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ABSTRACT 

This expository paper establishes the canonical forms under congruence for pairs 

of complex or real symmetric or skew matrices. The treatment is in the spirit of the 

well-known book of Gantmacher on matrix theory, and may be regarded as a 

supplement to Gantmacher’s chapters on pencils of matrices. 

1. INTRODUCTION 

Let matrices A and B have real or complex entries, with A symmetric or 
skew, and B symmetric or skew. There are classical results going back to 
Kronecker pertaining to the simultaneous reduction of A and B to a 
canonical form under a congruence transformation 

A -+ SAS’, B + SBSt 

(the superscript t denotes transposition) when the matrix entries are complex. 
Here S is nonsingular with complex entries. Less classical but equally 
important is the real case, in which A, B, and S have real entries. The 
objective of this paper is to provide a summary of the principal results in 
both the complex and real cases, with proofs. In the real cases the action of 
the law of inertia makes the study somewhat more intricate. 

This is a revised version of a document the author prepared about 1973 
but chose not to publish because of a perception of thin originality. However, 
there were requests for copies of it and invitations to publish it, and it has 
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been cited in the literature, so an audience for it appears to exist, and it is 

therefore made public now. It still is true that no particular originality is 

claimed. In fact, this is an expository contribution, employing as technique 
only an unsophisticated partitioning of matrices. A very extensive bibliogra- 

phy covering many aspects of the study of pencils concludes this paper. 

2. NOTATION 

We assume a general familiarity with the chapter of Gantmacher’s linear 
algebra text [S] on pencils, Chapter 12. We write a pencil as A - pB in 
preference to the A + AB used by Gantmacher. Here A and B are symmet- 

ric or skew symmetric matrices with elements in a base field of characteristic 

not two, and h is an indeterminate over the base field with p = - A. Let ~1 

be a second indeterminate over the base field. 

Set 

-P 

1 . . 
=-4(P) = 1 :1 . . -P ’ 

8 + 1 rows, B columns. 

L 1 J 
This matrix is the transpose of Gantmacher’s 
notation, slightly modified, for the elementary 

L&(h). We use Gantmacher’s 

nilpotent matrix 

H, = 

0 I 

. . u rows and columns. 

1 
0 

1 

The subscript u will be dropped when convenient. The u X u identity matrix 

will be E,, usually written as E. 
The superscripts t and * will respectively denote transposition and 

transposition combined with complex conjugation. We let _&p)* t denote 
the “natural” transpose of J&(p) induced by the symmetry or skew symme- 
try of A, B, defined by requiring 

i 

0 
44 P> = 

CT+1 -4=(P) 

=-4AP)*t 0, I 
to have the term not involving p symmetric or skew according as A is 
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symmetric or skew, and the term in p symmetric or skew according as B is 
symmetric or skew. The symbol 0, here denotes an x X x zero matrix. The 
matrix .&+(p) has 28 + 1 rows and columns, and if B = 0 it becomes the 
1 X 1 zero matrix. We call d8(p) a minimal index block. Script letters will 
generally be used for quantities associated with minimal indices, and avoided 
for quantities associated with roots or elementary divisors. 

A Jordan block belonging to an elementary divisor ((Y - p)” of A - pB, 
where (Y is an element of the base field, is the e X e matrix 

If, however, (Y is infinite, then the Jordan block is 

J,(a, P> = I =E,-PH,, 

-P 
1 

and it belongs to an elementary divisor pe of PA - B. We say that Je(o, p) 
belongs to the root (Y whether (Y is finite or infinite. 

3. MINIMAL INDICES 

The row and column minimal indices of a matrix pencil A - pB with A, 
B symmetric or skew must coincide. For example, if A is symmetric and B 
skew, and x(p) is a nonzero row vector with polynomial entries of least 

possible degree satisfying r(pXA - pB) = 0, then (A - pB)x( - p)” = 0, and 
thus A - pB has a column minimal index equal to its row minimal index, 
namely, the degree of x(p). More generally, let row vectors x,(p) with 
polynomial entries satisfy xi(pXA - pB)= 0, with xi(p) a lowest degree 
vector linearly independent of r,(p), . . . , xi _ ,(p>, for each i. Then (A - 
pB)xi(- p)’ = 0 for column vectors xi(- p>’ satisfying the same indepen- 
dence conditions. Thus the totality of row minimal indices [the degrees of the 
r,(p)] of A - pB coincides with the totality of its column minimal indices. 

The block J&(P) has 6’ as its only row minimal index, E as its only 
column minimal index, and no elementary divisors. On the other hand, a 
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Jordan block J,(cu,p) h as a single elementary divisor and no minimal indices, 

Thus a suitable direct sum of blocks =/&(p> and J,(a, p), for various 8, LY, e, 

will have the same row minimal indices, column minimal indices, roots, and 

elementary divisors belonging to the roots as A - pB has. 

4. CONSTRAINTS ON ELEMENTARY DIVISORS 

Throughout this section A and B will be symmetric or skew matrices 

over an arbitrary algebraically closed field of characteristic not two. We wish 

to deduce properties of the elementary divisors of A - PB when one of the 

matrices is symmetric and the other skew, or when both are skew. The pencil 

A - PB may be singular, that is, det(A - PB) may be the zero polynomial. 

These properties were first noticed by Kronecker [51]. 

Let M - pN be a direct sum of blocks kg(p) belonging to minimal 

indices, and blocks ],(a, p) belonging to finite or infinite roots, such that 

M - pN has the same minimal indices, roots, and elementary divisors as 

A - PB. Of course, M and N will then generally not be symmetric or skew, 

but M - pN will be strictly equivalent to A - PB. This means P(A - pB)Q 
= M - pN for certain nonsingular matrices P, Q with elements in the base 
field. Hence 

A = P-‘MQ-‘, B= P-‘NQ-’ 

We write out the following discussion when A is symmetric and B skew; the 

changes to be made when A is skew and B symmetric, or both are skew, will 

be indicated later. 

Using A’ = A, B’= - B, we get TM = M’Tt, TN = - N’T’, where T = 
QtP-’ is a nonsingular matrix with elements in the base field. Hence 

I”( M - pN) = (M’ + pN’)T’. (1) 

Arrange the diagonal blocks in M - pN so that 

I 
Mm - P NV, 

M-pN= 
Ma - PN, 

M,, - PNO 

1 

I (2) 

Mf - Of 
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where: 

(i) M,, - NV,,, incorporates all blocks A&(p) belonging to minimal 
indices; 

(ii) M, - pNm incorporates all Jordan blocks Jc(m, p) belonging to the 

root m; 
(iii) M, - pN, incorporates all Jordan blocks J,(O, p) belonging to the 

root 0; and 
(iv) MY - pNf incorporates all Jordan blocks belonging to finite nonzero 

roots. 

