
ELSEVIER

An International Journal
Available online at www.sciencedirectcom computers &

s c , . . o , m a t h e m a t i c s
with applications

Computers and Mathematics with Applications 48 (2004) 419-427
www.elsevier.com/locate/camwa

Dynamic Programming and Minimal Norm
Solutions of Least Squares Problems

R. KALABA AND H. NATSUYAMA
Department of Biomedical Engineering

University of Southern California
Los Angeles, CA 90089, U.S.A.

(Received September 2003; accepted January PO0~)

Keywords--Dynamic programming, Least squares, Pseudoinverses.

I N T R O D U C T I O N

Least squares problems occur widely in regression analysis, parameter estimation, analytical
mechanics, and in many other areas. In [1], we introduced a new dynamic programming approach
to least squares problems. The algorithm of that paper relied heavily on knowing the rank of
the given matrix and knowing columns which are linearly independent. This paper extends the
previous one by removing these restrictions. We develop a new algorithm which we call the aQ[3R
algorithm.

This formulation introduces two cost functions, which is new to dynamic programming liter-
ature. The first cost function is the square of the length of the current discrepancy vector, and
the second is the square of the length of the current solution vector. The two cost functions are

to be minimized simultaneously by optimally selecting the minimum length vector solution.
Finally, a connection with Greville's formula for generalized inverses is indicated.

P R I N C I P L E OF O P T I M A L I T Y

Let A be an m x n matrix, b be a column vector of dimension m, and x be a vector of
dimension n. Given the matrix A and the vector b, we wish to determine the vector x such
that lAx - bl 2 is a minimum and the length of x is as small as possible. There are many
approaches to this optimization problem [2]. Here we shall provide an approach through dynamic
programming [3]. The reader may wish to consult [4-8].

We introduce two cost functions. First we write

f k (b) = the smallest square of the length of the residual vector A k x k - b. (1)

Here Ak is a matrix consisting of the first k columns of A and x k is a column vector of dimension k.
We also introduce

gk(b) = the smallest square of the length of the vector x k,

0898-1221/04/$ - see front matter (~ 2004 Elsevier Ltd. All rights reserved. Typeset by .4A4S-TEX
doi:10.1016/j.camwa.2004.01.007

420 R. KALABA AND H. NATSUYAMA

where x k is subject to the restriction

[Akx k -- bl 2 = min .over x k. (2)

In these definitions, k -- 1, 2, 3 , . . . , n. We now obtain simultaneous recurrence relations for these
functions. Having to use two cost functions is curious; yet, it seems unavoidable. We are led to
new dynamic programming equations.

Suppose tha t f k - l (b) and g k - l (b) are known. We wish to obtain f~(b) and gk(b). We denote
the individual columns of A by al, a 2 , . . . , an. There are two eases to consider, depending on

whether ak is linearly dependent on a l , a 2 , . . . , a k - 1 or not. Assume first tha t ak is linearly
dependent on al , a 2 , . . . , ak-1. In this case,

(3)

because a linear combination of a l , a 2 , . . . , ak-1 , ak cannot be brought closer to b than a linear
combination of al , a 2 , . . . , ak-1 . We also see tha t

gk(b) --xk--min [x2 ~_ g k - l (b -- xkak)] , (4)

where Xk is a scalar. This follows because if xk is the k th component of x k, then the term in
square brackets is the square of xk plus the smallest square of the length of a vector x k - l , where

I A k _ l x k -1 - (b - x~ak) l 2 = rain .over x k-1 .
Next we assume that ak is linearly independent of the vectors al , a 2 , . . . , ak-1 . In this case, we

must choose xk , the k th component of x k in the approximation of b by A k x k, so tha t we minimize

f k - l (b - x~:ak). The reason is tha t with any choice of the scalar xk, we must approximate the
new target vector b - x kak as well as possible through choice of the sum x l a l + . . . + x ~ - l a k - 1 .
Thus, we may write

f k (b) r a i n f k _ l (b _ Xkak) . (5) --~3 k

If the minimizing value of the scalar xa is x~, then we also have

gk(b) = (x7¢) 2 + gk-1 (b - x ~ a k) . (6)

Equations (3)-(6) constitute the desired system of recurrence relations. Equations (3) and (4)

apply if ak is dependent on al, a 2 , . . . , ak-1, and equations (5) and (6) apply if a k is independent
of the earlier columns of the matrix A. The underlying role of Bellman's principle of optimality
is clear [3].

In addition, for the case k = 1, we have

Thus,

rain fl(b) =xl (a lx l - b) i (a l x l -- b), a # O. (7)

f l (b) min__~l [aT alx21 -- 2aT bx l -~- bTb] . (8)

The minimizing condition is
a ~ a l x l - a~b = O, (9)

so tha t

, aTb = a + b (10)

Here we have used the fact tha t the generalized inverse of the vector al, a +, is a T / a T a l (assuming
tha t a l ¢ 0). I t follows tha t

+ T T + T + T
f l (b) = [b T(al) a l a l a l b - 2 b a l a l b + b b], (11)

l l (b) = b T [I - b.

Dynamic Programming 421

For gl (b), we have
g (b) = P- (t)T Cb.

Thus, we see t h a t / l (b) and gl(b) are quadratic forms in b which we may write as

(12)

f1(b)=bTQ1b, (13)
gl(b)=bT R1 b, (14)

where Q1 and R1 are symmetric positive semidefinite m x m matrices.

