-term
b&a(people, nat); and (b) his/her job and job salary bonus, by using the
complex c-term j&b(job, nat). The second view includes workers whose boss
is peter. The set DC includes constructor symbols for the types people,
job, dir, cbossage and cjobbonus, and IF defines the interpreted function
symbol retention for tax, which computes the free tax salary. In addition,
we can consider database schemas involving (possibly) infinite databases such
as shown as follows:

4 We can suppose attributes qualified with the relation name when the names coincide.

174

Almendros-Jimenez and Becerra-Teron

S

2Dpoint(coord : cpoint, color : nat)

2Dline(origin : cpoint, dir : orientation, next : cpoint, points : cpoint,

list of points : list(cpoint))

DC

north : orientation, south : orientation, east : orientation, west : orientation, ...

[] : list A, [|] : A× list A → list A

p : nat× nat → cpoint

IF
{
select : (list A) → A

wherein the schemas 2Dpoint and 2Dline are defined for representing bidi-
mensional points and lines, respectively. 2Dpoint includes the point coordi-
nates (coord) and color. Lines represented by 2Dline are defined by using a
starting point (origin) and direction (dir). Furthermore, next indicates the
next point to be drawn in the line, points stores the (infinite) set of points of
this line, and list of points the (infinite) list of points of the line. Here, we
can see the double use of complex values: (1) a set (which can be implicitly
assumed), and (2) a list.

Definition 2.5 [Schema Instances] A schema instance S of a database schema
S is a set of relation instances R1, . . .Rp, where each relation instance Rj,
1 ≤ j ≤ p, is a (possibly infinite) set of tuples of the form (V1, . . . , Vn) for
the relation Rj ∈ S, with n = nAtt(Rj) and Vi ∈ SET (CTermDC,⊥,F(V)). In
particular, each Vl (l ≤ nKey(Rj)) satisfies Vl ∈ CTermDC,F(V).

The last condition forces the key attribute values to be one-valued and
without including ⊥. However, non-key attributes can be multivalued with
an infinite set of values and infinite values. Attribute values can be non-ground
(i.e. including variables), wherein the variables are implicitly universally quan-
tified.

Definition 2.6 [Database Instances] A database instance D of a database
D = (S,DC, IF) is a triple (S,DC, IF), where S is a schema instance,
DC = CTermDC,⊥,F(V), and IF is a set of function interpretations fD, gD, . . .
satisfying fD : CTermDC,⊥,F(V)n → SET (CTermDC,⊥,F (V)) is monotone,
that is, fD(t1, . . . , tn) � fD(t′1, . . . , t

′
n) if ti ≤ t′i, 1 ≤ i ≤ n, for each f ∈ IF n .

Functions are monotone w.r.t. the approximation ordering defined over
c-terms and sets of c-terms. Deterministic functions define an unitary set;
otherwise they represent non-deterministic functions.

Next, we will show an example of schema instance for the database schemas
person job, job information, and the database views person boss job and
peter workers:

person job

(john, {⊥}, {add(′6th Avenue′, 5)}, {lecturer}, {mary, peter})
(mary, {⊥}, {add(′7th Avenue′, 2)}, {associate}, {peter})
(peter, {⊥}, {add(′5th Avenue′, 5)}, {professor}, {F})

175

Almendros-Jimenez and Becerra-Teron

job information

(lecturer, {1200}, {F})
(associate, {2000}, {F})
(professor, {3200}, {1500})

person boss job

(john, {b&a(mary,⊥), b&a(peter,⊥)}, {j&b(lecturer, F)})
(mary, {b&a(peter,⊥)}, {j&b(associate, F)})
(peter, {b&a(F,⊥)}, {j&b(professor, 1500)})

peter workers

(john, {lecturer})
(mary, {associate})

With respect to the modeling of (possibly) infinite databases, we can con-
sider the following instance of the relation schema 2Dline, including approx-
imation values to infinite values in the attributes:

2Dpoint
{

(p(0, 0), {1}), (p(0, 1), {2}), (p(1, 0), {F}), . . .

2Dline

(p(0, 0), north, {p(0, 1)}, {p(0, 1), p(0, 2),⊥}, {[p(0, 0), p(0, 1), p(0, 2)|⊥]}), . . .
(p(1, 1), east, {p(2, 1)}, {p(2, 1), p(3, 1),⊥}, {[p(1, 1), p(2, 1), p(3, 1)|⊥]}), . . .

Instances (key and non-key attribute values, and interpreted functions) are
defined by means of constructor-based conditional rewriting rules.

Definition 2.7 [Conditional Rewriting Rules] A constructor-based conditional
rewriting rule RW for a symbol H ∈ DS(D) has the form

H t1 . . . tn := r ⇐ C

representing that r is the value of H t1 . . . tn, whenever the condition C is
satisfied. In this kind of rule:

(i) (t1, . . . , tn) is a linear tuple (i.e. each variable in it occurs only once) with
ti ∈ CTermDC(V);

(ii) r ∈ TermD(V);

(iii) C is a set of constraints of the form e �� e′, e <> e′, e ��� e′, e </> e′, where
e, e′ ∈ TermD(V); and

(iv) extra variables are not allowed, i.e. var(r) ∪ var(C) ⊆ var(t1, . . . , tn).

TermD(V) represents the set of terms or expressions built from a database
D (i.e. built from DC, DS(D) and variables of V). We denote by cterms(e)
the set of (sub)terms of e. Each term or expression e represents a set, in such
a way that, the set of constraints allows comparing sets, accordingly to the
semantics of the relations defined over sets of complex values: ��,<>, ���,</>
(see definition 2.2). For instance, the above mentioned instances can be de-
fined by the following rules:

176

Almendros-Jimenez and Becerra-Teron

person job

person job john := ok. person job mary := ok.

person job peter := ok.

address john := add(′6th Avenue′, 5). address mary := add(′7th Avenue′, 2).

address peter := add(′5th Avenue′, 5).

job id john := lecturer. job id mary := associate.

job id peter := professor.

boss john := mary. boss john := peter.

boss mary := peter.

job information

job information lecturer := ok. job information associate := ok.

job information professor := ok.

salary lecturer := retention for tax 1500.

salary associate := retention for tax 2500.

salary professor := retention for tax 4000.

bonus professor := 1500.

person boss job

person boss job Name := ok ⇐ person job Name �� ok.

boss age Name := b&a(boss Name, address (boss Name)).

job bonus Name := j&b(job id (Name), bonus (job id (Name))).

peter workers

peter workers Name := ok ⇐ person job Name �� ok, boss Name �� peter.

work Name := job id Name.

retention for tax
{
retention for tax Fullsalary := Fullsalary− (0.2 ∗ Fullsalary).

The rules R t1 . . . tk := r ⇐ C , where r is a term of type typeok, allow the
setting of t1, . . . , tk as key values of the relation R. typeok consists of a unique
special value ok (ok is a shorthand of object key). The rules A t1 . . . tk :=
r ⇐ C, where A ∈ NonKey(R), set r as the value of the non-key attribute A
for the tuple of R with key values t1, . . . , tk, whenever the set of constraints
C holds. In these kinds of rules, t1, . . . , tk, r can be non-ground values, and
thus the key and non-key attribute values are so too. Rules for the non-
key attributes A t1 . . . tk := r ⇐ C are implicitly constrained to the form
A t1 . . . tk := r ⇐ R t1 . . . tk �� ok, C, in order to guarantee that t1, . . . , tk
are key values defined in a tuple of R.

As can be seen in the rules, undefined information (ni) is interpreted, when-
ever there are no rules for a given attribute. In addition, whenever the at-
tribute is defined by rules, it is assumed that the attribute will include nonex-
istent information (ne) for the keys for which either the attribute is not defined
or the constraints of the rule are not satisfied. This behavior fits with the fail-
ure of reduction of conditional rewriting rules proposed in [20]. Once ⊥ and F

are introduced as special cases of attribute values, the view person boss job

will include partially undefined (pni) and partially nonexistent (pne) information.
In addition and due to the form of the rules which define the key attribute
values of person boss job and peter workers, we can consider both as views

177

Almendros-Jimenez and Becerra-Teron

Table 1
Examples of (Functional-Logic) Queries

Query Description Answer

Handling of Multi-valued Attributes

boss X �� peter. who has peter as boss?

Y/john

Y/mary

address (boss X) �� Y,

job id X �� lecturer.

To obtain non-lecturer

people and their bosses’ addresses

X/mary,

Y/add(′5th Avenue′, 5)

Handling of Partial Information

job bonus X </>

j&b(associate, Y).

To obtain people whose

all jobs are equal to

associate, and their

salary bonuses, although

they do not exist

{
X/mary, Y/F

Handling of Infinite Databases

select (list of points p(0, 0) Z)

�� p(0, 2).

To obtain the orientation

of the line from

p(0, 0) to p(0, 2)

{
Z/north

defined from person job.

Now, we can consider (functional-logic) queries, which are similar to the
condition of a conditional rewriting rule. Its formal definition will be pre-
sented in section 4. For instance, table 1 shows some examples, with their
corresponding meanings and expected answers.

3 Extended Relational Calculus

Next, we present the extension of the relational calculus, by showing its syntax,
safety conditions, and, finally, its semantics.

3.1 Syntax and Safety Conditions

Let’s start with the syntax of the extended relational calculus.

Definition 3.1 [Atomic Formulas] Given a database D = (S,DC, IF), the
atomic formulas are expressions of the form:

(i) R(x1, . . . , xk, xk+1, . . . , xn), where R is a schema of S, the variables x′is
are pairwise distinct, k = nKey(R), and n = nAtt(R)

(ii) x = t, where x ∈ V and t ∈ CTermDC(V)

(iii) t ⇓ t′ or t ⇑ t′, where t, t′ ∈ CTermDC(V)

178

Almendros-Jimenez and Becerra-Teron

(iv) e � x, where e ∈ TermDC,IF (V) 5 , and x ∈ V

In the above definition, (i) represents relation predicates, (ii) syntactic equality,
(iii) (strong) equality and inequality equations, which have the same meaning
as the corresponding relations (see section 2.1, definition 2.1). Finally, (iv) is
an approximation equation, representing approximation values obtained from
interpreted functions.

Definition 3.2 [Calculus Formulas] A calculus formula ϕ against a database
instance D has the form {x1, . . . , xn | φ}, such that φ is a conjunction of the
form φ1 ∧ . . . ∧ φn where each φi has the form ψ or ¬ψ, and each ψ is an
existentially quantified conjunction of atomic formulas. Variables xi’s are the
free variables of φ, denoted by free(φ). Finally, variables xi’s occurring in
all atomic formulas R(x̄) are distinct, and the same happens to variables x’s
occurring in approximation equations e � x.

Formulas can be built from ∀,→,∨,↔ whenever they are logically equiva-
lent to the defined calculus formulas. For instance, the (functional-logic) query
Qs ≡ retention for tax X �� salary (job id peter) w.r.t the database
schemas person job and job information, requests peter’s full salary, and
obtains as answer X/4000C. This query can be written in the proposed rela-
tional calculus as follows:

ϕs ≡ {x | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = peter ∧
∃z1.∃z2.∃z3. job information(z1, z2, z3) ∧ z1 = y4 ∧ ∃u.
retention for tax x � u ∧ z2 ⇓ u)}

In this case, ϕs expresses the following meaning: to obtain the full salary, that is,
retention for tax x� u and ∃z1.∃z2.∃z3.job information(z1, z2, z3) ∧ z2 ⇓
u, for peter, that is, ∃y1. . . . ∃y5. person job(y1, . . . , y5) ∧ y1 = peter ∧ z1 =
y4.