Let there be s diagonal blocks in M, - ~LV,,,, belonging to minimal indices 

B r, . . . , <,, and let the blocks in M, - p N, and in M, - p No be arranged in 
order of increasing size, the smaller blocks higher up in the block diagonal. 
Suppose there are a total of k blocks in M, - pN,, M, - pN,, Mf - pNf. 

Partition T = [T”“], < I1,L; ( 4 conformally with the block diagonal partition- 
ing just displayed of M - pN; then refine this partitioning to T = 

[Tijll=si, jcs+k conforming to the decomposition of M - pN as a direct sum 
of blocks d&(p) and J,(a,p). Thus 

T” = [TijIl< i,j < s> Tij is(24+1)X(24+1), 

[T12,T13,T141=[TijIlbibs,s<jd,~+k) Tij has 2Ei + 1 rows, 

T2' 

[ 1 T31 =[TijIs<i<s+k,l<j<sT Tij has 2~4 + 1 columns. 

T41 

The number of columns (rows) in a block Tij in the second (third) of these 
formulas is that for the block ],(a, p) in the same block column (row, 
respectively) of M - pN. For the blocks Tii in T,,, introduce a further 
partitioning, 

Tij = 1 G i, j < s, 

where uij is (gi + 1) x (4 + 1) and Xij is &i X 6. Also partition further the 
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blocks Tij in T’2,T’3,T14 and in T”‘,T31,T41, so that 

IGiGs, s<j<s+k, 

Tij= [Uij>qj]> s<i,<s+k, lGj,<s. 

In the first of these two formulas Uij has 4 + 1 rows, and in the second it 
has gj + 1 columns. 

The relation (1) induces relations involving the Tij. 
First, let i, j satisfy 1 ,< i, j < s. From (l), using ML, = M,,, and N,:, = 

- N,,, , we get 

and therefore 

Y.j-q (PI + f = .-$ (P)Vjf. 

Comparing first the p term on each side [noting that p appears in _&(p> + ’ 
as + p], and afterwards the constant temr, we get 

where the symbol 0 denotes either a single row of zeros or a single column of 
zeros. Recursive comparison of the columns on each side of this pair of 
equations, beginning with the first column, yields Vlj = 0, Vji = 0. Thus we 
actually have 

Tij = l<i,j,<s. 

Next, let i and j satisfy 1~ i < s, s < j < s + k. From (11, 

(3) 
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for certain Q, e, 8, and therefore 

Assume first that cy is finite. From the last equation we obtain 

_UijC - tii: 

[ 1 

, 

0 
Uij(aE+H)= :! 7 

[ 1 JS 

yielding 

Recursive comparison of the rows on each side of this equation produces 
Vji = 0, and hence Uij = 0. If, however, (Y is infinite, then 

- [O* Si] =-[:‘I, uij=[;f], 

329 

(the symbol A here denotes deletion of the last column of Uij), and 
recursive comparison of the columns beginning with the first again leads to 
Uij = 0, Vji = 0. Therefore we actually have 

0 
Tij = Wij ’ 

[ 1 lCi<S, s<j<s+k, (4) 

Tij=[Uij>O], s<i<s+k, I<j<s. (5) 

It follows from the partitionings so far obtained that the submatrix 

[xijll~i,j~s of T, comprising the blocks Xi,, is nonsingular. To see this, first 
note that this submatrix is square, having &i + - * * + &$ rows and columns. 
If its columns are dependent, then the columns of T passing through it will 
also be dependent, since outside this submatrix these columns have only zero 
entries [by (3) and (511. 

Now take i > s and j > s. From (1) we obtain 
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where e, f are certain block sizes and (Y, cr’ certain roots. We consider 
several cases. If (Y is infinite and (Y’ finite, from (61 we get 

- TijH = lJ:, Tij = Jf(cd,O)'Tj~. 

Hence Tij = - Jf(cd, O)'TijH. Iterating this equation yields Tij = 0, since H 
is nilpotent. Then also Tji = 0. Thus in the lower right portion of T there is a 
direct sum splitting, blocks associated with root co splitting away from blocks 
associated with finite roots. Next let (Y be zero, or finite but nonzero. Then 
(6) yields 

- Tij = Tj;, TijH= Jf(a',O)tqf, 

and thus 

This yields 

for p=l,2,... . 
nilpotent and Jf( 

For sufficiently great p we deduce Tij = 0 since H is 
(Y’, 0) nonsingular. This proves that a further splitting occurs 

in the lower right portion of T: blocks associated with root zero are split 
away from blocks associated with nonzero roots. 

Thus T actually has the form 

We now consider the blocks Tij contained in T22. From (6) with 
(Y = ff’=m we get 

Tij = q:, - TijH = H'Tj;. 

Thus T22 is symmetric, and its submatrix Tij lies in the kernel of the 
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operator Tij + TijH + H’Tij. Hence Tij has the structure 

Tij=[ : : :]orri_[.: _I. (7) 

Here each cross diagonal (orthogonal to the main diagonal) not meeting the 
lower or right edges is zero, and the remaining cross diagonals are altemat- 
ing, that is, have the form x, - x, x, - x, . . . . 

We now prove the following result, due to Kronecker: 

When A is symmetric and B skew, each elementary divisor of even degree 
belonging to root ~0 occurs with even multiplicity. 

Proof. If this is not the case, we shall prove that Tz2 is singular, and the 
singularity of T2” will lead to the singularity of T, a contradiction. Recall 
that the diagonal blocks in M, - pNW are arranged in order of increasing size; 
thus as one moves downward or to the right in T2”, the blocks Tij become no 
smaller. 

Suppose there exists an elementary divisor pe of fixed even degree e 
belonging to root m occurring with an odd multiplicity r. Consider the blocks 
T.. in T22 having not less than e rows and e columns. These blocks 
cznstitute a lower right section of T22, so that T22 partitions as 

where S comprises all blocks Tij in T 22 having e or more rows and columns. 
All blocks Tij in Q then have, by (7), a zero initial column. Form a new 
matrix 5 by extracting the extreme lower left element from each block Tij in 
S. By the structure (7) of the blocks Tij, this matrix S is itself block 
triangular, the leading block in S being r X r. Because T22 is symmetric, 
with the principal cross diagonal in each Tij of alternating character, and 
using the evenness of the block size e, it follows that the leading r x r 
section in S is skew symmetric. Since r is odd, this leading segment is 
singular, and as S is block triangular, it follows that S is singular. From this 
meager fact we shall deduce the singularity of T. 

We have s? = 0 for some nonzero column vector x’ = [x1,x2,. ..I’. Ex- 
pand x’ to a partitioned vector x, the partitioning of r conforming with the 
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partitioning of S into blocks T,,, by inserting zero components such that the 
elements x1,x2,... lead within each segment of x: 

x=[xr,o ,...) o;x,,o )...) o;...]“. 

