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The aim of this paper is to analyze a little known aspect of Pietro Mengoli's (1625-1686) 
mathematical activity: the difficulties he faced in trying to solve some problems in Diophan- 
tine analysis suggested by J. Ozanam. Mengoli's recently published correspondence reveals 
how he cherished his prestige as a scholar. At the same time, however, it also shows that 
his insufficient familiarity with algebraic methods prevented him, as well as other Italian 
mathematicians of his time, from solving the so-called "French" problems. Quite different 
was the approach used for the same problems by Leibniz, who, although likewise partially 
unsuccessful, demonstrated a deeper mathematical insight which led him to look for general 
algebraic methods. © 1994 Academic Press. Inc. 

Le but de ce papier est l'analyse d'un aspect peu connu de l'activit6 de Pietro Mengoli 
(1625-1686). Plus pr6cis6ment, nous nous occuperons des difficult6s rencontr6es par ce 
math6maticien bolonais pour r6soudre quelques probl~mes d'analyse diophantine propos6s 
parJ. Ozanam. La correspondance de Mengoli derni~rement publi6e nous pr6sente l'occasion 
d'illustrer comment Mengoli tenait ~ d6fendre son prestige de savant; mais, en m~me temps, 
elle r~v~le que les mdthodes alg6briques utiles ~ ce but ne lui ~taient pas famili~res. Cela 
lui emp6chera de r6soudre les probl~mes "franqais." L'approche et la sensibilit6 math6ma- 
tique de Leibniz/i l'6gard des m6mes probl~mes 6taient diff6rentes, quoique il n'efit que 
du succ~s partiel, © 1994 Academic Press, Inc. 

In questo articolo si esamina un aspetto poco noto dell'attivith matematica di Pietro 
Mengoli (1625-1686), cio~ le sue difficolt~ a risolvere alcuni problemi diofantei proposti da 
Ozanam. La recente pubblicazione della corrispondenza mengoliana offre qualche spunto 
relativo al suo rammarico per 1o scacco subito e chiarisce a nostro parere la scarsa familiarith 
che i matematici italiani del periodo avevano con i metodi algebrici. Nelle conclusioni si 
sottolinea la diversa sensibilit~ matematica di Leibniz di fronte a questi problemi e la sua 
maggiore attenzione per la ricerca di metodi generali di soluzione, sebbene anch'egli abbia 
ripetutamente tentato di risolvere quei problemi. © 1994 Academic Press, Inc. 
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1. I N T R O D U C T I O N  

P i e t r o  M e n g o l i  (1625-1686)  s t u d i e d  in B o l o g n a  w i t h  B o n a v e n t u r a  C a v a l i e r i ,  

w h o m  he  s u c c e e d e d  in t h e  c h a i r  o f  m a t h e m a t i c s .  H e  t o o k  a d e g r e e  in p h i l o s o p h y  

in 1650 a n d  a n o t h e r  in b o t h  c iv i l  a n d  c a n o n  l a w  in 1653, a n d  he  w a s  in a d d i t i o n  

o r d a i n e d  i n t o  t h e  p r i e s t h o o d .  F r o m  1660 un t i l  h is  d e a t h  he  s e r v e d  t h e  p a r i s h  o f  

S a n t a  M a r i a  M a d d a l e n a  in B o l o g n a .  

W e  c a n  c o n v e n i e n t l y  d i v i d e  M e n g o l i ' s  s c i en t i f i c  a c t i v i t y  in to  t w o  m a i n  p e r i o d s .  

D u r i n g  t h e  f irs t  p e r i o d ,  f r o m  1649 to  1659, he  w o r k e d ,  o f t e n  w i t h  o r ig ina l  i n s igh t ,  
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at the development of some themes originated by the Galilean school (such as 
sums of infinite series and the logical arrangement of the concepts of limit and 
definite integral). In the second period, from 1670 to 1682, which began after a 
silence of 10 years, Mengoli was more attentive to what he felt were the duties and 
responsibilities of a Catholic intellectual, especially with respect to the relationship 
between faith and reason. 

Mengoli's works enjoyed wide circulation in the 17th century and were known 
to Collins, Wallis, and Leibniz, although they were soon forgotten because they 
were set out in a rather obscure Latin (especially those of his second period). 

The so-called six-square problem was very famous among the mathematicians 
of the 17th and 18th centuries (among them Leibniz, Gregory, Landen, and above 
all Euler) and its history is well known [Dickson 1920, 443-447; Cassinet 1987; 
Hofmann 1958, 1969]. 

In this paper we focus on the contributions to this problem made by Mengoli. Our 
work has been motivated by the fact that, notwithstanding the recent publication of 
Mengoli's correspondence [Baroncini & Cavazza 1986, 41-59], one does not find 
a satisfactory analysis of this subject in the existing literature. This correspondence 
is rich in many themes, ranging from Mengoli's isolation in his Bolognese environ- 
ment to the mathematical disputes that interested the Italian mathematical commu- 
nity. Mengoli shares with the Italian mathematicians of his time an inability to 
undergo a deep renewal or to escape from the provincial isolation into which 
they were falling. Both with the six-square problem and the so-called "Dutch 
Problems" the Italian mathematicians encountered severe difficulties. 

We begin by discussing how the Bolognese mathematician Mengoli became 
acquainted with the Diophantine "French" problems (so named by Mengoli him- 
self) proposed by Jacques Ozanam (1640-1616). 