In database theory, it is known that any query language must ensure the
property of domain independence [2]. A query is domain independent, when-
ever the query satisfies, properly, two conditions: (a) the query output over a
finite relation is also a finite relation; and (b) the output relation only depends
on the input relations. In general, it is undecidable, and therefore syntactic
conditions have to be developed in such a way that, only the so-called safe
queries (satisfying these conditions) ensure the property of domain indepen-
dence. For example, in [2], the variables occurring in calculus formulas must
be range restricted. In our case, we generalize the notion of range restricted to
c-terms. In addition, we require safety conditions over atomic formulas, and
conditions over bounded variables.

Now, given a calculus formula ϕ against a database D, we define the
following sets of variables:

5 Terms which do not include schema symbols.

179

Almendros-Jimenez and Becerra-Teron

(i) Key variables.
formula key(ϕ) = {xi | there exists R(x1, . . . , xi, . . . , xn) occurring in ϕ
and 1 ≤ i ≤ nKey(R)};

(ii) Non-key variables.
formula nonkey(ϕ) = {xj | there exists R(x1, . . . , xj, . . . , xn) occurring
in ϕ and nKey(R) + 1 ≤ j ≤ n}; and

(iii) Approximation variables.
approx(ϕ) = {x | there exists e � x occurring in ϕ}.

Definition 3.3 [Safe Atomic Formulas] An atomic formula is safe in ϕ in the
following cases:

(i) R(x1, . . . , xk, xk+1, . . . , xn) is safe, if the variables x1, . . . , xn are bound in
ϕ, and for each xi, i ≤ nKey(R), there exists one equation xi = ti in ϕ;

(ii) x = t is safe, if the variables occurring in t are distinct from the variables
of formula key(ϕ), and x ∈ formula key(ϕ);

(iii) t ⇓ t′ and t ⇑ t′ are safe, if the variables occurring in t and t′ are distinct
from the variables of formula key(ϕ);

(iv) e � x is safe, if the variables occurring in e are distinct from the variables
of formula key(ϕ), and x is bound in ϕ.

Definition 3.4 [Range Restricted C-Terms of Calculus Formulas] A c-term
is range restricted in a calculus formula ϕ if either:

(i) it occurs in formula key(ϕ) ∪ formula nonkey(ϕ), or

(ii) there exists one equation e♦c e′ (♦c ≡ =, ⇑, ⇓, or �) in ϕ, such that it
belongs to cterms(e) (resp. cterms(e′)) and every c-term of e′ (resp. e)
is range restricted in ϕ.

Range restricted c-terms are variables occurring in the scope of a relation
predicate or c-terms compared (by means of syntactic, strong (in)equalities,
and approximation equations) with variables in the scope of a relation predi-
cate. Therefore, all of them take values from the schema instance.

Definition 3.5 [Safe Formulas] A calculus formula ϕ against a database D
is safe, if:

(i) all c-terms and atomic formulas occurring in ϕ are range restricted and
safe, respectively and,

(ii) the only bounded variables are variables of formula key(ϕ)∪formula non
key(ϕ) ∪ approx(ϕ).

For instance, the previous ϕs is safe, given that the c-term peter is range
restricted (by means of y1 = peter), and the variables u, x are also range
restricted (by means of retention for tax x � u and z2 ⇓ u). Once we
have defined the conditions over the built formulas, we guarantee that they
represent “queries” against a database. Negation can be used in combination

180

Almendros-Jimenez and Becerra-Teron

Table 2
Examples of Calculus Formulas

Query Calculus Formula

boss X �� peter.

{x | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = x ∧
y5 ⇓ peter)}

address (boss X) �� Y,

job id X �� lecturer.

{x, y | (∃y1.∃y2.∃y3.∃y4.∃y5. person job(y1, y2, y3, y4, y5) ∧ y1 = x ∧
∃z1.∃z2.∃z3.∃z4.∃z5.person job(z1, z2, z3, z4, z5) ∧ z1 = y5 ∧ z3 ⇓ y)

∧(∀v4.((∃v1.∃v2.∃v3.∃v5. person job(v1, v2, v3, v4, v5) ∧ v1 = x) →
¬v4 ⇓ lecturer))}

job bonus X </>

j&b(associate, Y).

{x, y | (∀y3.(∃y1.∃y2. person boss job(y1, y2, y3) ∧ y1 = x) → ¬y3 ⇑
j&b(associate, y))}

select (list of points

p(0, 0) Z) �� p(0, 2).

{z | (∃y1.∃y2.∃y3.∃y4.∃y5. 2Dline(y1, y2, y3, y4, y5) ∧ y1 = p(0, 0) ∧
y2 = z ∧ ∃u.select y5 � u ∧ u ⇓ p(0, 2))}

with strong (in)equality relations; for instance, the calculus formula

ϕ0 ≡ ¬∃x1.x2.x3.x4.x5.person job(x1, . . . , x5) ∧ x1 = mary ∧ x5 ⇓ y

requests people who are not a mary’s boss. In this case, y is restricted to
take values from the attribute boss of the relation person job. Therefore,
the obtained answers are {y/mary} and {y/F}. Table 2 shows (safe) calculus
formulas built from the queries presented in table 1.

3.2 Semantics of Relational Calculus

Now, we define the semantics of the relational calculus. With this aim, we
need to define the following notions.

Definition 3.6 [Denotation of Terms] The denoted values of a term e ∈
TermDC,IF (V) in an instance D of a database D = (S,DC, IF) w.r.t. a
substitution θ, represented by [|e|]Dθ, are defined as follows:

(i) [|X |]Dθ =def {X θ}, for X ∈ V;

(ii) [|c|]Dθ =def {c}, for c ∈ DC 0 ;

(iii) [|c(e1 , . . . , en)|]Dθ =def c([|e1 |]Dθ, . . . , [|en |]Dθ) 6 , for all c ∈ DC n , n > 0;

(iv) [|f e1 . . . en |]Dθ =def f D [|e1 |]Dθ . . . [|en |]Dθ , for all f ∈ IF n .

The denoted values for a term or expression represent the set of values
which defines a non-deterministic (resp. deterministic) interpreted function.

Definition 3.7 [Active Domain of Terms] The active domain of a term e ∈
TermDC,IF (V) in a calculus formula ϕ w.r.t an instance D of database D =
(S,DC, IF), denoted by adom(e,D), is defined as follows:

6 To simplify denotation, we write {c(t1, . . . , tn) | ti ∈ Si} as c(S1, . . . , Sn) and
{f(t1, . . . , tn) | ti ∈ Si} as f(S1, . . . , Sn) where S′

is are certain sets.

181

Almendros-Jimenez and Becerra-Teron

(i) adom(x,D) =def

⋃
ψ∈SubstDC,⊥,F,(V1,...,Vi,...,Vn)∈R Viψ, if there exists an atomic

formula R(x1, . . . , xi−1, x, xi+1, . . . , xn) in ϕ;

(ii) adom(x,D) =def adom(e,D), if e � x occurs in ϕ;

(iii) adom(x,D) =def {⊥}, otherwise;

(iv) adom(c,D) =def {⊥}, if c ∈ DC0;

(v) adom(c(e1, . . . , en),D) =def c(adom(e1,D), . . . , adom(en,D)), if c ∈ DCn,
n > 0;

(vi) adom(f e1 . . . en,D) =def f
Dadom(e1,D) . . . adom(en,D), if f ∈ IF n.

The active domain of variables representing key and non-key attributes
includes the complete set of values defined in the schema instance for the
corresponding attribute. In the case of approximation variables, the active
domain contains the complete set of values of the interpreted function. For
example, the active domain of x5 in the atomic formula person job(x1, . . . , x5)
is {mary, peter, F}, corresponding to the set of values included in the database
instance for the attribute boss. In other words, the active domain is used in
order to restrict the set of answers which defines a calculus formula w.r.t
the database instance. For instance, the previous formula ϕ0 restricts the
variable y to be valued in the active domain of x5, that is, {peter, mary, F},
and therefore, obtaining as answers {y/mary} and {y/F}. Remark that the
isolated equation ¬x5 ⇓ y is satisfied for {x5/peter, y/lecturer} w.r.t. �↓.
However the value lecturer is not in the active domain of x5.

Finally, note that we have to instantiate the schema instance, whenever it
includes variables in order to obtain the complete set of values represented by
an attribute (see case (i) of the above definition).

Definition 3.8 [Satisfiability] Given a calculus formula {x̄ | φ}, the satisfi-
ability of φ in a database instance D = (S,DC, IF) under a substitution θ,
such that dom(θ) ⊆ free(φ), (in symbols (D, θ) |=C φ) is defined as follows:

(i) (D, θ) |=C R(x1 , . . . , xn), if there exists (V1, . . . , Vn) ∈ R (R ∈ S), such
that xiθ ∈ Viψ for every 1 ≤ i ≤ n and Vjψ ∈ CTermDC,F for every
1 ≤ j ≤ k, where ψ ∈ SubstDC,⊥,F;

(ii) (D, θ) |=C x = t , if xθ = tθ, and tθ ∈ adom(x,D) ∪ {t};
(iii) (D, θ) |=C t ⇓ t ′, if tθ ↓ t′θ, and tθ, t′θ ∈ adom(t,D) ∪ adom(t′,D);

(iv) (D, θ) |=C t ⇑ t ′, if tθ ↑ t′θ, and tθ, t′θ ∈ adom(t,D) ∪ adom(t′,D);

(v) (D, θ) |=C e � x , if xθ ∈ [|e|]Dθ, and xθ ∈ adom(e,D);

(vi) (D, θ) |=C φ1 ∧ φ2 , if D satisfies φ1 and φ2 under θ;

(vii) (D, θ) |=C ∃x .φ, if there exists v, such that D satisfies φ under θ · {x/v};
(viii) (D, θ) |=C ¬φ, if (D, θ) �|=C φ, where:

(a) (D, θ) �|=C R(x1 , . . . , xn), if for all (V1, . . . , Vk, . . . , Vn) ∈ R (R ∈ S)
and ψ ∈ SubstDC,⊥,F, then xiθ �= Viψ for some i such that 1 ≤

182

Almendros-Jimenez and Becerra-Teron

i ≤ k, but there exist tuples (W1, . . . , Vi, . . . ,Wk, . . . ,Wn) ∈ R and
ψi ∈ SubstDC,⊥,F such that xiθ ∈ Viψi, (1 ≤ i ≤ k) and Vjψj ∈
CTermDC,F, (1 ≤ j ≤ k),

(b) (D, θ) �|=C x = t , if xθ �= tθ, and tθ ∈ adom(x,D) ∪ {t};
(c) (D, θ) �|=C t ⇓ t ′, if tθ �↓ t′θ, and tθ, t′θ ∈ adom(t,D) ∪ adom(t′,D);
(d) (D, θ) �|=C t ⇑ t ′, if tθ �↑ t′θ, and tθ, t′θ ∈ adom(t,D) ∪ adom(t′,D);
(e) (D, θ) �|=C e � x , if xθ /∈ [|e|]Dθ, and xθ ∈ adom(e,D);
(f) (D, θ) �|=C φ1 ∧ φ2 , if (D, θ) |=C φ1 or (D, θ) |=C φ2;
(g) (D, θ) �|=C ∃x .φ, if for all v, then (D, θ · {x/v}) �|=C φ;
(h) (D, θ) �|=C ¬φ, if (D, θ) |=C φ.

With regard to the use of both denotation and active domain in the notion
of satisfiability, in the previous formula ϕ0, and w.r.t. the formula ¬x5 ⇓ y, we
have that adom(x5,D) = {peter, mary, F} and adom(y, D) = {⊥}. Moreover,
θ1 = {y/mary, x5/peter} and θ2 = {y/F, x5/peter} satisfies that yθ1, yθ2 ∈
adom(x5,D) ∪ adom(y,D); therefore, x5θ1 �↓ yθ1 and x5θ2 �↓ yθ2 are satisfied.
However, no more values for the variable y can be used for satisfying of ¬x5 ⇓
y. Therefore, we take into account the domain of the variables (in general,
the active domain of the c-terms) in order to satisfy the calculus formulas. It
ensures the domain independence property as we will see later.