Using the structure (7) of the Tij, we get Sx = 0. Also Qr = 0, since the 
initial column is zero in each block Tij in Q. Now expand x to 

by adding initial zero components to form a vector with the same number of 
rows as Tz2. Then T2’l = 0. Now augment 5 to a vector 

with the same number of rows as T. The two zeros here are column vectors 
with the same number of rows as T33 and T44 respectively, and the column 
vector y has the form 

with temporarily unknown row vectors yi,. . . , yS with E,, . . . ,E, components, 
respectively. We wish to choose y,, . . . , y, such that Tz = 0, and this requires 
[see (3) and (4)l that 

x,, 

i: 

+-. x,, 

x,, -* * x,, 

This is because of the structures of the various blocks Tij. Owing to the 
nonsingularity of the matrix [Xij], it is possible to choose yi, . . . , y,. But then 
Tz = 0 with z + 0, implying that T is singular. The desired contradiction has 
been obtained. n 

In the same way we prove that 
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When A is symmetric and B skew, each elementary divisor of odd degree 
belonging to root 0 occurs with even multiplicity. 

Proof. The proof imitates that just given, focusing attention on Ts 

instead of T 22. From (6) with (Y = LY’ = 0, we deduce that the blocks Tij in 
T” satisfy Ti j = - Tj and Tij H = H ‘Tj:. Thus T33 is skew symmetric, and 
each block Tij has the structure shown in (7), the nonzero cross diagonals 
again being alternating. We suppose that an elementary divisor h” of fixed 
odd degree e occurs with an odd multiplicity r. Partition 

T=, p Q 
[ I R S 

where S comprises all blocks Tij in T 33 having e or more rows and columns. 
We form S by extracting the extreme lower left element of each Tij in S. By 
the structure (7) of the blocks Tii, the matrix S is block triangular, there 
being a leading r X r block. The skew symmetry of T33, combined with the 
oddness of e and the alternating character of the principal cross diagonals in 
the Tij, implies that the leading r x r segment of S is skew symmetric, and 
hence singular, since r is odd. The proof now continues almost precisely as 
before to prove that T is singular, a contradiction, n 

We also have: 

When A is symmetric and B skew, the ei&nentay divisors belonging to 
rwnzero finite roots occur in pairs (a - p)“, ((w + p)“. 

To see this, note that (A - PB)~ = A + pB. If (LY - p)” is an elementary 
divisor of A - pB, then ((u + pY is an elementary divisor of A + pB, hence 
of (A - pBY, and therefore also of A - pB. 

The three italicized statements above apply to the elementary divisors of 
A - pB when A is symmetric and B skew. 

Similarly, 

When A is skew and B symmetric, 

6) an elementary divisor for root m of a given odd degree occurs with 
even multiplicity; 

(ii> an elementary divisor for root 0 of a given even degree occurs with 
even multiplicity; and 

(iii) the ebmentuy divisors fm nonzero finite roots occur in pairs ((Y - 
p>“, (a + p)“. 
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We prove this most simply by noting that interchanging A and B causes 
p and p to interchange, thereby causing each root (Y to be replaced with 
o! -‘. Or the proof given above may be imitated. 

Now suppose A and B are both skew. Then (1) is replaced with 
T(M- pN)= -(Mt - pNt)T’. This time we take M - pN in the more 
refined block diagonal form 

M-pN=diag(M,,- pN,,,,M,,- pNa,,Ma2- pNa2,...), 

where M,,, - pN,,, comprises all blocks Ae(p> belonging to minimal indices, 
and Ma, - pN,+ comprises all Jordan blocks Je(ai,p) belonging to root oi, 
with CY~ z cyj if i # j. The possibility that an cxi is 03 or 0 is allowed. Within 
Mai - pNa, take the Jordan blocks in order of increasing size. Partition 
T = [T”“] conformally with the partitioning just displayed of M - pN, then 
refine this partitioning to T = [Tij] where each T”” contains perhaps several 
Tij. We follow the previous argument. For each block Tij in T” we obtain 

the decomposition (3); for each block Tij in any of T”, T13,. . . we obtain the 
decomposition (4); and for each block Tij in any of T”, T3i,. . . we obtain (5). 
For the “lower right” Tij we obtain, in place of (6) 

Ifcu=~‘=~,thisyieldsTij=-T,~.Ifa=w,~’+cO,wegetTij=O,~i=0, 
as before. If (Y and (Y’ are both finite, we obtain first Tij = - T,E, then 

From this last equation we deduce 

Ttj[le(“>O)]“= [Jf(“‘>O)]dT,j, d=O,1,2 ,..., 

and hence 

TijF(Je(a>O)) = [ F(/,-(~‘~O))]fTj 

for any polynomial F(p). If (Y + LY’, we may choose F(p) such that 
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F(],(a, 0)) = 0 and F(Jf(a’, 0)) is nonsingular, yielding Tij = 0. Thus there is 
a splitting of T into blocks associated with distinct roots: 

T= 

T’a T’3 . . . 

T22 

Furthermore, since Tij = - 5: when (Y = (Y’, each of T22,T33,, , . is skew 
symmetric. For each Tij in any of T22,T33,. . . we obtain (7) with the 
difference that the nontrivial cross diagonals are now constant (instead of 
alternating). Imitating the argument used in the symmetric-skew-symmetric 
case for roots m and 0, but now applying it to each root oi whether infinite, 
zero, or finite nonzero, we reach this conclusion: 

When A and B are both skew, the elementary divisors belonging to each 
jxed root occur in pairs (cx - p)“, ((Y - p)” (if (Y z m) M pe, we (if (Y = m). 

The italicized statement in this section for the case when A is symmetric 
and B skew goes back to Kronecker’s 1874 paper [SI]. See the historical 
remarks in Tumbull and Aitken’s book [22, p. 1421. 

5. THE COMPLEX SYMMETRIC AND SKEW CASES 

Let A and B be complex symmetric or skew matrices. Changing slightly 
the use of the symbols M, N from Section 4, construct a canonical matrix 
M - pN as a direct sum of blocks as follows. The symbols m, q 0, (Y with 
subscripts attached will be used to denote blocks of various types belonging 
to minimal indices, root m, root 0, or finite nonzero root (Y, respectively. 

In order to describe the various matrix forms concisely, let 

0 
0 1 

A,= 
1 

. . 
. . 

. . 

0 1 

be e x e with all entries zero except for an all one principal secondary 
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diagonal in Ae and an all one adjacent secondary diagonal in A,, as shown. If 
e is even, let the skew version of Ae be 

and if e is odd, let the skew version of A, be 

in which 

0 0 

1 0 SAh,_, ’ 

is bordered with a row and a column of zeros. 
Now take M - pN to be a direct sum of blocks as follows. 

(a) When A and B are both symmetric: 

(ai) A block m, = J?&(P) belonging to a minimal index 6’ of A - pB. 
(aii) For root 03, belonging to an elementary divisor 

e X e block 

03~ = A, -PA,. 