(I) It is known that the f i rs t"French" problem, the so-called six-square problem, 
had been formulated in different ways. In Mengoli's papers it appears in the two 
following equivalent formulations: 

(i) Find three numbers  such that  their  differences are squares,  & the differences of their  
squares  are squares.  [Mengoli 1674a] 

(ii) Find three squares,  such that  the difference of any two of them is a square, & the 
difference of the sides of any two of them is also a square. [Mengoli 1674b] 

In modern notation, denoting the desired numbers by x, y, and z, this problem 
requires that the following relations be satisfied: 

x - y = [] X 2 _ y 2  = [] 

X -- Z = [ ]  X 2 -- Z 2 = [ ]  

y - z = [] y 2  _ Z 2 -- [] 

(The symbol [] stands for a square number whose value is irrelevant. It may differ 
from one equation to another.) 

In his Theorema Arithmeticum [Mengoli 1674a] Mengoli tried to prove that it 
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was impossible to solve this problem. Mengoli's "Theorema" was reprinted in 
Paris on April 18, 1674 by Ozanam who, in an appendix, indicated the solution 
triplet x = 2,288,168, y = 1,873,432, and z -- 2,399,057 without explaining how 
he had obtained it. This circumstance prompted Mengoli to tackle the problem 
again, trying to solve it by trial and error. As we will indicate below, he published 
the result as a "Problema arithmeticum" [Mengoli 1674b] in the version (ii). 

It is known from several sources [Turnbull 1939, 430-433]; Hofmann 1958; 
Leibniz 1990, 229] that the six-square problem had a third formulation; in a late 
letter to Jacques De Billy dated 9 May 1676 Ozanam wrote: "So, being in doubt, 
I have not written the problem in my Diophantus in the form that I had first 
proposed, but I have proposed it as the problem of finding three numbers such 
that the sums and differences of any two of them are squares. The problem 
proposed in this form seems to me prettier" [1]. 

(II) The second "French"  problem sent to Mengoli bore the title "Mathematicis 
Problema Unicum" [Mengoli 1675, 20 (page not numbered), Proposition 52] and 
had the following formulation: "Find three squares, such that their sum is a square; 
& the sum of their squares is a squared square" [2]. On the page mentioned above, 
Mengoli describes his unsuccessful attempts to find the sought squares, using 
successive powers of 2, 3, and 5. Curiously enough he ends up with three numbers 
(60, 4, and 105) which do not satisfy the problem at hand but rather another 
problem quoted in a letter by Leibniz to Oldenburg on 16 October 1674; Leibniz 
says that Ozanam had posed this problem some time after having suggested the 
six-square problem. Both in the quoted letter and in Leibniz's solution [Leibniz 
1990, 270 ff.] we find the problem formulated in the following manner: "Find three 
numbers such that their sum is a square; & the sum of their squares is a squared 
square." Leibniz, after some trials, found the solution triplet 64, 152, and 409 
using a method which he remarked could be used to solve a third problem [Leibniz 
1990, 322]: "Find three numbers such that the sum of their squares is a square, 
and the sum of their squared squares is a squared square." Leibniz's statement 
is therefore to be interpreted in the sense that every triplet which solves the 
problem in this formulation also solves the Problema Unicum, but the contrary 
does not hold. Leibniz ventured even to state [Leibniz 1990, 328] that his method 
was also useful to solve "other countless problems [like]: Find three numbers, 
such that their sum is any power, i.e., a cube, a squared square, etc., and the 
sum of their squares is a squared square." 

Even though the literature on the Diophantine problems has placed more empha- 
sis on the work of Ozanam than that of De Billy [Cassinet 1987; Hofmann 1958, 
1969], it was the second author who, in our opinion, inspired both of these problems 
and the methods for their solution. Our opinion is based on a brief analysis of De 
Billy's work, above all the unpublished manuscript of De Billy previously quoted, 
entitled Novarum quaestionum libri tres, and is further supported by the corre- 
spondence between the Jesuit priest, Jacques De Billy, and Ozanam. The manu- 
script Novarum quaestionum libri tres was certainly written after 1676, as indi- 
cated in a remark at the end of Question 32 of the second book. It consists of 
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three books. Here Diophantine problems of various types and difficulty are solved 
by the so-called method of "simple, double, and triple equalities." 

In our opinion, this manuscript should be considered as a kind of appendix of 
applications to Diophantus redivivus [De Billy 1670a], where De Billy had dis- 
cussed his method for solving problems in Diophantine analysis. 

While De Billy was collecting and organizing his large collection of Diophantine 
problems, Ozanam was writing his voluminous manuscript on The Six Books o f  
Diophantus '  Arithmetic [Cassinet 1987, 17]. One can assume that they were likely 
to have exchanged their problems, and that Ozanam may have submitted them 
to other European mathematicians in order to find out if others had a general 
method of solution, too. 

In De Billy's manuscript one can find the six-square problem formulated in its 
classical form as well as in other equivalent forms. For the reader interested in 
his method we give an example concerning Question 75 of Book I from De Billy's 
manuscript: 

Find three squares such that the difference of any two of  them is a square. Also find three 
numbers such that the sum of  the difference of  any two of  them is a square. 

For the first part of the problem, De Billy placed the three sought squares in 
the following form (we denote them by m 2, n 2, and p 2 ,  respectively): 

(a) m 2 = x  4 + 8 x  2+ 16 

(b) n 2= 16x 2 (1) 

(C) p 2  + 16X 4 + 8 X  2 + 1. 