With respect to the negation, we have to explicitly define the meaning of
the negated formulas, due to, for instance, �=, �↓ and �↑ are not the “logical”
negation of the corresponding relations =, ↓ and ↑. For instance, neither
⊥ ↓ 0, nor ⊥ �↓ 0 are satisfied. The same happens to atomic formulas of
the form R(x1, . . . , xn), which are satisfied for tuples of R, and they are not
satisfied for combinations of such tuples.

Finally, given a calculus formula ϕ ≡ {x1, . . . , xn | φ}, we define the set
of answers of ϕ w.r.t. an instance D, denoted by Ans(D, ϕ), as follows:
Ans(D, {x1, . . . , xn |φ}) = {(x1θ, . . . , xnθ) | θ ∈ SubstDC,⊥,F and (D, θ) |=C

φ}.

4 Safe Functional Logic Queries

In this section, we will define safety conditions over functional-logic queries
in order to propose a query language for functional logic deductive databases
which: (a) on one hand, it ensures the domain independence property; and (b)
on the other hand, it is equivalent to the proposed relational calculus. With
this aim, we need the following definitions.

Definition 4.1 [Query Keys] The set of query keys of a key attribute Ai ∈
Key(R) (R ∈ S) occurring in a term e ∈ TermD(V), denoted by query key(e,
Ai), is defined as follows:

query key(e, Ai) =def {ti ∈ CTermDC,F(V)| H e1 . . . ti . . . ek occurs in e
and H ∈ {R} ∪NonKey(R)}

183

Almendros-Jimenez and Becerra-Teron

Now, the set of query keys in a query Q is defined as follows:

query key(Q) =def ∪Ai∈Key(R)query key(Q, Ai) where

query key(Q, Ai) =def ∪e♦qe′∈Q(query key(e, Ai) ∪ query key(e′, Ai))
with ♦q ≡ ��, <>, ���, or </>.

Definition 4.2 [Range Restricted C-Terms of Queries] A c-term t is range
restricted in Q, if either:

(a) t belongs to ∪s∈query key(Q)cterms(s), or

(b) there exists a constraint e ♦q e′, such that t belongs to cterms(e) (resp.
cterms(e′)) and every c-term occurring in e′ (resp. e) is range restricted.

In the above case (a), we will say that t is a subterm of a query key.

Definition 4.3 [Safe Queries] A query Q is safe if all c-terms occurring in Q
are range restricted.

For instance, let’s consider the following query: Qs ≡ retention for tax X

�� salary(job id peter), corresponding to previously mentioned calculus for-
mula ϕs. Qs is safe, given that the constant peter is a query key (and thus
range restricted) and therefore the variable X is also range restricted. Analo-
gously to calculus, we need to define the denoted values and the active domain
of a database term (which includes relation names and non-key attributes) in
a functional-logic query.

Definition 4.4 [Denotation of Database Terms] Given a term e ∈ TermD(V)
the denotation of e in an instance D = (S,DC, IF) of database D = (S,DC,
IF) under a substitution θ, is defined as follows:

(i) [|R e1 . . . ek |]Dθ =def {ok}, if there exists a tuple (V1, . . . , Vk, Vk+1, . . . ,
Vn) ∈ R, and ψ ∈ SubstDC,⊥,F, such that ([|e1|]Dθ, . . . , [|ek|]Dθ) =
(V1ψ, . . . , Vkψ) and Viψ ∈ CTermDC,F, 1 ≤ i ≤ k, where R ∈ S and
k = nKey(R);

(ii) [|R e1 . . . ek |]Dθ =def {F}, if for all tuple (V1, . . . , Vk, Vk+1, . . . , Vn) ∈ R,
and ψ ∈ SubstDC,⊥,F, then [|ei|]Dθ �= Viψ for some i, 1 ≤ i ≤ k, but there
exist tuples (W1, . . . , Vi, . . . ,Wk, . . . ,Wn) ∈ R and ψi ∈ SubstDC,⊥,F such
that [|ei|]Dθ = Viψi and Viψ ∈ CTermDC,F, 1 ≤ i ≤ k, where R ∈ S and
k = nKey(R);

(iii) [|R e1 . . . ek |]Dθ =def {F}, if θ = id and for all tuple (V1, . . . , Vk, Vk+1, . . . ,
Vn) ∈ R, and ψ ∈ SubstDC,⊥,F, then [|ei|]Dθ �= Viψ for some i, 1 ≤ i ≤ k;

(iv) [|R e1 . . . ek |]Dθ =def {⊥} otherwise, for all R ∈ S;

(v) [|Ai e1 . . . ek |]Dθ =def Viψ, if there exists a tuple (V1, . . . , Vk, Vk+1, . . . , Vi,
. . . , Vn) ∈ R, and ψ ∈ SubstDC,⊥,F, such that ([|e1|]Dθ, . . . , [|ek|]Dθ) =
(V1ψ, . . . , Vkψ) and Vjψ ∈ CTermDC,F, 1 ≤ j ≤ k, where R ∈ S, and
i > nKey(R) = k;

(vi) [|Ai e1 . . . ek |]Dθ =def {F}, if [|R e1 . . . ek |]Dθ = {F};

184

Almendros-Jimenez and Becerra-Teron

(vii) [|Ai e1 . . . ek |]Dθ =def {⊥} otherwise, for all Ai ∈ NonKey(R);

(viii) [|X |]Dθ =def {X θ}, for all X ∈ V ;

(ix) [|c|]Dθ =def {c}, for all c ∈ DC 0 ;

(x) [|c(e1 , . . . , en)|]Dθ =def c([|e1 |]Dθ, . . . , [|en |]Dθ), for all c ∈ DC n ;

(xi) [|f e1 . . . en |]Dθ =def f D [|e1 |]Dθ . . . [|en |]Dθ , for all f ∈ IF n .

Definition 4.5 [Active Domain of Database Terms] Given a database in-
stance D, the active domain of e ∈ TermD(V) w.r.t D and a query Q, denoted
by adom(e,D), is defined as follows:

(i) adom(t,D) =def { t | t ∈ cterms(Viψ), ψ ∈ SubstDC,⊥,F, (V1, . . . , Vi, . . . ,
Vn) ∈ R}, if t ∈ cterms(s) with s ∈ query key(Q, Ai), Ai ∈ Key(R);
and {⊥} otherwise, for all t ∈ CTerm⊥,F(V);

(ii) adom(c,D) = {⊥} if c ∈ DC0;

(iii) adom(c(e1, . . . , en),D) =def c(adom(e1,D), . . . , adom(en,D)), if c(e1, . . . ,
en) is not a c-term, for all c ∈ DCn, n > 0;

(iv) adom(f e1 . . . en,D) =def f
Dadom(e1,D) . . . adom(en,D), for all f ∈

IF n;

(v) adom(R e1 . . . ek,D) =def {ok, F,⊥}, for all R ∈ S;

(vi) adom(Ai e1 . . . ek,D) =def

⋃
ψ∈SubstDC,⊥,F, (V1,...,Vi,...,Vn)∈R Viψ, for all Ai ∈

NonKey(R).

Both sets are also used for defining the set of query answers.

Definition 4.6 [Query Answers] Given a database instance D, θ is an answer
of Q w.r.t. D (in symbols (D, θ) |=Q Q) in the following cases:

(i) (D, θ) |=Q e �� e ′, if there exist t ∈ [|e|]Dθ and t′ ∈ [|e ′|]Dθ, such that
t ↓ t′, and t, t′ ∈ adom(e,D) ∪ adom(e′,D);

(ii) (D, θ) |=Q e <> e ′, if there exist t ∈ [|e|]Dθ and t′ ∈ [|e ′|]Dθ, such that
t ↑ t′, and t, t′ ∈ adom(e,D) ∪ adom(e′,D);

(iii) (D, θ) |=Q e ��� e ′ if for all t ∈ [|e|]Dθ and t′ ∈ [|e ′|]Dθ, then t �↓ t′, and
t, t′ ∈ adom(e,D) ∪ adom(e′,D);

(iv) (D, θ) |=Q e </> e ′, if for all t ∈ [|e|]Dθ and t′ ∈ [|e ′|]Dθ, then t �↑ t′, and
t, t′ ∈ adom(e,D) ∪ adom(e′,D).

Now, the set of answers of a safe query Q w.r.t. an instance D, denoted by
Ans(D,Q), is defined as follows: Ans(D,Q) =def {(X1θ, . . . , Xnθ) |Dom(θ) ⊆
var(Q) = {X1, . . . , Xn}, (D, θ) |=Q Q}.

4.1 Calculus and Functional Logic Queries Equivalence

Now, we can state the equivalence of both query languages.

185

Almendros-Jimenez and Becerra-Teron

Table 3
Transformation Rules

(1)
φ ∧ ∃z̄.ψ ⊕ e �� e′,Q

φ ∧ ∃z̄.∃x.∃y.ψ ∧ e � x ∧ e′ � y ∧ x ⇓ y ⊕Q

(2)
φ ∧ ¬∃z̄.ψ ⊕ e �� e′,Q

φ ∧ ¬∃z̄.∃x.∃y.ψ ∧ e � x ∧ e′ � y ∧ x ⇓ y ⊕Q

(3)
φ ∧ ∃z̄.ψ ⊕ e <> e′,Q

φ ∧ ∃z̄.∃x.∃y.ψ ∧ e � x ∧ e′ � y ∧ x ⇑ y ⊕Q

(4)
φ ∧ ¬∃z̄.ψ ⊕ e </> e′,Q

φ ∧ ¬∃z̄.∃x.∃y.ψ ∧ e � x ∧ e′ � y ∧ x ⇑ y ⊕Q

(5)
φ ∧ (¬)∃z̄.ψ ∧ R e1 . . . ek � x⊕Q

φ ∧ (¬)∃z̄.∃y1.∃yn.ψ ∧ R(y1, . . . , yk, . . . , yn) ∧ e1 � y1 ∧ . . . ∧ ek � yk[x|ok] ⊕Q
% R ∈ S

(6)
φ ∧ (¬)∃z̄.ψ ∧ Ai e1 . . . ek � x⊕Q

φ ∧ (¬)∃z̄.∃y1.∃yn.ψ ∧ R(y1, . . . , yk, . . . , yi, . . . , yn) ∧ e1 � y1 ∧ . . . ∧ ek � yk ∧ yi � x⊕Q
% Ai ∈ NonKey(R)

(7)
φ ∧ (¬)∃z̄.ψ ∧ f e1 . . . en � x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . yn.ψ ∧ f y1 . . . yn � x ∧ e1 � y1 ∧ . . . ∧ en � yn ⊕Q
% f e1 . . . en /∈ TermDC,IF(V)

(8)
φ ∧ (¬)∃z̄.ψ ∧ c(e1, . . . , en) � x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . yn.ψ ∧ c(y1, . . . , yn) � x ∧ e1 � y1 ∧ . . . ∧ en � yn ⊕Q
% c(e1 . . . en) /∈ TermDC,IF(V)

(9)
φ ∧ (¬)∃z̄.ψ ∧ t � x⊕Q
φ ∧ (¬)∃z̄.ψ ∧ x = t⊕Q

% x ∈ formula key(φ ∧ (¬)∃z̄.ψ ∧ t � x)

(10)
φ ∧ (¬)∃z̄.∃x.ψ ∧ t � x⊕Q
φ ∧ (¬)∃z̄.ψ[x|t] ⊕Q

% x ∈ formula key(φ ∧ (¬)∃z̄.∃x.ψ ∧ t � x)

Theorem 4.7 (Queries and Calculus Formulas Equivalence) Let D be
an instance, then:

(i) given a safe query Q against D, there exists a safe calculus formula ϕQ
such that Ans(D,Q) = Ans(D, ϕQ)

(ii) given a safe calculus formula ϕ against D, there exists a safe query Qϕ
such that Ans(D, ϕ) = Ans(D,Qϕ)

Proof. The idea is to transform a safe query into a safe calculus formula
and viceversa, applying the set of transformation rules of table 3. In order to
transform a safe query Q into a safe calculus formula ϕQ, we have to apply
the transformation rules in top-down, starting from Q. Analogously, in order
to transform a safe calculus formula ϕ into a safe query Qϕ, we have to apply
the transformation rules in bottom-up, starting from ϕ. Now, given

186

Almendros-Jimenez and Becerra-Teron

φ⊕ Q
φ∗ ⊕Q∗

and a database instance D = (S,DC, IF), we have to prove:

(a) there exists a substitution η, such that x̄η ∈ Ans(D, φ) ∩ Ans(D,Q)
where x̄ = free(φ) ∪ var(Q) iff there exists a substitution η∗, such that
x̄η∗ ∈ Ans(D, φ∗) ∩ Ans(D,Q∗) where x̄ = free(φ∗) ∪ var(Q∗) and
η = η∗|free(φ)∪var(Q).
Here, x̄η denotes a tuple (x1η, . . . , xnη) and we write x̄η ∈ Ans(D, ϕ) ∩
Ans(D,Q) whenever (D, η) |=C ϕ and (D, η) |=Q Q; finally, η∗|free(φ)∪var(Q)

expresses the substitution restricted to the variables of Q and the free vari-
ables of φ.