(am) For a finite root CY (possibly zero), belonging 
divisor ((Y - p)” of A - pB, an e X e block 

(or = (cy - p)Ae + A,. 

(b) Where A is symmetric and B skew: 

ve of pA - B, an 

to an elementary 

(bi) A block m2 = k&(p) belonging to a minimal index B of A - pB. 
(b ii> For root 00, belonging to an elementary divisor pe of PA - B with 

e odd, an e X e block 

00~ = A e -p%, 
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and belonging to an elementary divisor pair $, pe of pA - B with 
e even, a 2e X2e block 

(biii) For root zero, belonging to an elementary divisor p” of A - pB 
with e even, an e X e block 

0, = - pSA, + A,, 

and belonging to an elementary divisor pair pe, pe of A - pB with 
e odd, a 2e X2e block 

0, = (Ye (see below) with cu=O. 

&iv) For a finite nonzero root (Y, belonging to an elementary divisor pair 
(CY-p>“,(a+pje of A-pB, a2eX2e block 

(c) When A is skew and B symmetric: 

(ci> A block m3 = J&(P) belonging to a minimal index B of A - pB. 
(cii> For root 00, belonging to an elementary divisor pe of pA - B with 

e even, an e X e block 

a+ = SA., - PA,, 

and belonging to an elementary divisor pair pe, $ of pA - B with 
e odd, a 2e X2e block 

0 
a$ = A, - PA, 

-4 -PA, 1 0 ’ 
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(ciii) For root zero, belonging to an elementary divisor pe of A - pB 
with e odd, an e x e block 

0, = -pA, + SA,, 

and belonging to an elementary divisor pair pe, pe of A - pB with 
e even, a 2e X2e block 

0, = (~a (see below) with (Y zero. 

(civ) For a finite nonzero root (Y, belonging to an elementary divisor pair 
(a-p)‘,(~~+p)~ofA-pB,a2e~2e block 

0 (a-p)& + 4 

(-a-p)A,-A, I 0 

(d) When A and B are both skew: 

(di) 
(d ii) 

(d iii) 

A block m4 = J&(P) belonging to a minimal index B of A - pB. 

For root 03, belonging to an elementary divisor pair $, pFLe of 
PA-B, a2eX2e block 

0 A, - ~4 
CO6 = 

-A,+P~, I 0 . 

For a finite root (Y (possibly zero), belonging to an elementary 
divisor pair (cy - p)“, ((u - p)’ of A - pB, a 2 e X 2e block 

a4 = 

0 (a - P)A, + 4 

(-“+P)A,-A, 1 0 . 
Although m,, m2, m3, m4 each equal &j(p), in fact they have slightly 

different forms according as A and B are symmetric or skew; see the 
definition of J&(P). 

Let M - pN be constructed as a direct sum of blocks as described above 
such that A - pB and M - pN have the same minimal indices and the same 
sets of roots and elementary divisors. Then M and N are symmetric or skew 
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according as A and B are symmetric or skew, respectively. Furthermore, 
A - pB and M - pN are strictly equivalent, so that 

A-pB=P(M-pN)Q 

for certain nonsingular constant matrices P, Q. Passing from A - pB to 
Q-“(A - pB)Q-‘, we may assume Q = E. Since A and B are symmetric or 
skew, as are M and N, we obtain MP t = PM, NPt = PN. Thus M( Pt)d = 

PdM, N(P”)d = PdN for d = 0,1,2 ,..., and hence 

for any polynomial F(p). Choose F(p) so that F(P) = P-l/‘. This is always 
possible: see Section 1 of Chapter 5 of Gantmacher [8]. Set R = F(P) = 

P-1/2. Then (M - pN)R’ = R(M - pN) and thus 

R(A-pB)R’=RP(M-pN)Rt=RPR(M-pN)=M-pN. 

This proves most of the following somewhat well-known result. 

THEOREM 1. Let A and B be complex symmetric or skew matrices. Then 

a simultaneous (complex) congruence of A and B exists reducing A - pB to a 

direct sum of types as follows, for values of B, e, (Y uniquely specified by the 
ordered pair of matrices A, B: 

(a) m,,m,,cz, when A and B are both symmetric; 

(b) m2,w2,m3,01,02,02 when A is symmetric and B is skew; 

(c) m3,m4,m5,0,,0,,os when A is skew and B is symmetric; 

(d) m.,, w6, o4 when A and B are both skew. 

The uniqueness assertion follows from the invariance of the minimal 
indices and elementary divisors of a polynomial matrix under strict equiva- 
lence. 

6. THE REAL SYMMETRIC AND SKEW CASES 

Similarities as well as differences in methods and results between the 
complex and real cases will become visible. The new features in the real 
cases arise from two sources: the action of the law of inertia, and the fact that 
the nonreal roots of a real polynomial occur in conjugate pairs. The law of 
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inertia forces certain elementary divisors to have an attached plus or minus 
sign, called the inertial signature, and the conjugacy of nonreal roots induces 
canonical forms like those in the complex case but constructed from 2 x 2 
real blocks. Throughout this section, A and B will be real symmetric or skew 
matrices. 

Evidently the elementary divisors of A - pB belonging to nonreal roots 
occur in complex conjugate pairs of equal degree. This is because the 
invariant factors of A - pB are real polynomials, and the elementary divisors 
are obtained by splitting the invariant factors over the complex number field. 

In the following, o will denote a real number (nonzero unless otherwise 
specified) and p = a + ib will denote a nonreal number, with a, b real, b 
nonzero. 

We form new real matrix blocks as follows. To avoid confusion with the 
blocks introduced in Section 5, we use symbols m’, 001, etc. 

(a) When A and B are both real and symmetric: 

(ai’) For a minimal index 6 of A - pB, a block mi = m,. 
(aii’) For root 03, belonging to an elementary divisor pe of PA - B, an 

e x e block 

w; = &co 
1’ with E= *l. 

(aiii’) For a finite real root (Y (possibly zero), belonging to an elementary 
divisor (cu - p)” of A - pB, an e X e block 

ff’ = Eff 1 l> with .s=&l. 

(aiv’) For a nonreal root B = a + ib, belonging to an elementary divisor 

pair C/3 - p)“, <P - PI of A - pB, a 2e X2e block 

Pi= 

R S 

where R = 
b a-p 

a-p -b I 

R 
R S 1, 

s=O l 
[ 1 10' 
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(b) When A is real and symmetric, and B is real and skew: 

(bi’) For a minimal index ~5’ of A - pB, a block rnk = m2. 
(b ii’) For root 00, belonging to an elementary divisor $ of p A - B with 

e odd, an e x e block 

rn; = em 
2p with ~=fl, 

and belonging to an elementary divisor pair pe, pe of PA - B with 
e even, a 2e x2e block 

mL=m 
3’ 

(biii’) For root zero, belonging to an elementary divisor pe of A - pB 
with e even, an e x e block 

0; = EO,, with ~=fl, 

and belonging to an elementary divisor pair pe, pe of A - pB with 
e odd, a 2e x2e block 

(biv’) for a finite real nonzero root LY, belonging to an elementary divisor 
pair(a-pp)e,(a+p)e of A-pB, a2ex2e block 

a;. = a 2’ 

(bv’) For a nonreal root /3 = a + ib, there are two types according 
as a = 0 0’ a # 0. Belonging to an elementary divisor pair 

@ - p)“,(P - p)” of A - pB with fi = bi purely imaginary, a 
2e X2e block 

R 
R s 

p;=e I 1 . : * , 
. . 