O n e  v e r i f i e s  t h a t  m 2 - -  F/2 = [ ] ;  p 2  _ n 2 = [-1. 

Since pZ _ m z = 1 5 ( x  4 _ 1) must be a square, De Billy set 

15(x 4 - 1) = 225, (2) 

which yields x = 2. If this value is substituted into the relations (1), one obtains 
a trivial solution of the problem. Then, in order to find another solution, De Billy 
substituted x with (x - 2) into (2), obtaining again a polynomial of the fourth 
degree, complete and with the constant term equal to a square. He then was able 
to find a solution to the problem by applying the method explained in the Inventum 
N o v u m  [De Billy 1670b, 378] [3]. 

After the substitution, one has from (2) 15x 4 - 120x 3 + 3 6 0 x  2 - 4 8 0 x  + 225. 
Then De Billy set this polynomial equal to a square, that is 

1 5 X  4 - -  120x 3 + 360x 2 - 480x + 225 = []. 

Now, he put [4] 

52 2~2 
[ ] =  1 5 -  1 6 x + i ~ x  ] 

so that, from the equality 
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52 2'~ 2 
15x 4 - 120x 3 + 350x  2 - 480x  + 225 = 15 - 16x + ~--:x l ,  

13 / 

he  o b t a i n e d  

( ,664)  :0 1 5 -  x 4 -  1 2 0 - - - ~  

f r o m  w h i c h ,  a p a r t  f r o m  the  t r iv ia l  s o l u t i o n  x = O, o n e  ge ts  the  v a l u e s  x = 2040/ 

671 so (x  - 2) = 698/671. S u b s t i t u t i n g  th is  l as t  v a l u e  o f  (x - 2) i n to  (1), o n e  ha s  

t he  t h r e e  s q u a r e s  

m 2 = (2,288,168)  2 . n 2 = (2792) 2. p2 _ (2,399,057) 2 
6714 , 6712 , 6714 

F r o m  t h e s e  he  o b t a i n e d  t h e  t h r e e  s o u g h t  s q u a r e s ,  w h i c h  w e  d e n o t e  a l so  m 2, 
n 2, a n d  p2 :  

m 2 = (2,288,168)  2 = 5 ,235 ,712 ,796 ,224  

n 2 = (2792) 2 (671) 2 = (1,873,432)  2 = 3 ,509 ,747,458,624 

p2 = (2,399,057)2 = 5 ,755 ,474 ,489 ,249 .  

T h e s e  v a l u e s  sa t i s fy  the  c o n d i t i o n s  o f  t h e  p r o b l e m ;  ac tua l l y ,  o n e  has  

p2 _ m 2 = 519,761,693,025 = (720,945) 2 

p2 _ n 2 = 2 ,245 ,727 ,030 ,625  = (1,498,575) 2 

m 2 - n 2 = 1 ,725,965,337,600 = (1,313,760) 2. 

T h e  s e c o n d  p a r t  o f  t h e  p r o b l e m  is sa t i s f ied  b y  m,  n ,  a n d  p ; t ha t  is,  

2 ,288,168,  1 ,873,432,  2 ,399,057.  

I n  fac t ,  o n e  has  

m + n = 4 ,687 ,225  = (2165) 2 

m + p = 4 ,272 ,489  = (2067) 2 

n + p = 4 ,161 ,600  = (2040) 2 

m - n = 110,889 = (333) 2 

m - p = 525,625 = (725) 2 

n - p = 414,736 = (644) 2. 

I n  c o n s i d e r i n g  the  m e t h o d  u s e d  b y  De  Bi l ly  to  so lve  all  q u e s t i o n s  o f  th is  k i n d ,  
w e  see  t ha t  e v e r y  p o s s i b l e  a p p r o a c h  to  s o l v i n g  t h e m ,  e x c e p t  for  a f ew  p a r t i c u l a r  
c a s e s ,  u t i l i ze s  in  g e n e r a l  the  m e t h o d  o f  " s i m p l e ,  d o u b l e ,  a n d  t r ip le  e q u a l i t i e s . "  
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In this context, the six-square problem therefore appears as a particular case 
of De Billy's Question 75. 

2. OZANAM'S SOLUTION 

Ozanam published his method for solving the six-square problem several times 
[Leibniz 1990, 230] and also, in a very brief version, in [Ozanam 1691, 90-91]. In 
this work he formulated the six-square problem in the classical form: Find three 
numbers such that the sum and the difference o f  any two o f  them is a square. 

Let u, v, and w indicate the three sought integers; Ozanam wrote them in the 
form 

u = 2abxy 

0 = aZx 2 + b2y 2 

w = b2x 2 + a2y 2 

(a common side of two right-angled triangles) 

(the hypotenuse of the first triangle) 

(the hypotenuse of the second triangle), 

where a,b are indeterminates and x,y auxiliary variables. 
Now, to solve the problem, it is sufficient to produce v + w = [] and v - w --- 

0 ;  that is, 

( a  2 + b 2 ) ( x  2 + y2)  = [ ]  (3) 

( a  2 _ b 2 ) ( x  2 _ y2)  = [-1. (4)  

Thus, it was sufficient to find x and y, and, for this purpose, Ozanam had to 
solve the "doubles 4quations" (3) and (4). He used an algebraic method due to 
Fermat and described by De Billy in his Inventum Novum.  That method required 
that the constant terms (not necessarily the same) of the two equations be squares. 
First, Ozanam substituted the following expression into (3) and (4): 

a 
x - -  z - - ~ y .  