(b) φ is a safe calculus formula and Q is a safe query iff φ∗ is a safe calculus
formula and Q∗ is a safe query where, here, the safety condition is:
• the c-terms of the queries are range restricted by definition 3.4 and by

definition 4.2;
• the c-terms of the calculus formulas are range restricted by definition

3.4 and definition 4.2;
• the equations e1♦q e2 ∈ Q do not contain variables from formula key

(φ);
• the safety condition of atomic formulas (definition 3.3) is replaced by:

“R(x1, . . . , xk, xk+1, . . . , xn) is safe, if the variables x1, . . . , xn are bound
in ϕ, and for each xi, i ≤ nKey(R), there exists one equation ei � xi or
xi = ti occurring in ϕ”;

Note that this safety definition is more general. However, whether φ = ∅
or Q = ∅, then the safety condition coincides with the original definitions
(see definitions 4.2 and 3.4, respectively).

Here, we prove the main cases of (a) and (b).

(1)
φ ∧ ∃z̄. ψ ⊕ e1 �� e2, Q

φ ∧ ∃z̄.∃x.∃y. ψ ∧ e1 � x ∧ e2 � y ∧ x ⇓ y ⊕ Q
(a) Given a substitution η such that x̄η ∈ Ans(D, φ ∧ ∃z̄.ψ) ∩ Ans(D, {e1 ��

e2, Q}), then (D, η) |=C φ∧∃z̄.ψ, (D, η) |=Q e1 �� e2 and (D, η) |=Q Q. In
particular, (D, η) |=Q e1 �� e2 iff there exists t1 ∈ [|e1 |]Dη and t2 ∈ [|e2 |]Dη
such that t1 ↓ t2 and t1, t2 ∈ adom(e1,D)∪ adom(e2,D). Now, let η∗ be a
substitution such that η∗ = η · {x|t1, y|t2}, then xη∗ ∈ [|e1 |]Dη∗ and yη∗ ∈
[|e2 |]Dη∗ and therefore iff (D, η∗) |=C e1 � x∧e2 � y. In addition, by def-
inition (3.7), adom(x,D) = adom(e1,D) and adom(y,D) = adom(e2,D)
and given that xη∗ ↓ yη∗, then xη∗, yη∗ ∈ adom(x,D) ∪ adom(y,D) and
thus iff (D, η∗) |=C x ⇓ y. Therefore (D, η∗) |=C (e1 � x ∧ e2 � y ∧ x ⇓ y)
and, finally, (D, η) |=C φ, (D, η) |=C (∃z̄.∃x.∃y. ψ ∧ e1�x ∧ e2�y ∧ x ⇓ y)
and (D, η) |=Q Q so that, iff x̄η ∈ Ans(D, φ ∧ (∃z̄.∃x.∃y. ψ ∧ e1 � x ∧

187

Almendros-Jimenez and Becerra-Teron

e2 � y ∧ x ⇓ y)) ∩ Ans(D,Q).

(b) Suppose that φ ∧ ∃z̄.ψ, and e1 �� e2, Q are safe, that is,
• the equations and atomic formulas of φ and ψ are safe
• the c-terms of φ and Q are range restricted
• the c-terms of e1 and e2 are range restricted
then applying (1):
• the equations and atomic formulas of φ and ψ are safe
• those range restricted c-terms in φ, ψ and Q by means of e1 �� e2, are

now range restricted by means of e1 � x, e2 � y, x ⇓ y
• the formula ∃z̄.∃x.∃y. ψ ∧ e1 � x ∧ e2 � y ∧ x ⇓ y is safe, given that, by

hypothesis, the c-terms of e1 and e2 are range restricted and, therefore,
the variables x and y are range restricted. In addition, the equations
e1 � x, e2 � y, x ⇓ y are safe, given that e1 and e2 do not contain, by
hypothesis, key variables and the variables x and y are variables distinct
from key variables due to the renaming of quantified variables.

(6)

φ ∧ (¬)∃z̄.ψ ∧ Ai e1 . . . ek � x⊕Q
φ ∧ (¬)∃z̄.∃y1.∃yn.ψ ∧ R(y1, . . . , yk, . . . , yi, . . . , yn) ∧ e1 � y1 ∧ . . .

∧ek � yk ∧ yi � x⊕Q
% Ai ∈ NonKey(R)

(a) Given a substitution η, such that x̄η ∈ Ans(D, φ∧ ∃z̄. ψ ∧ Ai e1 . . . ek �
x)∩Ans(D,Q), then (D, η) |=C φ, (D, η) |=C ∃z̄. ψ ∧ Ai e1 . . . ek �x and
(D, η) |=Q Q. Now, (D, η) |=C ∃z̄. ψ ∧ Ai e1 . . . ek � x iff there exists a
substitution η′ such that (D, η′) |=C Ai e1 . . . ek � x. Therefore iff xη′ ∈
[|Ai e1 . . . ek |]Dη′ that is, vi = xη′ ∈ ViηV for a given substitution ηV ,
whenever ([|e1 |]Dη′, . . . , [|ek |]Dη′) = (V1ηV , . . . ,VkηV) and there exists a
tuple (V1, . . . , Vk, . . . , Vi, . . . , Vn) ∈ R. Now, let η∗ be a substitution, such
that η∗ = η′·{y1|v1, . . . , yn|vn} and v1 ∈ V1ηV , . . . , vn ∈ VnηV ; therefore,
iff (D, η∗) |=C R(y1, . . . , yn) and given that y1η

∗ ∈ [|e1 |]Dη∗ . . . ykη
∗ ∈

[|ek |]Dη∗ then iff (D, η∗) |=C ei � yi. Finally, given that yiη
∗ = xη then iff

(D, η∗) |=C yi � x and we can prove (D, η∗) |=C R(y1, . . . , yk, . . . , yi, . . . , yn)
∧e1 � y1 ∧ . . . ∧ ek � yk ∧ yi � x. Finally, (D, η) |=C φ, (D, η) |=C

∃z̄.∃y1. . . . ∃yn. ψ ∧R(y1, . . . , yk, . . . , yi, . . . , yn)∧ e1�y1∧. . .∧ek�yk ∧ yi�x
and (D, η) |=Q Q, and therefore iff x̄η ∈ Ans(D, φ ∧ (∃z̄.∃y1 . . . ∃yn. ψ ∧
R(y1, . . . , yk, . . . , yi, . . . , yn)∧e1 � y1∧. . .∧ ek � yk∧yi � x)) ∩Ans(D,Q)
where η = η∗|var(Q)∪free(φ).

(b) Suppose that φ, (∃z̄. ψ ∧ Ai e1 . . . ek � x), and Q are safe; that is,
• the equations and atomic formulas of φ and ψ are safe
• the c-terms of φ, ψ and Q are range restricted
• the c-terms of e1, . . . , ek are range restricted, and the equation Ai e1 . . .

188

Almendros-Jimenez and Becerra-Teron

ek � x is safe; that is, e1 . . . ek do not contain key variables, and the
variable x is bounded and range restricted

then applying (6):
• the equations and atomic formulas of φ and ψ are safe by the renaming

of quantified variables
• the c-terms of Q, φ and ψ are range restricted, now, by means of
R(y1, . . . , yn), e1 �y1, . . . , ek �yk, and yi �x if they were range restricted
by means of Ai e1 . . . ek � x

• the formula (∃z̄.∃y1. . . . ∃yn. ψ ∧ R(y1, . . . , yk, . . . , yn) ∧ e1 � y1 ∧ . . . ∧
ek � yk ∧ yi � x) is safe, given that the c-terms of e1, . . . , ek and the
variables y1, . . . , yn, x are range restricted; in addition, the equations
e1 �y1∧ . . .∧ek �yk∧yi �x are safe, given that the variables y1, . . . , yk, yi
are bounded, the variable x is bounded by hypothesis, e1, . . . , ek do not
contain key variables by hypothesis, and the variable yi is not a key
variable. Finally, the atomic formula R(y1, . . . , yk, . . . , yi, . . . , yn) con-
tains new variables by the renaming of quantified variables; moreover,
for each yi, (1 ≤ j ≤ k), there exists an equation ei � yi.

(7)
φ ∧ (¬)∃z̄.ψ ∧ f e1 . . . en � x⊕Q

φ ∧ (¬)∃z̄.∃y1 . . . yn.ψ ∧ f y1 . . . yn � x ∧ e1 � y1 ∧ . . . ∧ en � yn ⊕Q
% f e1 . . . en /∈ TermDC,IF(V)

(a) Given a substitution η, such that x̄η ∈ Ans(D, φ∧ ∃z̄. ψ ∧ f e1 . . . en �
x) ∩ Ans(D,Q), then (D, η) |=C φ, (D, η) |=C ∃z̄. ψ ∧ f e1 . . . en � x
and (D, η) |=Q Q. Now, (D, η) |=C ∃z̄. ψ ∧ f e1 . . . en � x iff there
exists a substitution η′ such that (D, η′) |=C f e1 . . . en � x. Therefore
xη′ ∈ [|f e1 . . . en |]Dη′, that is, xη′ ∈ fD [|e1 |]Dη′ . . . [|en |]Dη′. Now, there
exist c-terms t1, . . . , tn, such that t1 ∈ [|e1 |]Dη′ . . . tn ∈ [|en |]Dη′ and there-
fore iff xη′ ∈ fD t1 . . . tn. Now, let η∗ be a substitution, such that η∗ =
η′ ·{y1|t1, . . . , yn|tn} then, we have that y1η

∗ ∈ [|e1 |]Dη∗ . . . ynη∗ ∈ [|en |]Dη∗.
Finally, given that xη′ ∈ fD t1 . . . tn, then iff xη∗ ∈ fD [|y1 |]Dη∗ . . .
[|yn |]Dη∗; that is, xη∗ ∈ [|f y1 . . . yn |]Dη∗ iff (D, η) |=C φ, (D, η) |=C

∃z̄.∃y1 . . . ∃yn. ψ ∧ f y1 . . . yn�x ∧ e1�y1∧ . . . ∧en�yn, and (D, η) |=Q Q.
Therefore iff x̄η ∈ Ans(D, φ ∧ (∃z̄.∃y1 . . . ∃yn. ψ ∧ f y1 . . . yn � x ∧ e1 �
y1 ∧ . . . ∧ en � yn))∩ Ans(D,Q) where η = η∗|var(Q)∪free(φ).