R S 

where e=fl, R- [‘p”’ Tbp], s=[; ;I, 
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and belonging20 an elementary divisor quadruple (p - p)‘, <p - 

PI”, (P + PY, (P + PI” with /3 on neither coordinate axis, a 4e X4e 
block 

[ 

0 
pi= p;(-p) 

Pi(P) 

0 I ’ 
where p;(p) is the matrix j3; displayed above under type (aiv’). 

(c) When A is real and skew, and B is real and symmetric: 

(ci’) For a minimal index B of A - pB, a block rn; = m3. 

(cii’) For root m, belonging to an elementary divisor /_L~ of PA - B with 
e even, an e X e block 

and belonging to an elementary divisor pair p”‘,~’ of PA - B with 
e odd. a 2e X2e block 

(ciii’) For root zero, belonging to an elementary divisor pe of A - pB 
with e odd. an e X e block 

0; = &OR, with E= +l, 

and belonging to an elementary divisor pair pe, pe of A - pB with 
e even, a 2e X2e block 

0; = 0,. 

(civ’) For a finite real nonzero root (Y, belonging to an elementary 
divisor pair (a - p)‘,(cx + p)” of A - pB, a 2e x 2e block 

a’ =cY 3 3’ 

(cv’) For a nonreal root /3 = a + ib, there are two cases according as 
a = 0, a # 0: belonging to an elementary divisor pair (j? - p)“, 
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(d) When 

Cd i’) 
(d ii’) 

(d iii’) 

(d iv’) 

(p - P)” of A - p B with /3 = bi purely imaginary, a 2 e x 2 e block 

where &=+l, 

and belonging to an elementary divisor quadruple (p - p)“, (6 - 

p)“,@ + p>“,@ + PI” with /3 on neither coordinate axis, a 4e X 4e 
block 

p;= O 
[ 

Pi(P) 

-Pi(-PI I O ’ 

where pi(P) is the matrix pi displayed above under type (aiv’). 

A and B are both real and skew: 

For a minimal index B of A - pB, a block rnk = m4. 
For root 03, belonging to an elementary divisor pair Pe,Pe of 
PA-B,a2eX2e block 

For a finite real root (Y (possibly zero), belonging to an elementary 
divisor pair ((Y - ~>“,(a - p)” of A - pB, a 2e X2e block 

For a nonreal root p = a + ib, belonging to an elementary divisor 
quadruple @ - p)“,@ - PI”,@- p)“,(p- p>, a 4e X4e block 

p;= O 
[ 

Pi( P> 

-Pi(P) 1 0 ’ 
where pi(P) is the matrix pi displayed above under type (aiv’). 
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The numerical factors E= fl in types m;,cu;,m~,O;,P4,m~,O~,P~ are the 
inertial signatures. They may be different for different blocks belonging to 

the same root. 

To see that P1’,P8,P&P;,P;,P,$ h ave the claimed elementary divisors, 

argue as foll0WS: Let 

and let U be a unitary matrix for which UDU * = diag(i, - i). In the cases of 
pi, Rj, &, RE, set R, = WA, S, = U*; in the case of /36 set R, = UD, S, = U *A; 
and in the case of /3; set R, = AU, S, = U *. Now put R = 
diag(R,, R ,,..., R,), S = diag(S,, S,, . . ., S,). Then, in all cases, RR,!S has a 
form from which the elementary divisors may be read off after a row and a 
column rearrangement. 

Our objective is to prove the following theorem. 

THEOREM 2. Let A and B be real symmetric or skew matrices. Then a 
simultaneous (real) congruence of A and B exists reducing A - pB to a direct 
sum of types as follows, for values of 8, e, CY, /3, E uniquely specified by the 
ordered pair of matrices A, B: 

(a) Types m;,od,,cui,R; when both A and B are symmetric. 
(b) Types rng,m~,m~,Oi,O;,(y~,p~,pj when A is symmetric and B is skew. 
Cc) Types mj,m:,,m;,O;,O;,ff;,p;,P; when A is skew and B symmetric. 
Cd) Types rn;, m& a;, PA when A and B are both skew. 

Proof. Existence: We imitate, as far as possible, the proof of Theorem 1. 

We use the fact, essentially proved in Chapter I2 of [8], that pencils A - oB 
and A, - pB,, where A, B, A,, B, have elements in 
are strictly equivalent by nonsingular matrices P, Q 
base field, 

an infmite base field, 
with elements in the 

A - PB = J’(A, - PB,K?, 

if and only if the two pencils have the same minimal indices and the same 

elementary divisors. (The elementary divisors may be taken over an exten- 
sion field.) 

Let A and B be symmetric or skew real matrices. Changing again 
slightly the use of the symbols M and N, let M - pN be a direct sum of 
blocks of the types m,, . . .,/I& as described above, deleting however the 
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factors E = + 1 multiplying certain of these blocks. Choose this direct sum 
such that A - pB and M - pN have the same minimal indices and elemen- 
tary divisors. This is possible because the types listed cover all possible 
configurations for the minimal indices and elementary divisors of a pencil 
A - pB when A and I3 are real and symmetric or skew. Then M (or N) will 
be symmetric or skew according as A (or B, respectively) is symmetric or 
skew. Thus we have 

A-pB=P(M-pN)Q 

for certain real nonsingular matrices P, Q. Passing to Q- “(A - pB)Q- ‘, we 
may assume that Q = E. Because A and B are symmetric or skew, as are M 
and N, we get 

PM = MPt, PN = NP’, 

so that P(M - pN>=(M - pN)P’. We now argue by induction on the 
matrix dimensions, considering three cases, only the last of which involves 
the induction hypothesis. Dimension 1 X 1 is covered by the first case. The 
three cases are: 

(i) P has just one distinct real eigenvalue and no nonreal eigenvalues; 
(ii) P has just one distinct pair of conjugate nonreal eigenvalues and no 

real eigenvalues; 
(iii) all other possibilities. 