Accordingly, (3) and (4) became 

b2(a 2 + bZ)z 2 - 2ab(a 2 + bE)zy + ( a  2 + b2)2y 2 = [ ]  (5)  

b 2 ( a  2 - bE)z  2 - 2ab(a 2 - bE)zy + ( a  2 - b2)2y 2 --- • .  (6) 

He then multiplied (5) by (a 2 - b2) z and (6) by ( a  2 + b2)  2, obtaining 

b 2 ( a  2 + b Z ) ( a  2 _ b2)2z2 _ 2ab(a 2 + b 2 ) ( a  2 _ bZ)2zy + ( a  4 _ y4)2y2 =[-1 (7)  

bE(a  2 - b E ) ( a  2 + b2)Ez2 - 2ab(a 2 - b E ) ( a  2 + b2)2zy+ ( a  4 - b4)2y 2 = [ ] .  (8)  

He could now apply Fermat's method. The difference between (7) and (8) is 

2 a 4 b 4 z 2 - 2 b 8 z 2 + 4 a b 7 z y - 4 a S b 3 z y = - 2 a b 3 z ( ~ - a 3 b z + 2 a 4 y  - 2b4y). (9) 

The half-sum of the two factors on the right side of (9) is 
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bSz a3bz  ab3z + (a 4 - b4)y.  (10) 
2a 2 

By squar ing (10) and by  compar ing  the result ing express ion  with the first m e m b e r  
o f  (8), he ob ta ined  

z 4ab  8 - 4a 9 
y b 9 -  3aSb + 6a4b 5' 

f rom which  fol lows 

Z = 4ab  8 - 4a 9 

y = b 9 _ 3aSb + 6a4b 5 

a 
x = z - -~y = 3ab  8 - a 9 - 6aSb 4. 

Finally,  the triplet o f  the sought  numbers  is given by 

2 a b x y  = 6a2b 18 + 6al8b z + 24a6b 19 - 92al°b 1° + 24a14b 6 

a 2 y  2 + b2x 2 = 10aZb TM - 24a6b14 + 60al°b l° - 24a14b 6 + 10al8b 2 

a2x 2 + b2y 2 = a2O + 21al6b 14 _ 6a12b 8 _ 6a8blZ + 21aab 16 + b 20. 

In part icular ,  for  a = 1 and b = 2 (or symmetr ica l ly  for  a = 2, b -- 1) one  gets 
the solut ion publ ished in the appendix  to Mengol i ' s  T h e o r e m a :  

1,873,432, 2,399,057, 2,288,168. 

3. M E N G O L I ' S  " T H E O R E M A  A R I T H M E T I C U M "  

It is not possible to find three different numbers [such that] their differences are three 
squares, and the differences of their squares are also three squares. [5] 

Mengol i ' s  p r o o f  o f  this " t h e o r e m "  is d iscussed  in seven  pages,  but  it is false,  
as we  have  a l ready indicated.  

In  a t tempt ing  to p rove  his theorem,  Mengoli  utilized the fol lowing two prop-  
erties:  

(1) W h e n  the difference o f  the squares  o f  two integers x, y is a square ,  then 
(x + y )  m a y  be expressed  as the p roduc t  o f  the pr ime fac tors  o f  the difference 
(x - y )  and ano the r  square.  Mengoli  r easoned  as fol lows:  if 

X 2 _ _  y2 = (X + y ) ( X  -- y )  = [] 

and if, m o r e o v e r ,  x - y = ab (a,  b primes),  then since (x + y )  > (x - y ) ,  one  
mus t  obta in  

x + y = a b c  2. (11) 

The  last s t a t ement  canno t  be true, in general .  In  fact ,  if one takes x = 73, y = 
48, then one  has 
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x 2 _ y 2  = 7 3 2 _ 4 8 2 = 3 0 2 5 = 5 5 2 = 5 2 " 1 1 2  

x - y  = 7 3 - 4 8 = 2 5 = 5 2  

x + y  = 7 3 + 4 8 =  121= 112 

Indeed, this first property employed by Mengoli is correct only for particular 
Pythagorean triplets, such as 

x = 3n2; y = 4n2; z = 5n2. - 

The second property was the following: 
(2) It is always possible to find two integers such that the difference of their 

squares is an even or an odd square. The two integers, as one can easily verify, 
are given respectively by the formulas 

x = b(a2+ 1) 
(12) 

y = b (a  2 -  1), 

where a and b are any integers, and 

x = b(2a 2 + 2 a +  I) 
(13) 

y = 2 a b ( a  + 1), 

where a is any integer and b any odd integer. Mengoli tried to prove that if the 
difference of the squares of two integers is a square (even or odd), then the two 
integers can be expressed, respectively, by formulas (12) and (13). 

This assertion is, unfortunately, also incorrect, and invalidates the final part of 
the " p r o o f "  of Mengoli 's theorem. 

A counterexample is provided by the same values, x = 73 and y = 48, considered 
above. 

Since one has 

732 - 482 = 3025 = 552, 

73 and 48 ought to be expressed by (13); i.e., 

73 = b(2a 2 + 2 a +  1) 
(14) 

48 = 2 a b ( a  + 1) 

(where a is any integer and b any odd integer). But, as is easily verified, the 
system (14) is unsolvable. 