(b) Suppose that φ, (∃z̄. ψ ∧ f e1 . . . en � x), and Q are safe; that is,
• the equations and atomic formulas of φ and ψ are safe
• the c-terms of φ, ψ and Q are range restricted
• the c-terms of e1, . . . , en are range restricted, and the equation f e1 . . .
en � x is safe; that is, e1, . . . , en do not contain key variables, and the
variable x is bounded and range restricted

then applying (7):
• the equations and atomic formulas of φ and ψ are safe by the renaming

189

Almendros-Jimenez and Becerra-Teron

of quantified variables
• the c-terms of Q, φ and ψ are range restricted if they were range re-

stricted by means of f e1 . . . en � x
• the formula (∃z̄.∃y1. . . . ∃yn. ψ ∧ f y1 . . . yn � x ∧ e1 � y1 ∧ . . . ∧ en �
yn) is safe given that the c-terms of e1, . . . , en are range restricted and
therefore the variables y1, . . . , yn are also range restricted; the equations
f y1 . . . yn � x ∧ e1 � y1 ∧ . . .∧ en � yn are safe, given that the variables
y1, . . . , yn are bounded, the variable x is bounded by hypothesis, and
e1, . . . , en, by hypothesis, do not contain key variables.

(9)

φ ∧ ∃z̄. ψ ∧ t � x ⊕ Q
φ ∧ ∃z̄. ψ ∧ x = t ⊕ Q

% x ∈ formula key(φ ∧ ∃z̄.ψ ∧ t � x) y t is a c-term

(a) Given a substitution η, such that x̄η ∈ Ans(D, φ ∧ ∃z̄. ψ ∧ t � x) ∩
Ans(D,Q), then (D, η) |=C φ, (D, η) |=C ∃z̄. ψ ∧ t � x and (D, η) |=Q

Q. Now, (D, η) |=C ∃z̄. ψ ∧ t � x iff there exists a substitution η′

such that (D, η′) |=C t � x. Therefore, xη′ ∈ [|t |]Dη′ = {tη′} and then
xη′ = tη′. Now, given that x is a key variable, then there exists an
atomic formula R(y1, . . . , x, . . . , yn) in the calculus formula and a tuple
(V1, . . . , Vi−1, Vi, Vi+1, . . . , Vk, . . . , Vn) ∈ R such that xη′ ∈ ViηV for a
given substitution ηV ; now, given that x ∈ formula key(φ ∧ (¬)∃z̄.ψ ∧
t � x) then adom(x,D) ⊇ ViηV and tη′ ∈ ViηV . Therefore iff (D, η) |=C

∃z̄. ψ ∧ x = t and thus (D, η) |=C φ, (D, η) |=C ∃z̄. ψ ∧ x = t
and (D, η) |=Q Q which is true iff x̄η ∈ Ans(D, φ ∧ (∃z̄. ψ ∧ x =
t)) ∩ Ans(D,Q).

(b) Suppose that φ, (∃z̄. ψ ∧ t � x), and Q are safe; that is,
• the equations and atomic formulas of φ and ψ are safe
• the c-terms of φ, ψ and Q are range restricted
• the c-terms of t are range restricted, x is a key variable, thus range

restricted and, finally, the equation t � x is safe; that is, x is bounded
and t does not contain key variables

then applying (9):
• the equations and atomic formulas of φ and ψ are safe by hypothesis
• the c-terms of Q, φ and ψ are range restricted by means of x = t if they

were by means of t � x; the rest of variables by hypothesis, and thus, Q,
φ and ψ are safe

• the formula ∃z̄. ψ ∧ x = t is safe given that the c-terms of t are range
restricted by hypothesis; the equation x = t is safe, given that x is a key
variable and t does not contain, by hypothesis, key variables.

Now, in order to prove the theorem, we prove that:
(i) if (∅ ⊕ Q)→n (ϕQ ⊕ ∅) then:

190

Almendros-Jimenez and Becerra-Teron

(a) x̄η ∈ Ans(D,Q) iff there exists a substitution η∗ such that x̄η∗ ∈ Ans(D,
ϕQ) where η∗ = η|var(Q)

(b) Q is safe w.r.t the definition 4.3 iff ϕQ is safe w.r.t. the definition 3.5

(ii) if (ϕ⊕ ∅)→n (∅ ⊕ Qϕ) then:

(a) x̄η ∈ Ans(D, ϕ) iff there exists a substitution η∗ such that x̄η∗ ∈ Ans(D,
Qϕ) where η∗ = η|free(ϕ)

(b) ϕ is safe w.r.t. the definition 3.5 iff Qϕ is safe w.r.t. the definition 4.3

We prove (i) that is, (∅ ⊕ Q)→n (ϕQ ⊕ ∅); analogously, we can prove (ii).

(a) Let η be a substitution such that x̄η ∈ Ans(D,Q), then for each transfor-
mation step

φ ⊕ Q
φ∗ ⊕ Q∗

there exists a substitution η∗ = η|var(Q)∪free(ϕ) such that x̄η∗ ∈ Ans(D, φ∗)
∩ Ans(D,Q∗). Therefore, iterating we can conclude the result

(b) We have that the formula ϕ and query Q are safe, iff the formula ϕ∗

and the query Q∗ are safe. Now, if Q is safe (definition 4.3), we have
that is also safe w.r.t. the definition of safety proposed in this theorem.
Therefore, ϕQ is safe and, thus it is safe w.r.t. the definition 3.5

✷

5 Domain Independence

In this section, we will prove the domain independence property over the
functional-logic query language, and therefore, by the previously proved equiv-
alence, over the extended relational calculus. Firstly, we need to define some
concepts.

A database instance defines a domain which consists on the values of the
tuples, c-terms built from these values and data constructors, and finally, the
obtained values applying interpreted functions over these values. In particular,
we can define the domain of a given attribute, which consists on the set of
values of the corresponding attribute in a given database instance.

Definition 5.1 [Domain of an Instance] Given a database instance D =
(S,DC, IF) of a database D = (S,DC, IF), we define the domain of D,
denoted by Dom(D), as follows:

191

Almendros-Jimenez and Becerra-Teron

Dom(D) =def { t | (V1, . . . , Vn) ∈ R, η ∈ SubstDC,⊥,F, t ∈ cterms(Viη), R ∈ S}

∪ { c(t1, . . . , tn) | ti ∈ Dom(D), c ∈ DCn, n > 0}

∪ { fD t1 . . . tn | ti ∈ Dom(D), f ∈ IF n}

∪ { ti | fD t1 . . . tn = t, t ∈ Dom(D) and f ∈ IF n}

∪ {ok,⊥, F}

Definition 5.2 [Domain of an Attribute] Given a database instance D =
(S,DC, IF) of a database D = (S,DC, IF), we define the domain of an
attribute Ai ∈ Key(R) ∪ NonKey(R), R ∈ S, denoted by Dom(D, Ai), as
follows:

Dom(D, Ai) =def { t | (V1, . . . , Vn) ∈ R, η ∈ SubstDC,⊥,F, t ∈ cterms(Viη)}

Remark that in both definitions, tuples can include variables, and thus they
can be instantiated by mean of substitutions.

Definition 5.3 [Finite Instances]
An instance D = (S,DC, IF) of a database D = (S,DC, IF) is finite, if S
and IF are finite, where:

(i) S is finite iff:
(a) S contains a finite set of tuples (V1, . . . , Vk, . . . , Vn), where k = nKey

(R) and R ∈ S; and in addition,
(b) S is ground (and thus D is ground); that is, the values V1, . . . , Vk

are ground and, finally, Vk+1, . . . , Vn are finite, and their values are
ground and finite;

(ii) IF is finite, if for each function symbol f ∈ IF , then the set {t | fD s1 . . .
sn = t} ∪ {t1, . . . , tn | fD t1 . . . tn = s} is a finite set of finite c-terms for
any si, s ∈ Dom(D).

Definition 5.4 [Instance Inclusions]
Given two instancesD = (S,DC, IF) andD∗ = (S,DC∗, IF∗) of two databases
D∗ = (S,DC∗, IF ∗) and D = (S,DC, IF) then we say that D is included in
D∗, denoted by D ⊆ D∗, iff DC ⊆ DC∗ and IF ⊆ IF∗ where:

(a) DC ⊆ DC∗, if DC ⊆ DC∗

(b) IF ⊆ IF∗, if for each function symbol f ∈ IF , then fD
∗
s1 . . . sn =

fD s1 . . . sn, and {t̄ | fD∗
t1 . . . tn = s} = {t̄ | fD t1 . . . tn = s}, for any

si, s ∈ Dom(D)

Now, we can formally define the property of domain independence.

Definition 5.5 [Domain Independence] A calculus formula ϕ is domain in-
dependent whenever:

(a) if the instance D is finite, then Ans(D, ϕ) is finite; and

192

Almendros-Jimenez and Becerra-Teron

(b) given two ground instances D ⊆ D∗, then Ans(D, ϕ) = Ans(D∗, ϕ).

The case (a) establishes that the set of answers is finite, whenever S and
IF are finite; and (b) states that the output relation (i.e. set of answers) only
depends on the input schema instance S, and not on the data constructors
(i.e. DC) and interpreted functions (i.e. IF).

In order to prove the property of domain independence, we need some
previous results.

Proposition 5.6 Given a database instance D, a term e ∈ TermD(V) and a
query Q, then:

(a) adom(e,D) ⊆ Dom(D)

(b) if for all t ∈ CTermDC,F(V) occurring in e, we have that t ∈ cterms(s)
with s ∈ query key(Q, Ai) for a given key attribute Ai, then:

[|e|]Dη ⊆ Dom(D)

for every substitution η ∈ SubstDC,⊥,F such that tη ∈ Dom(D, Ai) for
every t ∈ cterms(s) with s ∈ query key(Q, Ai).

Proof. The case (a) can be easily proved by analyzing the definitions 3.7 and
5.1. The case (b) can be proved by observing that if t ∈ query key(Q, Ai) then
[|t|]Dη ⊆ Dom(D), and therefore, proceeding by induction, it can be proved
that [|e|]Dη ⊆ Dom(D), whenever for all t ∈ CTermDC,F(V) occurring in e, we
have that t ∈ cterms(s) with s ∈ query key(Q, Ai) ✷

Lemma 5.7 (Finiteness) Given a finite instance D = (S,DC, IF) of a
database D = (S,DC, IF), a term e ∈ TermD(V), and a query Q, then:

(a) adom(e,D) is finite

(b) if for all t ∈ CTermDC,F(V) occurring in e, we have that t ∈ cterms(s)
with s ∈ query key(Q, Ai) for a given key attribute Ai, then the set

{η |Dom(η) ⊆ var(e), {⊥} �= [|e|]Dη, tη ∈ Dom(D,Ai),

for every t ∈ cterms(s) with s ∈ query key(Q, Ai)}
is finite

Proof. By structural induction over e. We analyze the main cases:

(i) e ≡ t and t ∈ cterms(s) with s ∈ query key(Q, Ai) for a given key
attribute Ai ∈ R, (R ∈ S), then:
(a)

adom(t,D) =def { t | t ∈ cterms(Viψ∗), ψ∗ ∈ SubstDC,⊥,F,
(V1, . . . , Vi, . . . , Vn) ∈ R},

and given that S is finite (i.e. it contains a finite number of tuples
and V ′

i s are ground), then
{ t | t ∈ cterms(Viψ∗), ψ∗ ∈ SubstDC,⊥,F, (V1, . . . , Vi, . . . , Vn) ∈ R}

193

Almendros-Jimenez and Becerra-Teron

is finite, and we can conclude that adom(e,D) is finite.
(b) We have that [|e|]Dη =def {tη} and tη ∈ Dom(D, Ai), and given that
D is finite, then Dom(D, Ai) is finite by reasoning as previously, and
therefore we can conclude that we have a finite set of substitutions η.