Case (i): First suppose that the single distinct eigenvalue of P is positive. 
Then P- ’ = F( P>’ for some real polynomial F(p). Indeed, let (p - y)” with 
y > 0 be the characteristic polynomial of P- ‘. By the lemma in Section 9, 

p = Fn(p12 (mod (p-y)“) f or some real polynomial F,(p). Then P-’ = 
F,( P_‘12, and since P- ’ is a polynomial in P, we get P- ’ = F( P>2. The 
proof is now identical with the proof in the complex case. In fact, with 
R = F(P) = P-l”, 

R(A -pB)R”= RP(M-pN)R”= RPR(M-pN) = M-pN. 

In this case we have obtained the desired form with each inertial signature 
&=+l. 
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Now suppose that the single distinct eigenvalue of P is negative. Then 
- P-’ = F( - P)” for a real polynomial F(p). Taking R = F( - P) = 
(- P)-l/‘, we get 

R(A-pB)R’=RP(M-pN)R’=RPR(M-pN)=-(M-pN). 

This produces a factor - 1 multiplying each block in M - pN. We have to 

make a further congruence to remove this factor from the blocks of types 
m;,rn;,rn;,rn&,~~,~~,w~,O~,Oj,~6,~j,~~,P~,p;,p;,p~. All of these blocks, 

except pi, have the form 

0 u 
[ 1 v 0’ 

and on each of these blocks we remove the factor - 1 by the congruence 

As for block pi, let 

as before, and set R = diag( D, D,. . . , D). Then RP;R’ = - /?;. We have now 

obtained the desired form with each inertial signature B = - 1. 
Case (ii): In this case there again exists, as in the first part of case (i) (see 

Section 9), a polynomial F(p) with real coefficients such that P-’ = F( Pj2. 
Set R = F(P). Then the proof is completed as in the first part of case (i). 
Each inertial signature E = + 1. 

Case (iii): Let S be a real nonsingular matrix, and use it to effect a 
similarity of P, 

SPS-‘=diag( PI,...,Pr), 

such that each block Pi has either just one distinct real eigenvalue or just 
one distinct pair of conjugate nonreal eigenvalues, and blocks Pi, Pi with 
i # j have no common eigenvalue. This similarity always exists: for example, 

use the real version of the Jordan canonical form; a block Pi may comprise 
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several Jordan blocks. The possibility r = 1 was covered in cases (i) and (ii). 

Thus r > 1. We obtain 

S(A-pB)St=(SPS-‘)(S(M-pN)St). 

Let P’ = SPS-‘, and set S(M - pN)S’ = M - pt\i. Then M, fi are symmetric 
or skew according as A, B are symmetric or skew, but not necessarily in 
block diagonal form. Since SAS’ = FM, SBS’ = f%f, evidently FM and l% are 
also symmetric or skew. Partition 

From ei’? = Mgt, i% = fit’, we get 

PiMij = Mij P;, PiNij = Nij P;. 

Hence P/Mij = Mij(qtjk for k = 0, 1, . . . , and therefore F(Pi)Mij = 
Mij F( Pj>” for any polynomial F(p). As Pi and Pj have no common eigenval- 
ues for i f j, we may choose F(p) such that F( Pi) = 0, F( Pj> is nonsingular. 
But then Mij = 0. Similarly Nij = 0 if i # j. That is, the congruence transfor- 
mation of A - pB by S splits A - pB: 

S(A-pB)St=diag(A,,-pB,,,...,A,,-pB,,), r>l. 

We may apply the induction hypothesis to each of the direct summands 

A,, - pB,,>. . ., A,, - PB,,., and by suitable congruence transformations on 
each obtain diagonal blocks of the desired types. This completes the exis- 
tence part of the proof of Theorem 2. 

7. UNIQUENESS 

We still have to prove the uniqueness of the decomposition of A - pB 
into a direct sum of blocks of the various types described in Section 6. The 
number, size, and roots of the blocks actually present are determined by the 
minimal indices and elementary divisors of A - pB or PA - B. Therefore 
only the uniqueness of the inertial signatures needs to be established. They 
occur only in certain cases: 
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(i) when A and B are both symmetric, for elementary divisors belong- 
ing to infinite or finite real roots; 

(ii) when A is symmetric and B skew, for odd degree elementary 
divisors for root 00, even degree elementary divisors belonging to root 0, and 
elementary divisors belonging to a pair of conjugate purely imaginary roots; 

(iii) when A is skew and B symmetric, for even degree elementary 
divisors belonging to root 00, odd degree elementary divisors belonging to 
root 0, and elementary divisors belonging to a pair of conjugate purely 
imaginary roots; 

(iv) when A and B are both skew, inertial signatures do not occur, so 
this case needs no further study. 

Let A4 - pN be a direct sum of blocks of the various types, as in Section 
6, with [see (213 the blocks belonging to minimal indices placed first on the 
block diagonal, then the blocks belonging to the infinite and finite roots, with 
blocks belonging to the same root placed consecutively in order of increasing 
size, and among the blocks of fixed size for a given root, those with positive 
inertial signatures E placed ahead of those with negative inertial signatures. 
The last constraint is understood to be automatically satisfied for blocks 
without inertial signatures. Let &I - p$ be a like direct sum of blocks, 
differing from M - pN only in that the inertial signatures are possibly 
different, say E’s in place of E’S, but otherwise consisting of the same blocks 
in the same positions. To prove the uniqueness of the inertial signatures, we 
assume that M - pN and fi - pN are congruent, and wish to prove that the 
E’S and b’s are the same. 

We have 

T( M - pN)Tt = h? - pti 

for some nonsingular matrix T with real elements. Hence 

T(M-pN)=(ti-pfi)S, (8) 

where S = T-it. Our first objective is to “cancel away” the minimal indices; 
for this we use the method in Section 4, slightly modified. Suppose that 

where k&(p) denotes a block belonging to a minimal index 8, and 
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~s+lb),...r El,+,(p) are each single blocks of the types described in Section 
6, belonging to infinite or finite roots, with o&p) = f B,(p). Note that a 
block B,(p) belongs to an infinite or finite real root Q, or to a pair p, p of 
nonreal roots, or to a quadruple p, - p, B, - p of nonreal roots. Also note 
that a block associated with a pair of nonreal roots never has a root in 
common with a block associated with a quadruple of nonreal roots. Thus two 
blocks 13,(p),Bj(p> either have no common root or have coincident roots. 

Conforming to the direct sum structure of M - pN, partition 

then partition the lower left Ti j and Si j to conform to the structure of A?~( p) 
as 

Tij=[uij,v,j], Sij'[Yij,Zij], s<i<s+k, l<j<s, 

where vii and Zij have 4 columns. From (8) we obtain Z”,j&&> = Qi(p)Sij 
for j<s<i,andhence 

YjJ~(P)*t=Bi(P)yij> jds<i. (9) 

Write B,(p) = Mi - pN,. Then (9) yields 

* [Yj,O] = NiYij, + [O,Vij] = MiYij. 

When B,(p) belongs to finite roots, Ni is nonsingular and therefore 

[O,vj] = + MiN,-l[V,j,O]. 