Making use of the above properties, Mengoli stated his proof of the theorem 
according to the following reductio ad absurdum argument. 

Assuming that it is possible to find the three sought numbers, they could be 
relatively prime or not. First, Mengoli considered the case in which they are 
relatively prime (otherwise they would be divisible by their greatest common 
divisor). 

If  a, b, c are relatively prime, they cannot all be even, so one of them must be 
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odd. But it is impossible that all three of them are odd [6], so that only one of  
them is odd and the other  two are even. Note that Mengoli wanted to emphasize 
that it is not possible for a to be an even integer. 

Le t  the three numbers be taken, for example, so that a is odd, and b and c are 
even. 

Mengoli considered the couples (a ,b )  and ( b , c ) ,  and proved that it is always 
possible to find a and b in such a way that the relations 

a - b  = [] a 2 - b  z =  [] 

b - c = [] b 2 - c 2 = [] 

are satisfied. In fact, one has 

a = 2e2d z + 2 e d  2 + d  2 
(15) 

b = 2e2d 2 + 2 e d  2, 

which is equivalent to (12), where d 2 and e are replaced respectively by b (odd) 
and a;  moreover  

b = 2 f2g  2 + 2f2 

c = 2f2g 2 - 2f  2, (16) 

which is equivalent to (13), where g and 2f 2 are replaced respectively by a and 
b. Thus,  from (15) and (16), the two express ions  for b are equivalent. Finally, 
Mengoli considered the couple (a, c), proving that one gets the absurd relationship 
a + c = a - c [7]! 

It is clear that the " p r o o f "  is invalidated by the fact that in order to derive (15) 
and (16), Mengoli repeatedly uses the relation 

X/-~x 2 _ y2 = c ( x  - y )  

which follows from (11) and from (x - y)  = a • b, which is, in general, incorrect,  
as we have seen. 

4. M E N G O L I ' S  " P R O B L E M A  A R I T H M E T I C U M "  

Mengoli felt that this incorrect  proof  of his " t h e o r e m "  dealt a serious blow to 
his mathematical  reputation, and this " F r e n c h "  problem continued to plague him 
for some time. He tried to remedy his error in solving the six-square problem, 
and presented this instead as "Problema Ari thmet icum."  The following "Prae-  
monitio ad L e c t o r e m "  [Mengoli 1674b, 3] was placed before the proof, perhaps 
in order  to justify himself by accusing others of  ignorance and arrogance: 

Few are those who understand our reasonings, very many those who do not understand 
them. Among the latter some, being more intelligent, no doubt would understand if only they 
could judge without arrogance, if they could read not superficially and quickly but with 
attention, humility, patience; above all, those who are used to studying mathematics have 
acquired a method of learning: in fact for all of us the great extent of the subject is an 
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indisputable sign of  intelligibility. Those who do not want to understand because they consider 
what  we are saying obscure,  nevertheless hold us responsible for that. In fact they will 
likewise find obscure the words in texts about law or medicine if they have no familiarity 
with them. Moreover,  let them not forget, that they obtained the books from us with very 
little or no change at all. In fact, we did not think we should sell them to commoners ,  because 
only few are able to understand them. For  those who are not able to understand our new 
and so important  endeavours (it being impossible to prevent  some books from reaching their 
hands) and who hoped they could, by mere chance, attracted by the title of  the book, learn 
something about the arithmetic of numbers,  I will try to satisfy them by means of  a little 
appendix of  no little value. 

While Mengoli herein emphasized his mathematical work  in general, his con- 
temptuous tone in the last part of this "Praemoni t io"  betrays his disappointment 
over his earlier incorrect proof of the six-square problem. 

In order to solve this "Problema ari thmeticum," Mengoli first solved the follow- 
ing problem: 

Find four numbers  such that the sum of the squares of  the first two numbers is a square, 
the sum of  the squares of  the third and the fourth numbers is a square, the product of  all 
four is a square, and the ratio of  the first to the second is greater than the ratio of  the third 
to the fourth. 

If we denote the sought four numbers with a, b, c, d, then 

a 2 + b 2 = i }  a c 
C 2 + d 2 wi th~ > d" (17) 

a b c d =  

Mengoli solved this problem by an empirical method working with Pythagorean 
triplets. He began by listing, in two columns, the first two terms of particular 
Pythagorean triplets: 

I II 

3 4 
4 3 
5 12 
6 8 
7 24 
8 15 

(18) 

Then he noted that, in the second column, starting with 4, all other numbers are, 
alternatively, in the ratio of I to 3, 2 to 4, 3 to 5, 4 to 6, etc.; namely 4/x = 1/3 
so that x -- 12; 12/x = 2/4 so that x = 24; 24/x = 3/5 so that x = 40; and so on. 

In the first column, starting with the second term 3, all other numbers are, 
alternatively, in the ratio of 1 to 5, 3 to 7, 5 to 9, 7 to 11, and so on; namely 3/x = 

1/5 so that x = 15; 15/x = 3/7 so that x = 35; and so on. 
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Mengol i  gave,  moreove r ,  some  rules to establish the relat ionships be tween  the 
number s  o f  the first and the second  co lumns .  