(ii) e ≡ t and t �∈ cterms(s) for all s ∈ query key(Q, Ai), then:
(a) adom(e,D) =def {⊥} is finite.
(b) It contradicts that every c-term of e is a subterm of a query key.

(iii) if e ≡ R e1 . . . ek (R ∈ S), then:
(a) adom(R e1 . . . ek,D) =def {ok, F,⊥} is finite.
(b) [|e|]Dη =def {ok}, if ([|e1 |]Dη, . . . , [|ek |]Dη) = (V1η

∗, . . . ,Vkη
∗), where

(V1, . . . , Vn) ∈ R. Now, given that S is finite, we have two cases:
(b.1) ei ≡ ti, where ti ∈ cterms(si) with si ∈ query key(Q, Ai), then

tiη ∈ Dom(D, Ai); now, we have that [|ei |]Dη = {tiη}. In addition
tiη should be of Viη

∗, and Viη
∗ ⊆ Dom(D, Ai), which is finite, and,

therefore, we conclude that we have a finite set of substitutions η
(b.2) every c-term of ei is a subterm of a query key, then by induction

hypothesis we have that {η |Dom(η) ⊆ var(ei), {⊥} �= [|ei |]Dη, tη ∈
Dom(D,Ai) for each t ∈ cterms(s) with s ∈ query key(Q, Ai)} is
finite; therefore we have a finite set of substitutions η.

(iv) if e ≡ Ai e1 . . . ek (Ai ∈ NonKey(R), R ∈ S), then:
(a) adom(Ai e1 . . . ek,D) =def

⋃
{η∗∈SubstDC,⊥,F, (V1,...,Vk,...,Vi,...,Vn)∈R} Viη

∗

In this case, given that S is finite (i.e. contains a finite number of
tuples and Vi’s are ground), then Viη

∗ = Vi, and we can conclude that
adom(Ai e1 . . . ek,D) es finite.

(b) Similarly to the previous case.

(v) if e ≡ c(e1, . . . , en), then:
(a) adom(c(e1, . . . , en),D) =def c

D(adom(e1,D), . . . , adom(en,D)) where
c ∈ DCn; now, by induction hypothesis, we have that adom(ei,D) is
finite and, therefore, we can conclude that adom(c(e1, . . . , en),D) is
finite.

(b) Given that every c-term of ei is a subterm of query key, we can
conclude by induction hypothesis that {η |Dom(η) ⊆ var(e), {⊥} �=
[|e|]Dη, tη ∈ Dom(D,Ai) for every t ∈ cterms(s) with s ∈ query key(
Q, Ai)} is finite.

(vi) if e ≡ f e1 . . . en , then:
(a) adom(f e1 . . . en,D) =def f

D adom(e1,D) . . . adom(en,D) where f ∈
IF n; now, by induction hypothesis, we have that: adom(ei,D) is fi-
nite for each 1 ≤ i ≤ n. Moreover, given that D is finite, then we
have that: {t | fD s1 . . . sn = t} is finite for every si ∈ Dom(D). In
particular, by proposition 5.6, we have that adom(e,D) ⊆ Dom(D),
and thus {t | fD adom(e1,D) . . . adom(en,D) = t} is finite allowing
to conclude that adom(f e1 . . . en,D) is finite.

(b) We have that: [|e|]Dη =def f D [|e1 |]Dη . . . [|en |]Dη and by proposition

194

Almendros-Jimenez and Becerra-Teron

5.6, [|ei |]Dη ⊆ Dom(D) which allows, by induction hypothesis and
given that D is finite, reasoning as in the case (a), to conclude that
{η |Dom(η) ⊆ var(e), {⊥} �= [|e|]Dη, tη ∈ Dom(D,Ai), for every t ∈
cterms(s) with s ∈ query key(Q, Ai)} is finite.

✷

Lemma 5.8 (Denotation and Active Domain w.r.t. Inclusion) Given
two instances D = (S,DC, IF) and D∗ = (S,DC∗, IF∗) of two databases
D = (S,DC, IF) and D∗ = (S,DC∗, IF ∗), such that S is ground and D ⊆ D∗,
and a query Q, then for each term e ∈ TermDC,DS(D)(V):

(a) adom(e,D) = adom(e,D∗)

(b) if for all t ∈ CTermDC,F(V) occurring in e, such that t ∈ cterms(s) with
s ∈ query key (Q, Ai) for a given key attribute Ai, then [|e|]Dη = [|e|]D∗

η
for every substitution η such that tη ∈ Dom(D, Ai)(= Dom(D∗, Ai)) for
every t ∈ cterms(s) with s ∈ query key(Q, Ai).

Proof. By structural induction over e. We analyze the main cases:

(i) e ≡ t and t ∈ cterms(s) with s ∈ query key(Q, Ai), for a given key
attribute Ai ∈ R (R ∈ S), then:
(a)

adom(t,D) =def { t | t ∈ cterms(Viη∗), η∗ ∈ SubstDC,⊥,F,
(V1, . . . , Vi, . . . , Vn) ∈ R},

and given that S is ground and coincides in D and D∗, then
adom(t,D∗) =def { t | t ∈ cterms(Viη∗∗), η∗∗ ∈ SubstDC,⊥,F,

(V1, . . . , Vi, . . . , Vn) ∈ R},
where Viη

∗∗ = Viη
∗ = Vi, and we can conclude that adom(e,D) =

adom(e,D∗).
(b) Taking into account that [|e|]Dη =def {tη} = [|e|]D∗

η, for every η ∈
SubstDC,⊥,F.

(ii) e ≡ t and t �∈ cterms(s) for all s ∈ query key(Q, Ai) then:
(a) adom(e,D) =def {⊥} = adom(e,D∗).
(b) It contradicts that every c-term of e is a subterm of a query key.

(iii) if e ≡ R e1 . . . ek (R ∈ S), then:
(a) adom(R e1 . . . ek,D) =def {ok,⊥, F} = adom(R e1 . . . ek,D∗).
(b) [|R e1 . . . ek |]Dη =def {ok}, if ([|e1|]Dη, . . . , [|ek|]Dη) = (V1η

∗, . . . , Vkη∗)
for a given substitution η∗ ∈ SubstDC,⊥,F, and there exists a tuple
(V1, . . . , Vk, Vk+1, . . . , Vn) ∈ R, where R ∈ S, and k = nKey(R).
Now, given that every c-term of e is a subterm of a query key, we
have two subcases:

(b.1) every c-term of e1, . . . , ek is a subterm of a query key, and, therefore,
by induction hypothesis we have that [|ei |]Dη = [|ei |]D

∗
η

(b.2) ej = tj where tj ∈ cterms(sj) and sj ∈ query key(Q, Ai) for a given
attribute Ai ∈ R (R ∈ S), and we have that [|ej |]Dη = [|ej |]D

∗
η =def

{tjη}

195

Almendros-Jimenez and Becerra-Teron

Therefore, in both cases, we conclude that:
[|R e1 . . . ek |]Dη = [|R e1 . . . ek |]D

∗
η

(iv) if e ≡ Ai e1 . . . ek, where Ai ∈ NonKey(R), then:
(a)

adom(Ai ē,D) =def

⋃
{η∗∈SubstDC,⊥,F,(V1,...,Vk,...,Vi,...,Vn)∈R} Viη

∗

and
adom(Ai ē,D∗) =def

⋃
{η∗∗∈SubstDC∗,⊥,F,(V1,...,Vk,...,Vi,...,Vn)∈R} Viη

∗∗

Now, given that S does not change and is ground, we have that: Vi =
Viη

∗ = Viη
∗∗ and, therefore, we conclude: adom(A e1 . . . ek,D) =

adom(A e1 . . . ek,D∗).
(b) [|A e1 . . . ek |]Dη =def Viη

∗, if ([|e1|]Dη, . . . , [|ek|]Dη) = (V1η
∗, . . . , Vkη∗)

for a given substitution η∗ ∈ SubstDC,⊥,F, and there exists a tu-
ple (V1, . . . , Vk, Vk+1, . . . , Vi, . . . , Vn) ∈ R, where R ∈ S, and i >
nKey(R). Now, given that every c-term of e is a subterm of a query
key, we have two subcases:

(b.1) every c-term of e1, . . . , ek is a subterm of a query key, and thus, by
induction hypothesis, we have that [|ei |]Dη = [|ei |]D

∗
η

(b.2) ej = tj where tj ∈ cterms(s), s ∈ query key(Q, Ai) for a given key
attribute Ai ∈ R (R ∈ S), then we have that [|ej |]Dη = [|ej |]D

∗
η =def

{tjη}
Moreover, given that S does not change and is ground, we have that:
Vi = Viη

∗ = Viη
∗∗ where [|Ai e1 . . . ek |]D

∗
η =def Viη

∗∗ for a given
substitution η∗∗ ∈ SubstDC∗,⊥,F. Therefore, we conclude in both cases
that [|Ai e1 . . . ek |]Dη = [|Ai e1 . . . ek |]D

∗
η.

(v) if e ≡ c(e1, . . . , en) where c ∈ DCn, then:
(a) adom(c(e1, . . . , en),D) =def c

D(adom(e1,D), . . . , adom(en,D))
(b) [|c(e1 , . . . , en)|]Dη =def cD([|e1 |]Dη, . . . , [|en |]Dη)
Now, given that each c-term of e is a subterm of a query key, then each c-
term of e1, . . . , en is a subterm of query key, and thus by induction hypoth-
esis, [|ei |]Dη = [|ei |]D

∗
η and adom(ei,D) = adom(ei,D∗). Now, given that

DC∗ ⊇ DC with c ∈ DC, we can conclude that adom(c(e1, . . . , en),D) =
adom(c(e1, . . . , en),D∗) and
[|c(e1 , . . . , en)|]Dη = [|c(e1 , . . . , en)|]D∗

η.

(vi) if e ≡ f e1 . . . en where f ∈ IF n, then,
(a) adom(f e1 . . . en,D) =def f

D adom(e1,D) . . . adom(en,D)
(b) [|f e1 . . . en |]Dη =def f D [|e1 |]Dη . . . [|en |]Dη
Now, every c-term of e is a subterm of query key, then every c-term of
e1, . . . , en is a subterm of a query key, and thus, by induction hypothesis
and proposition 5.6, then [|ei |]Dη = [|ei |]D

∗
η ⊆ Dom(D) and adom(ei,D) =

adom(ei,D∗) ⊆ Dom(D). Now, given that IF∗ ⊇ IF with f ∈ IF , we
can conclude that adom(f e1 . . . en,D) = adom(f e1 . . . en,D∗) and
[|f e1 . . . en |]Dη = [|f e1 . . . en |]D

∗
η.

✷

196

Almendros-Jimenez and Becerra-Teron

Theorem 5.9 (Domain Independence of Safe Queries) Every safe query
is domain independent.

Proof. Given an instance D = (S,DC, IF) of a database D = (S,DC, IF)
and a safe query Q, the we can prove:

(a) If D is finite, then Ans(D,Q) is finite

By induction over the number of constraints in Q:

n=1: We analyze the case e1 �� e2; now, we can consider the following
subcases:

• every c-term of e1 and e2 is a subterm of a query key. Given a substitution
η such that x̄η ∈ Ans(D,Q) with x̄ = var(e1) ∪ var(e2) then (D, η) |=Q

e1 �� e2; that is, there exist t1 ∈ [|e1 |]Dη and t2 ∈ [|e2 |]Dη such that t1 ↓ t2
and t1, t2 ∈ adom(e1,D) ∪ adom(e2,D). Now, by (b) of lemma 5.7, we
have that {η |Dom(η) ⊆ var(e1), {⊥} �= [|e1 |]Dη, tη ∈ Dom(D,Ai), t ∈
cterms(s) with s ∈ query key (Q, Ai)} and {η |Dom(η) ⊆ var(e2), {⊥} �=
[|e2 |]Dη, tη ∈ Dom(D,Aj), t ∈ cterms(s) with s ∈ query key(Q, Aj)} are
finite. Moreover, given that every c-term of e1 and e2 is a subterm of a
query key, then the previous condition tη ∈ Dom(D, Ai) holds. Therefore
we can conclude that Ans(D,Q) is finite.