Recursive comparison of the columns in this equation, beginning with the 
last, yields yj = 0. If, however, B,(p) belongs to ~0, then Mi is nonsingular, 
and we get 

yielding again Vij - 0. Thus 

T*j = [ uij?"] 1 
j<s<i. (10) 
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Using (lo), we calculate the (i,j) block in T(M - pN)TL, for s < i,j 6 

s+k, to be 

That is, if T =[Tijl,s<i,jcs+k is the lower right block in T, then 

Since the right hand side of (11) has determinant not the zero polynomial, it 
follows that the lower right sections of M - pN and it? - p# are congruent, 
That is, the blocks L&p) belonging to minimal indices have been canceled. 
We may therefore assume from the outset that these blocks are absent, that 
is, s = 0. 

From (8) we now get 

Tii[EBj(p) = &(p)Sij. 

Writing, as above, fii(p)= Mi - pN,, Bji(p) = *(Mj - pNj>, we obtain 

TijNj = _+ NiSij, TijMj = f MiSij. 

If Bi(p), ‘El,(p) both belong to finite roots, then Ni, Nj are both nonsingular, 
and hence 

Note that the roots of 
eigenvalues of 34, Nj- ‘, 
miliar argument, 

Tij(MjNj_‘) = (MihT,-l)~i::j. 

a block iBi(p) = M, - pNi with finite roots are the 
since det B,(p) = det Ni det(MiN,-’ - pE). By a fa- 

TijF(MjNj-‘) = F(MiNi-‘)Tij, 

for any polynomial F(p). Unless Bi(p), ej(pI belong to the same roots, 
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Mi Ni- ’ and Mj Nj: ’ will not have a common eigenvalue, whence Tij = 0 