If, in the first co lumn,  a n u m b e r  n is odd,  n = 2k + 1, then its co r r e spond ing  
value in the second  co lumn is n '  = (2k) (2k + 2)/2 = 2 k ( k  + 1). 

If, on  the o ther  hand  n is even ,  n = 2k, then its co r respond ing  value in the 
second  co lumn  is 

2k - 2 2k + 2 
n . . . . .  ( k - 1 ) ( k + l ) = k  2 -  1. 

2 2 

and 

Thus  one has 

n 2 + n '2  = (2k + 1) 2 + [2k(k + 1)] 2 = [2k(k + 1) + 1] 2 = (n '  + 1) 2 

n 2 + n '2 = k 4 +2k  2 +1 = (k 2 + 1) 2 = (n'  + 2) 2. 

Actua l ly ,  these " l aws  and ru l e s "  govern ing  the two co lumns  are noth ing  but  
the descr ip t ion  o f  the fo rm o f  the general  terms o f  the two fol lowing kinds o f  
P y t h a g o r e a n  triplets: 

Py t ha go re a n  Triplets 

I I I  
a = 2n + 1 a = 2n 
b = 2 n  2 + 2n b = n 2 -  1 

n c = 2n 2 + 2n + 1 c = n 2 + 1 

1 3 - 4 - 5 

2 5 -  1 2 -  13 4 -  3 -  5 
3 7 -  2 4 -  25 6 -  8 -  10 
4 9 -  4 0 -  41 8 -  1 5 -  17 
5 I1 - 6 0 -  61 1 0 -  2 4 -  26 
6 1 3 -  8 4 -  85 1 2 -  3 5 -  37 
7 1 5 -  1 1 2 -  113 1 4 -  4 8 -  50 
8 1 7 -  1 4 4 -  145 1 6 -  6 3 -  65 
9 1 9 -  1 8 0 -  181 1 8 -  8 0 -  82 

(19) 

At  this s tage,  Mengol i  again rewro te  the two co lumns  (18), factor ing the compos -  
i t e n u m b e r s i n t o p r i m e ~ c t o r s :  

3 2 , 2  
2 , 2  3 
5 2 , 2 , 3  
2 , 3  2 , 2 , 2  
7 2 , 2 , 2 , 3  
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2 , 2 , 2  3,5 
3,3 2 , 2 , 2 , 5  
2,5 2 , 2 , 2 , 3  
11 2 , 2 , 3 , 5  
2 , 2 , 3  5,7 
13 2 , 2 , 3 , 7  
2,7 2 , 2 , 2 , 2 , 3  
3,5 2 , 2 , 2 , 2 , 7  

(20) 

He then asserted that from (20) one can determine, by trial and error, four 
numbers, with no pair of proportional numbers among them, and such that the 
sum of their squares is a square. For instance, from (2) one deduces that four of 
the sought numbers are 112, 15, 35, and 12. In fact, these fulfill the conditions 
posed in problem (17). All numbers proportional to 112, 15, 35, and 12 will also 
solve this problem. Another quartet of numbers solving the problem is 364, 27, 
84 and 13, and likewise all numbers proportional to these. 

Mengoli used these solutions of (17) to solve the "Problema Arithmeticum," 
or six-square problem. By translating Mengoli's rhetorical language and setting 

one has 

so that 

1 ZqZ) 
U = ~ [ ( p 2 t Z + s  - - ( p 2 q Z + s 2 t Z ) ]  

V = u + ( p q - - s t )  2 

W = V + 4 p s t q  

W -- V = 4 p s t q  

W - -  U = ( p q  + s t )  z 

V - -  U = ( p q - -  s t  ) 2 

(21) 

U + V = ( p t - -  s q )  2 

W + U = ( p t  + s q )  2 

W + V = (p2 + S2)(q2 + t2); 

w 2 - v  2 = ( w - v ) ( w + v ) = 4 p s t q ( p  z + s 2 ) ( q  : + t  2)=[]  

w 2 - li 2 = (W -- 12)(W + It) = ( p q  + s t ) Z ( p t  + s q )  2 = [] 

V 2 -- U 2 = ( V - -  U)(V + U) = ( p q - -  s t ) Z ( p t - -  s q )  2 = [~. 

(22) 

Utilizing the numerical solution to (17) given by 

p = 112; s = 15; t = 35; 

and the identities (21), Mengoli obtained 

u = 6,658,419.5 

v = 7,329,180.5 

w = 10,151,580.5, 

from which, by multiplying by 4, one has 

(23) 

q =  12 
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u'  = 26,633,678 

v'  = 29,316,722 

w' = 40,606,322. 

He  produced a second solution by taking 

p = 364; s = 27; t = 84; q = 13, 

f rom which he obtained 

u ' =  1,814,958,658 

v ' =  1,839,243,842 

w' = 2,010,958,658. 

5. C O N C L U S I O N S  

When Ozanam communica ted  a numerical solution of the six-square problem 
as a final remark  on [Mengoli 1674a], Mengoli ' s  pride was deeply hurt. This was 
all the more  so, because  he had jus t  published Arithmetica Realis [Mengoli 1675] 
where  he had corrected his own mistake,  even if by trial and error.  In a letter to 
Marchet t i  on June 2, 1674 he wrote  painfully [8]: 

I am enclosing the true solution of the French Problem: the one I gave previously, wrong 
because of a paralogism used in it, allowed me to understand the true reason behind the 
reaction to it, that is to hurt the reputation of my person, already pursued in France. Hence, 
I have discovered the true purpose behind the inopportune proposal of the precise Problem 
suggested to me by the Frenchman [Ozanam] several times through the years and by different 
means. God forgive him. 