• e1 contains, at least, one non-query key; in this case, given that Q is a safe
query, then every c-term of e2 is a subterm of a query key; now, given that D
is finite, then by (a) of lemma 5.7 we have that adom(e1,D) and adom(e2,D)
are finite. Now, given a substitution η such that x̄η ∈ Ans(D,Q) with
x̄ = var(e1)∪var(e2) then (D, η) |=Q e1 �� e2; that is, there exist t1 ∈ [|e1 |]Dη
and t2 ∈ [|e2 |]Dη such that t1 ↓ t2 and t1, t2 ∈ adom(e1,D) ∪ adom(e2,D).
Now, by (b) of lemma 5.7, we have that {η |Dom(η) ⊆ var(e2), {⊥} �=
[|e2 |]Dη, tη ∈ Dom(D,Ai), t ∈ cterms(s) with s ∈ query key(Q, Ai)} is
finite; given that adom(e1,D) ∪ adom(e2,D) ⊆ Dom(D) is finite and D is
finite, we have that {η|Dom(η) ⊆ var(e1), {⊥} �= [|e1 |]Dη ∩ (adom(e1 ,D) ∪
adom(e2 ,D))} is also finite, and then we can conclude that Ans(D,Q) is
finite

• e2 contains at least, one non-query key, similarly to the previous case

• e1 and e2 contain, at least, a non-query key; it contradicts the safety condi-
tion

n>1: Now, by induction hypothesis, we can reason that if Q∗ = Q−{e1♦q e2},
then Ans(D,Q∗) is finite. Now, reasoning similarly to previous cases, we have
that Ans(D, e1♦q e2) is finite and given that Ans(D,Q) = Ans(D, e1♦q e2)∩
Ans(D,Q∗), we can conclude that Ans(D,Q) is finite.

(b) Given two ground instances D = (S,DC, IF) and D∗ = (S,DC∗, IF∗)
of two databases D = (S,DC, IF) and D∗ = (S,DC∗, IF ∗), such that
D ⊆ D∗, then Ans(D,Q) = Ans(D∗,Q)

197

Almendros-Jimenez and Becerra-Teron

By induction over the number of constraints in Q:

n=1: We analyze the case e1 �� e2; now we can consider the following subcases:

• every c-term of e1 and e2 is a subterm of a query key; then given that S
is ground, DC∗ ⊇ DC and IF∗ ⊇ IF , then by (a) of lemma 5.8, we have
that adom(e1,D) = adom(e1,D∗) and adom(e2,D) = adom(e2,D∗); by (b)
of lemma 5.8, we have that [|e1|]Dη = [|e1|]D

∗
η and [|e2|]Dη = [|e2|]D

∗
η for

every substitution η such that tη ∈ Dom(D, Ai) and tη ∈ Dom(D, Aj), for
every t ∈ cterms(s) with s ∈ query key(Q, Ai), t ∈ cterms(s) with s ∈
query key(Q, Aj). Now, given a substitution η such that x̄η ∈ Ans(D∗,Q)
where x̄ = var(e1) ∪ var(e2) then (D∗, η) |=Q e1 �� e2; that is, there exist
t1 ∈ [|e1|]D

∗
η and t2 ∈ [|e2|]D

∗
η such that t1 ↓ t2 and t1, t2 ∈ adom(e1,D∗) ∪

adom(e2,D∗). Now, given that [|e1|]Dη = [|e1|]D
∗
η, [|e2|]Dη = [|e2|]D

∗
η, adom(e1,

D) = adom(e1,D∗) and adom(e2, D) = adom(e2,D∗), we have that there
exist t1 ∈ [|e1|]Dη and t2 ∈ [|e2|]Dη such that t1 ↓ t2 and t1, t2 ∈ adom(e1,D)∪
adom(e2,D). Therefore, (D, η) |=Q e1 �� e2 and we can conclude that
x̄η ∈ Ans(D,Q).

• e1 contains, at least, one non-query key; in this case, given that Q is a safe
query, the every c-term of e2 is a subterm of a query key; now, given that S is
ground, DC∗ ⊇ DC and IF∗ ⊇ IF , then by (a) of lemma 5.8, we have that
adom(e1,D) = adom(e1,D∗) and adom(e2,D) = adom(e2,D∗); in addition,
by (b) of lemma 5.8, we have that [|e2|]Dη = [|e2|]D

∗
η for every substitution η

such that tη ∈ Dom(D, Ai), for every t ∈ cterms(s), s ∈ query key(Q, Ai).
Now, given a substitution η such that x̄η ∈ Ans(D∗,Q) where x̄ = var(e1)∪
var(e2), then (D∗, η) |=Q e1 �� e2; that is, there exist t1 ∈ [|e1 |]D

∗
η and

t2 ∈ [|e2 |]D
∗
η such that t1 ↓ t2 and t1, t2 ∈ adom(e1,D∗)∪adom(e2,D∗). Now,

given that [|e2|]Dη = [|e2|]D
∗
η, adom(e1, D) = adom(e1,D∗) and adom(e2,

D) = adom(e2,D∗), then there exist t1 ∈ [|e1 |]D
∗
η and t2 ∈ [|e2 |]Dη such

that t1, t2 ∈ adom(e1,D) ∪ adom(e2,D). Therefore, t1 ∈ [|e1 |]D
∗
η and t1 ∈

CTermDC,F(V) and, in addition, e1 ∈ TermD(V). Now, given that DC∗ ⊇
DC and IF∗ ⊇ IF then t1 ∈ [|e1 |]Dη and, therefore, (D, η) |=Q e1 �� e2,
concluding that x̄η ∈ Ans(D,Q)

• e2 contains, at least, a non-query key; similarly to the previous case

• e1 and e2 contain non-query keys; it contradicts the safety condition

n>1: By the safety condition: there exists, at least, one constraint e1♦q e2,
such that every c-term of e1 (or e2) is a subterm of a query key. Now,
by induction hypothesis, we can reason that Q∗ = Q − {e1 ♦q e2} satis-
fies that Ans(D,Q∗) = Ans(D∗,Q∗). Now, reasoning similarly to the pre-
vious cases, we have that Ans(D, e1 ♦q e2) = Ans(D∗, e1 ♦q e2) and, there-
fore, we can conclude that Ans(D,Q) = Ans(D, e1 ♦q e2) ∩ Ans(D,Q∗) =
Ans(D∗, e1 ♦q e2) ∩ Ans(D∗,Q∗) = Ans(D∗,Q) ✷

Theorem 5.10 (Domain Independence of Calculus Formulas) Safe cal-
culus formulas are domain independent.

198

Almendros-Jimenez and Becerra-Teron

Proof. Consequence of theorem 4.7 and theorem 5.9. ✷

6 Least Induced Database

Up to now, we have considered schema definitions, and we have informally
shown how instances can be obtained from a set of conditional rewriting rules.
However, in this section, we will provide a formal definition, by means of a
fix point operator, which computes the least database induced satisfying a set
of rules. The fix point operator can be adopted as operational semantics (by
means of a program transformation based on magic-sets, such as the pre-
sented one in [5]) for a deductive database language based on functional logic
programming.

With this aim, firstly, we define the database instances which satisfy a given
set of rules. Secondly, we present an approximation ordering over databases
induced from the ordering � over sets of c-terms. Finally, we propose a fix
point operator, showing that the database instance computed by the proposed
fix point operator is the least one, which satisfies the set of rules.

Definition 6.1 [Instance Models] A database instance D satisfies a rule H t̄
:= r ⇐ C, iff

(i) every θ such that (D, θ) |=Q C , verifies [|H t̄ |]Dθ ⊇ [|r |]Dθ
(ii) every θ such that for some li ∈ [|si |]Dθ li �= ti, i ∈ {1, . . . , n}, then

F ∈ [|H s̄ |]Dθ
(iii) every θ such that (D, θ) �|=Q C, verifies F ∈ [|H t̄ |]Dθ

This definition states that the right-hand sides (r) of the rules should be
approximations to the values of the left-hand sides (H(t̄)). Additionally, H(t̄)
represents F, whenever neither the terms t̄ are syntactically equal to the head
of a rule, nor the conditions of a rule are satisfied. A database instance D
satisfies a set of rules RW1, . . . , RWn, iff D satisfies every RWi.

Instances can be also partially ordered as follows.

Definition 6.2 [Approximation Ordering over Databases] Given a database
D = (S,DC, IF) and two instancesD = (S,DC, IF) andD∗ = (S∗,DC, IF∗),
then D � D∗, if:

(i) Vi � V ∗
i for each k + 1 ≤ i ≤ n, (V1, . . . , Vk, Vk+1, . . . , Vn) ∈ R and

(V1, . . . , Vk, V
∗
k+1, . . . , V

∗
n) ∈ R∗, where R ∈ S and R∗ ∈ S∗, are relation

instances of R ∈ S and k = nKey(R); and

(ii) fD(t1, . . . , tn) � fD
∗
(t1, . . . , tn) for each t1, . . . , tn ∈ DC, fD ∈ IF and

fD
∗ ∈ IF∗.

In particular, the bottom database has an empty set of tuples and each
interpreted function is undefined.

199

Almendros-Jimenez and Becerra-Teron

In particular, given a set of database instances DS of a database schema
D, we can consider D�DS = (S�DS ,DC�DS , IF�DS), where S�DS contains
relation instances R�DS , with tuples

(V1, . . . , Vk, V
�DS
k+1 , . . . , V

�DS
n) where

V �DS
i = ∪R∈S,S∈D,D∈DS,(V1,...,Vk,Vk+1,...,Vn)∈RVi

for each k + 1 ≤ i ≤ n, whenever there exists, at least, a tuple

(V1, . . . , Vk, . . .) ∈ ∪R∈S,S∈D,D∈DSR
Moreover, DC�DS = DC, and f�DS = ∪D∈DSfD, for each f�DS ∈ IF�DS .
With this definition D�DS is the the least upper bound of DS w.r.t. �.

Definition 6.3 [Fix Point Operator] Given an instance A = (SA,DCA, IFA)
of a database schemaD = (S,DC, IF); we define a fix point operator TP(A) =
B = (SB,DCA, IFB) as follows:

(i) For each schema R(A1, . . . , An),k = nKey(R) (V1, . . . , Vk, Vk+1, . . . , Vn) ∈
RB, RB ∈ SB, iff

ok ∈ TP(A, R)(V1, . . . , Vk)
and for every i ≥ nKey(R) + 1, Vi = TP(A, Ai)(V1, . . . , Vk)

(ii) For each f ∈ IF and t1, . . . , tn ∈ CTermDC,⊥,F(V), fB ∈ IFB iff

fB(t1, . . . , tn) = TP(A, f)(t1, . . . , tn)

where given a symbolH ∈ DS(D) and s1, . . . sn ∈ CTermDC,⊥,F(V), we define:

TP(D, H)(s1, . . . , sn) =def { t | if there exist H t̄ := r ⇐ C and θ,

such that si ∈ [|ti|]Dθ, (D, θ) |=Q C and t ∈ [|r|]Dθ }
∪ { F | if there exists H t̄ := r ⇐ C, such that

for some i ∈ {1, . . . , n}, si �= ti}
∪ { F | if there exist H t̄ := r ⇐ C and θ,

such that si ∈ [|ti|]Dθ and (D, θ) �|=Q C}
∪ { ⊥ | otherwise}

Starting from the bottom instance, then the fix point operator computes
a chain of database instances A � A′ � A′′, . . . such that the fix point is the
least database instance satisfying a set of conditional rewriting rules. The
following theorem will prove this result.