follows if F(p) is suitably chosen. If, however, B,(p) belongs to m and Bj(p) 
to finite roots, then Mi and Nj are nonsingular, and we get 

~~~ = (N,M;~)T,~(M,N;‘). 

Iterating this equation yields Tir = 0, since NiM,yl is nilpotent when lEt,(p> 
belongs to root ~0. 

Thus T splits: in our uniqueness proof we may assume that a single type 
of block is present. Those types without inertial signatures may henceforth 
be ignored. 

Now let both A and B be symmetric. We give two arguments. First let 
the root (Y be real and finite. With B,(p) = Mi - pN,, MiNiA = aE + Ht, so 

that TiiHt = H’T,,. Thus Tii, because it commutes with the nonderogatory 
matrix.‘Hif, is essentially a pblynomial in Hf, 

Tij = 
[’ 

* 9 
I 

or Tij = 
. . . 1. I> (12) 

. . 

. . . 

and is constant along each diagonal parallel to the main diagonal and zero on 
each such diagonal not meeting both the left hand and bottom edges of Tij. 

Let the inertial signatures belonging to the blocks B,(p), . . . ,B,(p) be 
El’. . . , Ed, respectively, and for the blocks Ql(p) ,..., lBk(p) be 6, ,..., .c~, 
respectively. Assume that the blocks EIi(p) of a given dimension are 
B”, i(P)>. . . , B”(P), with US,(p) if present having strictly fewer rows than 
B,, Jp), and B, + l(p) if present strictly more rows than B,(p). 

From (11) we obtain 

2 T,,N,,T& = 
0 if i# j, 

p=l 
fii if i= j. 

Let i and j lie in the range u < i, j =G 0. Rewrite the left hand sum as 

t T,,N,Tj:, -I- 2 TipN,,Tjp+ 2 T,,,N,,Tj:,. (13) 
p=l p=u+1 p=o+l 

Each term in the first and third parts of this sum has zero for its extreme 
lower left element. whereas the extreme lower left element for the term 
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TipNpT,.k in the second part is tipEptjp, where tip denotes the constant 
element along the main diagonal of the square block T,,. Therefore 

Letting T =[tijIu<i,jGo, we thus have 

Tdiag(s,+l ,..., sc)T’=diag(6,+, ,..., c,). 

Thus diag(.s,,+ ,,..., .s,) and diag(E,+, ,..., Z,) are congruent, with T nonsin- 
gular because each 6,, is nonzero. By the law of inertia, the number of 
positive terms among E,+ ,, . . , E,; is the same as among E” + r, . . , gti. Since 
each ep and each I, is also f 1, and since we agreed that positive inertial 
signatures precede negative ones for each fixed block size, it follows that 
E,+~ ,..., E, and 6,+1 ,..., 8, coincide term by term. 

The argument if (Y = CQ is similar, now using 

(NiM,‘)Tjj = Tij(NjM;‘) 

and NiMi-’ = H1 to deduce the structure (12) for the blocks Tij. We omit the 
similar details, which use (13) with M,, in place of N,, 

An alternative proof is as follows. Let (Y be finite. From T(M - pN)T * = 
ti - p#, we deduce 

T((M-aN)N-‘)T-‘=(A&ati)i+‘. 

Raising to the rth power and multiplying by TNT’ = N, we obtain 

T{(M-aN)N-‘}rNT’={(A?-ai?)~-‘}r~, r=O,1,2 ,.... (14) 

Now (M - aN)N-’ is a nilpotent, in fact a direct sum of nilpotents 
(M, - (rNi)Ni_‘. If this latter bl oc k is ei X e,, then for r = ei - 1, 

((M~-~~vI,)N;~}‘N~= O O 
[ 1 0 Ei (15) 

is entirely zero except for a single element, ei, in the extreme lower right. 
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For r = e, we instead get zero. For any r, the matrix on the left side of (15) 
is symmetric. 

Nowtaker=ek-1.Ife,<e,+,=...=ek,thentheleftsideof(I4) 
has inertia given by E,+ i, . . . , Ed and the right side by 5,+ i, . . . , Ek. Thus 
& “+l=E -“+ ,,..., E~=.C~. Now take r=e,-1. If e,_,<e,=*-0 =e,< 
e ,,+ 1, the left hand side has inertia E,+ i, . . . , E,CJ (terms involving 
& u + i, . . . , Ed), whereas the right hand side has inertia 6, + 1,. . . , tZ,t~ (the same 
terms). Hence e,+i = g,+i ,..., E = 6,. Continuing in this way, we establish 
the equality of the ei and 6,. If (Y =m the argument is similar, using 
T(NM_‘)I--‘= fiti-‘. 

Now let A be symmetric, B skew. Inertial signatures appear when (Y = 0, 
(Y = m, or p is pure imaginary. We shall adapt the above two methods: the 
second for the two (Y cases, the first for the p case. 

First let (Y = 0. We have 

T((MN-‘)rN}Tt=(m-‘)rti, r-=0,1,2 ,.... 

Using I& = M and Nt = -N, we get {(MN-‘YN)’ = (MN-‘M ... 
MN-‘M)’ = (- I)‘-‘{(MN-‘)‘N). Thus the matrix (MN-i)‘N is symmetric 
whenever r is odd. For an ei X e, block M, - pNi of type O;, with r = ei - I, 
we obtain [analogous to (I5)], 

(M~N~_~)'N~= O 
[ 

O 
0 I (-l)tedei . 

For r = e, we get instead zero. If M, - pNi is of type O;, then the matrices 
<~iNi-‘>‘Ni (for odd t-1 will h ave the same signatures as the equal matrices 
(MiNiwlYNi. The argument of the preceding paragraph may now be re- 
peated; take first r = ek - 1, then r = e, - 1, etc., where e, Q * *. < ek are 
the sizes of the various blocks of type 0:. 

For root m the argument is similar, the roles of M and N being 
interchanged. 

Now, suppose that M - pN has only blocks of type /3; belonging to roots 
j? = f bi. Set 

D=[; -;I, E=[:, !j. 

Then M and N may be regarded as matrices with entries of the form 
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YE + SD, where y, 6 are real scalars. Note that D” = - E. We again have 

Since the blocks in M - 
the signatures, we have 

T(MN-‘)T-’ = Ah?-‘. 

pN are the same as the blocks in h;i - pfi except for 
~I?fl-’ = MN-‘, and thus 

T(MN-‘) =(MN-‘)T. 

(16) 

Write M - pN = diag(M, - pN,, . . . , M, - pNk) with Mi - pNi a block of 
type /36 of size 2ei X2e,. Each MiNi-’ has the form 

: 

IbID 
D . 

. . 
. . 

1. 

. . 

D IbID 

Partitioning T = [Tijll G i,j ~ ,_, we have 

Tij(MjNj_‘) = (M,N,)_‘T,,. (17) 

From (16) and (17) it follows that Tij is composed of 2 X2 blocks of the form 
rE + yD, with x and y real scalars. This is a recursive computation on the 
2 X 2 entries of Tij that begins with the upper right entry, then evaluates 
each 2 X2 block in terms of blocks nearer the top right comer. The key step 
is that if X is a 2 X 2 matrix such that XD - DX is a polynomial in D, then 
in fact X is also a polynomial in D and XD - DX = 0. Thus M, N, T may 
now be viewed as matrices with elements from the algebra of real polynomi- 
als in D, and this is the view taken in the rest of the proof. Moreover, (16) 
and (17) imply that the matrix Tij with entries 2 X2 blocks of type xE + yD 
has the structure shown in (12), constant along each block diagonal parallel 
to the main block diagonal, and zero along each block diagonal not meeting 
the left or lower edges of Tij. 

The (i, j) block in 15 = TNT t is 

Take u < i,j Q 0. Again we have the split into three parts, as shown in (13). 
We calculate the extreme lower left element (which as a polynomial in D is 
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a 2 X 2 block) in each term in the three parts: terms from the first and third 
part have zero in the lower left 2 X2 position, and from the terms in the 
second part we get 

2 tip(ep~)tfp = k {( - “ip&pUjp + Uip”p”,ip)E 
p=ufl p=u+1 

+ CUipEpUjp + uipEp’jp) ‘}Y (18) 

where ti, = uiP E + oip D denotes the 2 x 2 block along the block diagonal of 
the (square) matrix Tip, with uiP and viP real scalars. The expression (18) 
equals gi D if i = j and 0 if i # j. Let 

Let also [E = diag(a,,+r,. . ., E,), E = diag(gU+r,. . . ,I?,). From (18) we get 

-VW’ + mvt = 0, mu’ + vlEvt = E, 

and therefore 

Since the right hand side is nonsingular, evidently diag@,[E) and diag(&E) 
are congruent; thus [E and E have the same numbers of positive terms. This 
forces .si = d, for u < i < II. This completes the proof of the uniqueness of the 
inertial signatures associated with blocks of type ph. 

The corresponding discussion when A is skew and B symmetric is 
parallel-almost exactly the same formulas apply-and is omitted. [In (18) 
the left hand sum has E in place of D, and the right side has D and E 
interchanged.] n 

8. THE HERMITIAN CASE 

If instead of two real symmetric matrices we consider two Hermitian 
matrices, and replace congruence by conjunctivity, results analogous to 
Theorem 2(a) may be obtained, with the exception that the block pi is 
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replaced with 

(P-P)A+A I ’ 
a 2 e X 2 e block belonging to a conjugate pair (p - p)“, (p - p)” of elemen- 
tary divisors of A - pB, with p not real. Since the elementary divisors of 
(A - pB)* are the conjugates of those of A - pB = (A - pB)*, it indeed is 
true that the elementary divisors belonging to nonreal roots must occur in 
conjugate pairs. The proof of the modified version of Theorem 2(a) is not 
significantly different from the proof given above. See Section 2 of [I201 for a 
complete discussion. 

For an analysis of some other cases, with A complex symmetric or 
complex skew and B Hermitian, see a paper by Ermolaev [83] and another 
by Li Santi and Thompson [loo]. 

9. A LEMMA 

The following lemma (see [92]) was used in the proof of Theorem 2. Let a 
real polynomial p(p) have one of the forms 

P(P) = P - Y with r>O, 

P(P) = (P - YNP - r> with y not real. 

Then: 

LEMMA. If m is a positive integer, a polynomial F,,,(p) exists with real 
coeffacients such that 

P = F,,,(P)’ (mod P(P)“). 

Proof. First let m = 1. If p(p) = p - y, take F,(p) = y”‘. Otherwise 
take F,(p)={lyl+p}{2(ly(+Rey)}-“2. Continue by induction on m. If 
F,(p) has already been found, then p = F,,,(pj2 + t(p)p(p)” for some real 
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polynomial t(p). Since F,(p) is relatively prime to p(p), there is a real 

polynomial g(p) such that 

dp)F,,(p) =NP) (mod P(P)). 

Now set 

F,+,(P) = Fmb)+ g(P>P(P)“* n 

10. REMARK ON THE SYMMETRIC/SKEW CASES 

The results when A is symmetric and B skew should be dual to those 

when A is skew and B symmetric, under an interchange of A and B. And 

this is largely true, but not completely so. The reason is that one of the 

matrices A, B has a preferred role relative to the other, and an interchange 

of the two without transferring the preferred role in some cases changes the 

appearance of the results. 

11. SUBPENCILS 

The relation of the invariants of a pencil to those of a principal subpencil 

is rather intricate, sometimes involving interlacing for real roots, and some- 

times not. A very detailed study for Hermitian pencils is in [120], and a later, 

somewhat simpler study in [98]. Similar results should hold for real symmet- 

ric or skew pencils. 

The preparation of this paper was supported in part by grants at variuus 
times from the Air Force Q&e of Scientijic Research and the National 
Science Foundation. The author wishes to express thanks to two referees fw 
their useful suggestion:. 
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