Actually Mengol i ' s  reputat ion in Europe  at that t ime does not warrant  these 
feelings of  persecut ion.  Collins, for instance, in a letter to Newton  of  some years  
before referred to him as " a n  excellent mathematician and music ian"  [9]. The fact  
that Mengoli had a respectable  reputation in the European scientific communi ty  of  
his t ime is confirmed by the at tention paid him in Oldenburg 's  cor respondence ,  
which aroused Leibniz ' s  interest in his work.  In conclusion, it seems there is 
enough evidence  to conclude that  Ozanam ' s  publication of his counterexample  
was not meant  as a blow to Mengol i ' s  reputation.  It  is more likely that Ozanam 
proposed  the " F r e n c h "  problems to Mengoli, as well as to other mathematicians,  
simply to learn to what  extent  algebraic methods were being used in Europe.  

At the time Mengoli tried to solve the six-square problem, only a few European  
mathemat ic ians  were aware of  systematic  t reatments  of  such problems.  Such 
methods were  barely known in Italy, as we can deduce f rom correspondence  
be tween Carlo Renaldini (1615-1698) and the Czechoslovak Jesuit Adam Adamand  
Kochanski ,  both of  whom were interested in Diophantine problems [Renaldini 
1684, 53-58]. In fact, on April 27, 1675, a lmost  a year  after Ozanam' s  communica-  
tion of the numerical  counterexample  in an appendix to the theorem of Mengoli,  
Renaldini, who knew Ozanam ' s  numerical  counterexample ,  sent the Jesuit  mathe-  
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matician a letter concerning this problem and pointing out Mengoli's incorrect 
proof. The answer of Kochanski, full of mistakes, clearly shows that, like Mengoli, 
he relied on empirical methods based on the "Scholia" on Pythagorean triplets 
that Christopher Clavius (1537-1612) added to Proposition 1,47 in his edition of 
Euclid's Elements (1574). Thus it is quite likely that, being almost entirely unaware 
of Fermat's researches, Kochanski also tried to solve the problem by trial and 
error, using certain sequences of Pythagorean triplets. The Jesuit mathematician 
even asked Renaldini to suggest to him"some other way of finding the Pythagorean 
numbers, different from the one suggested by Clavius in the above-mentioned 
place." 

Needless to say, Renaldini was completely unable to satisfy the curiosity of 
Kochanski, and in his answer (January 1675) he referred only to Ozanam's solution 
triplet, adding the following comment: "Here is the solution of that famous Prob- 
lem which, throughout all Europe, has challenged the mathematicians' brains for 
a long time." Promising to send him his solution in the future (which he never 
did), he added: "It  is evident that the capability of the human mind to conceive 
such an extraordinary Problem indicates that it is of a sublime nature; in fact, to 
find numbers like those required by the Problem is certainly not a human endeavor, 
at least until a divine light will shine on it; this, however, would not bring a great 
glory to the Mathematical disciplines." 

In our opinion, the fact that both Leibniz and Mengoli encountered such severe 
difficulties in trying to solve Diophantine problems was due to their lack of a 
general method. At the time when these problems were formulated, De Billy had 
already set out a general algebraic method for solving them, a method that Ozanam 
subsequently learned from the Jesuit priest, as their correspondence reveals. 

Yet there was an essential difference between Leibniz's approach to the six- 
square problem and Mengoli's. Although neither possessed a general algebraic 
method for solving such problems, their respective approaches reveal different 
mathematical sensibilities. 

In Mengoli's case, when he was unable to solve the problem, he tried to prove 
its impossibility. Only when he became aware of Ozanam's numerical counterex- 
ample did he succeed in solving it by trial and error. He never looked for a general 
method of solution nor did he seek Ozanam's advice; in fact, it seems he knew 
nothing at all about the European literature concerning such questions. These 
weaknesses go far to explain the pathetic tone of his "Praemonitio" to the second 
attempt to solve the six-square problem, as well as the answer he gave to Rudolph 
Christian Bodenhausen in response to a problem proposed by him [Baroncini & 
Cavazza 1986, 123]: 

As far as the problem is concerned, Your Excellency will remember that I have already said 
that I do not practice Algebra anymore . . ,  and at my age being over sixty years old it is not 
appropriate for me to seek the company of Apollo and the Muses. 

It seems clear that here he was using his old age as a screen to hide the true 
reason for his refusal to discuss the problem, i.e., his lack of algebraic proficiency. 
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Mengoli's case, in the final period of his mathematical activity, seems to confirm 
Pepe's thesis [Pepe 1982, 271], according to which, in spite of the important work 
of Angeli, Borelli, Mengoli, Viviani, and others, from about 1650 onward, one 
finds frequent signs of decline in Italian mathematics. Whereas algebraic methods 
became important in other European countries, Italian mathematicians began to 
lose contact with the most active centers of European scientific culture. 