Theorem 6.4 (Least Induced Database)

(i) The fix point operator TP has a least fix point L = Dω where D0 is the
bottom instance and Dk+1 = TP(Dk)

(ii) For each safe query Q and θ: (L, θ) |=Q Q iff (D, θ) |=Q Q for each D
satisfying the set of rules.

200

Almendros-Jimenez and Becerra-Teron

Proof.

(i) Firstly we have to prove that:
(a) If D � D′ then [|e|]Dθ � [|e|]D′

θ and adom(e,D) � adom(e,D′)
(b) If DS is a directed set then [|e|]�DSθ � /D∈DS [|e|]Dθ and adom(e,/DS)
� /D∈DSadom(e,D)

We analyze R e1, . . . , ek and Ai e1, . . . , ek from the cases of the denota-
tion, and for the active domain, it is analogous:
(1) e ≡ R e1, . . . , ek:
(a) We have the case of [|R e1 . . . ek |]Dθ = {ok}, if there exists a

tuple (V1, . . . , Vk, Vk+1, . . . , Vn) ∈ R, and ψ ∈ SubstDC,⊥,F, such
that ([|e1|]Dθ, . . . , [|ek|]Dθ) = (V1ψ, . . . , Vkψ); where R ∈ S, k =
nKey(R). By definition of �, then (V1, . . . , Vk, V

′
k+1, . . . , V

′
n) ∈ R′,

where R′ ∈ S ′, D′ = (S ′,DC ′, IF ′), and by induction hypothesis
Viψ = [|ei|]Dθ � [|ei|]D

′
θ and given that Viψ ∈ CTermDC,F then

[|ei|]D
′
θ = Viψ, and therefore [|R e1 . . . ek |]D

′
θ = {ok}. Analogously

for the cases of F and ⊥.
(b) By definition S�D contains R�DS , with tuples (V1, . . . , Vk, V

�DS
k+1 , . . . ,

V �DS
n), where V �DS

i = ∪R∈S,S∈D,D∈DS,(V1,...,Vk,Vk+1,...,Vn)∈RVi for each
k+1 ≤ i ≤ n, whenever there exists, at least, a tuple (V1, . . . , Vk, . . .) ∈
∪R∈S,S∈D,D∈DSR. By induction hypothesis [|ei |]�DSθ � /D∈DS [|ei |]Dθ,
1 ≤ i ≤ k. On the other hand, [|R e1 . . . ek |]�DSθ = {ok} if
there exists [|ei |]�DSθ = Viψ. By induction hypothesis there exists
Di ∈ DS such that Viψ � [|ei |]Diθ. Given that Viψ ∈ CTermDC,F,
then [|ei |]Diθ = Viψ. Given that DS is a directed set, then there ex-
ists D, such that Di � D 1 ≤ i ≤ k, and [|ei |]Dθ = Viψ. Therefore
ok ∈ /D∈DS [|R e1 . . . ek |]D.

(2) Ai e1, . . . , ek:
(a) We have the case of [|Ai e1 . . . ek |]Dθ = Viψ, if there exists a

tuple (V1, . . . , Vk, Vk+1, . . . , Vi, . . . , Vn) ∈ R, and ψ ∈ SubstDC,⊥,F,
such that ([|e1|]Dθ, . . . , [|ek|]Dθ) = (V1ψ, . . . , Vkψ); where R ∈ S, k =
nKey(R), Ai ∈ NonKey(R). By definition of �, then (V1, . . . , Vk,
V ′
k+1, . . . , V

′
n) ∈ R′, where Vi � V ′

i , R′ ∈ S ′, D′ = (S ′,DC ′, IF ′)
and by induction hypothesis Viψ = [|ei|]Dθ � [|ei|]D

′
θ, and given that

Viψ ∈ CTermDC,F then [|ei|]D
′
θ = Viψ and therefore [|Ai e1 . . . ek

|]Dθ = Viψ � [|Ai e1 . . . ek |]D
′
θ = V ′

i ψ. Analogously for the cases of
F and ⊥.

(b) By definition, S�D contains R�DS , with tuples (V1, . . . , Vk, V
�DS
k+1 , . . . ,

V �DS
n), where V �DS

i = ∪R∈S,S∈D,D∈DS,(V1,...,Vk,Vk+1,...,Vn)∈RVi for each
k+1 ≤ i ≤ n whenever there exists, at least, a tuple (V1, . . . , Vk, . . .) ∈
∪R∈S,S∈D,D∈DSR. On the other hand, [|Ai e1 . . . ek |]�DS θ = V �DS

i ψ
if there exists [|ei |]�DSθ = Viψ. By induction hypothesis there exists
Di ∈ DS such that Viψ � [|ei |]Diθ. Given that Viψ ∈ CTermDC,F then
[|ei |]Diθ = Viψ. In addition, there exists D0 such that [|Ai e1 . . . ek |]D0 θ
= V �DS

i ψ. Given that DS is a directed set, then there exists D, such

201

Almendros-Jimenez and Becerra-Teron

that Di � D, i = 0, . . . , k and [|ei |]Dθ = Viψ, and [|Ai e1 . . . ek |]Dθ =
V �DS
i ψ. Therefore [|Ai e1 . . . ek |]�DS � /D∈DS [|Ai e1 . . . ek |]D.

In addition, we have to prove that, given a directed set DS: (/DS, θ) |=Q

Q, then there exists D ∈ DS such that (D, θ) |=Q Q.
It is enough to prove if it holds for each constraint. It is easy generalize
the result for a set of constraints. We analyze the case of e �� e′:
Suppose (/DS, θ) |=Q e �� e

′ then there exist t ∈ [|e|]�DSθ and t′ ∈ [|e|]�DSθ
such that t ↓ t′, and t, t′ ∈ adom(e,/DS) ∪ adom(e′,/DS). By the
previous result, there exists D1 such that t ∈ [|e|]D1 , and there exists D2

such that t′ ∈ [|e ′|]D2 ; and in addition, there exist D3 and D4 such that
t, t′ ∈ adom(e,D3) ∪ adom(e′,D4). Given that DS is a directed set, then
there exists D ∈ DS such that Di � D, and by the previous result, then
(D, θ) |= e �� e′.
Finally, we have to prove that TP is continuous as is defined.
• TP is monotonic:

Given D and D′ such that D � D′ then D |=Q Q implies D′ |=Q Q, by
the previous result. In addition, by the previous result [|e|]Dη � [|e|]D′

η
for every e and η. Therefore TP(D) � TP(D′).

• TP is continuous:
It means that for every directed set DS then TP(/DS) � /{TP(D)|D ∈
DS}. It follows from the previous results given that each rule instance
applicable to obtain TP(/DS, H)(s1, . . . , sn) is also applicable to obtain
/D∈DSTP(D, H)(s1, . . . , sn), which is equal to TP(/D∈DSD, H)(s1, . . . , sn).

(ii) It is enough to observe that a database D satisfies a set of rules iff
TP(D) � D. Therefore L satisfies the set of rules. Now, given Q such
that (L, θ) |=Q Q then, by previous results, there exists Di such that
(Di, θ) |=Q Q. Supposing D satisfying the set of rules then Di � D and
therefore, by previous results, D |=Q Q.

✷

7 Conclusions and Future Work

In this paper, we have studied how to express queries by means of an (ex-
tended) relational calculus in a functional logic language integrating databases.
We have proved suitable properties for such language, which are summarized
in the domain independence property. As future work, we propose two main
lines of research: the study of an extension of our relation calculus to be used,
also, as data definition language, and the implementation of the language.

References

[1] Abiteboul, S. and C. Beeri, The Power of Languages for the Manipulation of
Complex Values, The VLDB Journal 4 (1995), pp. 727–794.

202

Almendros-Jimenez and Becerra-Teron

[2] Abiteboul, S., R. Hull and V. Vianu, “Foundations of Databases,” Addison-
Wesley, 1995.

[3] Almendros-Jiménez, J. M. and A. Becerra-Terón, A Framework for Goal-
Directed Bottom-Up Evaluation of Functional Logic Programs, in: Proc. of
International Symposium on Functional and Logic Programming, FLOPS,
LNCS 2024 (2001), pp. 153–169.

[4] Almendros-Jiménez, J. M. and A. Becerra-Terón, A Relational Algebra for
Functional Logic Deductive Databases, in: Procs. of Perspectives of System
Informatics, PSI, LNCS 2890 (2003), pp. 494–508.

[5] Almendros-Jiménez, J. M., A. Becerra-Terón and J. Sánchez-Hernández, A
Computational Model for Funtional Logic Deductive Databases, in: Proc. of
International Conference on Logic Programming, ICLP, LNCS 2237 (2001),
pp. 331–347.

[6] Benedikt, M. and L. Libkin, “Constraint Databases,” Springer, 2000 pp. 109–
129.

[7] Buneman, P., S. A. Naqvi, V. Tannen and L. Wong, Principles of Programming
with Complex Objects and Collection Types, Theoretical Computer Science,
TCS 149 (1995), pp. 3–48.

[8] Codd, E. F., A Relational Model of Data for Large Shared Data Banks,
Communications of the ACM, CACM 13 (1970), pp. 377–387.

[9] Codd, E. F., Relational Completeness of Data Base Sublanguages, in: R. Rustin
(ed.), Database Systems (1972), pp. 65–98.

[10] González-Moreno, J. C., M. T. Hortalá-González, F. J. López-Fraguas and
M. Rodŕıguez-Artalejo, An Approach to Declarative Programming Based on a
Rewriting Logic, Journal of Logic Programming, JLP 1 (1999), pp. 47–87.

[11] Hanus, M., The Integration of Functions into Logic Programming: From Theory
to Practice, Journal of Logic Programming, JLP 19,20 (1994), pp. 583–628.

[12] Hanus, M., Curry: An Integrated Functional Logic Language, Version 0.8,
Technical report, University of Kiel, Germany (2003).

[13] Hull, R. and J. Su, Deductive Query Language for Recursively Typed Complex
Objects, Journal of Logic Programming, JLP 35 (1998), pp. 231–261.

[14] Kanellakis, P. and D. Goldin, Constraint Query Algebras, Constraints 1 (1996),
pp. 45–83.

[15] Kanellakis, P., G. Kuper and P. Revesz, Constraint Query Languages, Journal
of Computer and System Sciences, JCSS 51 (1995), pp. 26–52.

[16] Kuper, G. M., L. Libkin and J. Paredaens, editors, “Constraint Databases,”
Springer, 2000.

203

Almendros-Jimenez and Becerra-Teron

[17] Libkin, L., A Semantics-based Approach to Design of Query Languages for
Partial Information, in: Proc. of Semantics in Databases, LNCS 1358 (1995),
pp. 170–208.

[18] Liu, M., Deductive Database Languages: Problems and Solutions, ACM
Computing Surveys 31 (1999), pp. 27–62.

[19] López-Fraguas, F. J. and J. Sánchez-Hernández, T OY: A Multiparadigm
Declarative System, in: Procs. of Conference on Rewriting Techniques and
Applications, RTA, LNCS 1631 (1999), pp. 244–247.

[20] López-Hernández, F. J. and J. Sánchez-Hernández, Proving Failure in
Functional Logic Programs, in: Proc. of the International Conference on
Computational Logi, CL, LNCS 1861 (2000), pp. 179–193.

[21] Moreno-Navarro, J. J. and M. Rodŕıguez-Artalejo, Logic Programming
with Functions and Predicates: The Language BABEL, Journal of Logic
Programming, JLP 12 (1992), pp. 191–223.

[22] Revesz, P. Z., Safe Query Languages for Constraint Databases, ACM
Transactions on Database Systems, TODS 23 (1998), pp. 58–99.

[23] Shmueli, O., S. Tsur and C. Zaniolo, Compilation of Set Terms in the Logic
Data Language (LDL)., Journal of Logic Programming, JLP 12 (1992), pp. 89–
119.

204