Another mathematical challenge, the so-called "Dutch Problems," serves as 
another indicator of the weakness of Italian mathematics at this time. Most of the 
Italian scholars interested in these problems, which concerned the construction 
of triangles satisfying given conditions, used the synthetic geometrical method 
and thereby ran into many difficulties. Mengoli seems to have had no interest in 
the mathematics underlying these "Dutch Problems." Leibniz, on the other hand, 
went well beyond the mere effort of finding particular solutions, and tried to 
develop methods of more general validity [Robinet 1988, 35]; [Gatto & Palladino 
1992]. Indeed, Michelangelo Ricci had good reason to tell the Italian mathemati- 
cians they should stop worrying about the "Dutch Problems," since the scholars 
on the other side of the Alps "who master well the Algebra are able to solve them 
in a short time and with no great effort" [I0]. 

Leibniz's approach to the six-square problem was different from Mengoli's. His 
30 attempted solutions [Leibniz 1990, 229-636], even if unsuccessful, show his 
scientific interest in finding and understanding a general algebraic method in order 
to solve the double and triple equalities. He used the same approach for the 
following problems described in two notes of Ozanam [Leibniz 1990, 334-336]: 

(1) [Find] three numbers in geometric progression such that the sum of their product and 
the product of any two of them is a square. [11] 

(2) [Find] three numbers such that their product is a cube, the sum of their product and 
the square of any one of them is a square, and the sums of any couple of them are third 
powers. [12] 

Regarding the second problem Leibniz remarked that it was "the most difficult 
among those solved by Ozanam." Part of it had already been solved by De Billy 
in his Novarum Quaestionum Libri Tres, where it appears as the 33rd problem 
of Book I. Also, in this case it is interesting to note how Leibniz undertook 
repeated attempts to develop a general method of solution based on the double 
and triple equalities referred to in Ozanam's notes. Leibniz clearly understood 
that the algebraic method of solving the double and triple equalities was an essential 
tool in order to tackle such Diophantine problems. 

NOTES 

1. See the Manuscripts of the National French Library, Latin manuscript 8600, sheet 48 r °. 

2. The Latin text is the following: "Invenire tres quadratos, quorum summa quadratus, & summa 
quadratorum ab ipsis quadrato-quadratus. Parisijs datam." 

3. See Weil [1984, 105-107] for a modem reading of De Billy's and Fermat's method of solving the 
double and triple equalities. 
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4. De Billy's method of  solving a polynomial of  five terms into which the only known term is a 
square was the following. Let the equality be 

a x  4 + b x  3 + cx2 .  + dx + e 2 = [], 

then he puts 

[] = ( e  + dx2e + c - ~ed2/4e2x2~2] = e 2 + dx  + cx  2 + d(4ce28e 4- d2)x3 + (4ce264e6- d2)2 x4 

so that the terms in x, x 2, and the constant term are eliminated. He obtains the rational solution 

8eE[d(4ce 2 - d 2) - 8be 4] 
x = 64ae 6 _ (4ce 2 _ d2)2 

5. The Latin text is: " N o n  est possibile, tres inequales numeros assignare: quorum differentiae, 
tres quadrati, et differentiae quadratorum, tres quadrati ."  

6. To confirm such a statement,  Mengoli proves that a, b, c cannot be odd two by two. Suppose,  
he says, a and b are odd. So, their difference is even. It must be a square; hence it is an even square, 
hence divisible by 4. Therefore,  a - b = 4k 2, hence (a - b)/2 = 2k 2. On the other hand (see the end 
of  Section 2) a and b must have the form 

a = x ( y  2 + 1) 

b = x ( y  2 -  1) 

(for arbitrary x, y), so that 

(a - b)/2 = x  = 2k 2. 

Therefore,  b should be even, against the hypothesis.  

7. Mengoli 's  reasoning is the following: b = 2e2d 2 + 2ed  2 = 2f2g 2 + 2f  2 by (15) and (16). By (15) 
one has a =  2f2g 2 + 2 f  2 + d 2 so that, using the expression for c in (16), one has 

a - c = 4f2 + d z 

a 2 _ c 2 = 1 6 g 2 f  4 + 4 g 2 f 2 d  2 + 4 f 2 d  2 + d 4. 

Now, Mengoli imprudently states that a 2 - -  c 2 = ( a  - -  c )  2, from which the absurd is deduced. 

8. See G. B. Tondini, L e t t e r e  di u om in i  illustri, Macerata 1783, 128-129. The Italian text is the 
following: "M ando  inclusa la vera soluzione del Problema franzese, avendo scoperta con la falsa, che 
mandai ult imamente per  un paralogismo commessovi ,  la verit~ d 'un Problema morale toccante la mia 
persona perseguitata in Francia, per iscreditarmi. Onde ho riconosciuta l ' intenzione dell ' importuna 
inchiesta del Problema secco propostomi dal Franzese pi~ volte in alquanti anni, e per pi~ mezzi. I1 
Sig. Iddio gli perdoni ."  

9. See I. H. W. Turnbull (Ed.) 1959. The C o r r e s p o n d e n c e  o f l .  N e w t o n ,  pp. 32-33. Cambridge. 
The letter dates from 13th July, 1670. 

10. See letter to Alessandro Marchetti  on June 4, 1675, Florence, Bibl. Naz. ,  Ms. Gal. 258, sheet 
140 r. 

1 I. The Latin text is: "Tres  numeri proportionales geometrice, quorum solidus auctus plano duorum 
quorumlibet faciat quadratum."  

12. The Latin text is: "Tres  numeros,  ita ut solidus sub ipsis tribus sit cubus, qui auctus quadrato 
cuiuslibet faciat quadratos, et quorum latera bina sumta faciunt cubum."  
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