R E C U R R E N C E RELATIONS

We next show that the functions fk(b) and gk(b), k = 1, 2 , . . . , n, are positive semidefinite
quadratic forms in b. As we have seen, this is true for k = 1. We complete the proof by induction
by showing that if

f k - l (b) = bTQk-1 b (15)

and

then we also have

and

gk-l(b) = bTRk- lb , (16)

fk(b) = bTQkb (17)

gk(b) = bT Rkb, (18)

where the matrices Qk and Rk are symmetric and positive semidefinite.

A. Dependent Vectors

First let us assume that the vector ak is linearly dependent on the vectors a l , a 2 , . . . , a k - 1 .
Then, by virtue of equation (3), we have

Qk = Qk-1. (19)

From equation (4), we see that

+ T Rk-1 (b--

=~:n [(i H-aTRk-lak)XB + b TRk_I b- 2b TRk_lakxk].
(20)

F~om the first-order condition for minimization, we find

~k --~
bT Rk_ lak

i+ T " (21)
a k R k - l a k

Upon substituting this value for xk in equation (20), we find, after some simplification,

gk(b) = bT Rkb, (22)

where
Rk = Rk-1 - R k - l a k a T Rk-1 (23)

1 + a T R k _ l a k "

In equation (23), the denominator is never zero since Rk-1 is assumed to be positive semidefinite.
If we introduce the vector ~k by

flk = R k - l a k , (24)

422 R. KALABA AND H. NATBUYAMA

then we may write

T • (25)
1 + a k flk

It is clear that the right side of the above equation,

R k - 1 T ' (26)
1 + a k f~k

is symmetric, and from the definition of gk(b) in equation (20) must be positive semidefinite.
Equation (21) also takes the form

bT I3k
~ . . (27)

xk = 1 + % flk

B. I n d e p e n d e n t Vec to rs

Now let us pass to the case in which ak is linearly independent of the vectors al, a2 , . . . , ak-1.
Equations (5) and (6) now come into play. Also, a criterion for whether or not ak is linearly
dependent on the earlier vectors, al, 32 , . . . , ak-1, will emerge. We see that

fk(b) m i . (b - xkak) T Qk-1 (b - xkak) =T, k (28)

Since the expression on the right is merely a quadratic function of the scalar Xk, differentiation
yields the condition for optimality that

bTQk_lak
Xk = T " (29)

a k Qk- lak

Later we shall see that, in this case, the denominator is actually positive. Substituting this value
for xk into equation (28) yields

fk(b) = bT Qkb, (30)

where

By introducing the vector

equation (31) takes the form

and equation (29) becomes

Qk = Qk-1 - Qk- lakaT Qk-1 (31)
aTQk_lak

ak = Qk- iak , (32)

T
Qk = Qk-1 akak (33)

O~:ak '

Xk = a:OZk"

We now wish to show, by induction, that ak is the component of ak that is orthogonal to the
vectors 31,32, . . . ,ak-1. We define Q0 = I and have

O~1 = Q 0 a l = a l ,

01 = O0 ~1~1T
a~ (~ 1 '

~ 1-I- C~ 1 •

(35)

(36)

Dynamic Programming 423

I t tbllows tha t

Q l a l = 0 (37)

an(]

Q l v = v, (v such tha t aTv = 0) . (38)

Thus, Q l a 2 -- (~2 is the component of a : tha t is orthogonal to al - a l . Thus, a2 has the form
a2 = ~2 + s a l , where s is a scalar.

To complete the inductive proof, we assume tha t az is the component of al tha t is orthogonal
to the vectors a l , a 2 , . . . , a z - 1 , for l = 2 ,3 , . . . ,k. We must show tha t ak+l is the component
of ak+l tha t is orthogonal to the vectors al , a 2 , . . . , ak-1, ak. By definition,

First we see tha t

~ k + l ~ Qkak+l

= a:a----7) a +i.
(39)

(T)
a k a k (40) 0 = Qk-1 a ak ap,

where p = 1 , 2 , 3 , . . . , k - 1. This is because ak is orthogonal to a l , a 2 , a k - 1 . Furthermore,
Q k - l a p is the component of ap which is orthogonal to the vectors al , a 2 , . . . , ak-1. This compo-
nent, of course, is the null vector. When p = k, the equality above holds because

Q k - l a k - \ a [a k / ak -= a k - a k = O.

Thus, ak+l is orthogonal to the vectors al, a 2 , . . . , ak. In addition,

(41)

Ok = 1 - ~ aTa---~, (42)

where the prime indicates tha t terms with zero denominators are omitted, so tha t if v is a vector

such tha t a T v = 0, 1 = 1, 2, 3 , . . . , kl then QkV = v. Thus,

Qkak+l = ak+l . (43)

I t follows tha t a k + l is the component of ak+l tha t is orthogonal to the vectors a l , a 2 , . . . , ak .

Thus,

ak+l = ak+l + lin. comb. of a l , a 2 , . . . , ak. (44)

From the above representation, we also see tha t

l- = a~+lak+l , k = 0,1,2, , n 1. C~kTlak+l •.. -- (45)

Thus, the basic recurrence relation

may be restated as

aTa (46)

a k a ~
Qk = Qk-1 7- , k = 1 , 2 , . . . , n . (46')

O~ k OLk

From the discussion above, it is clear tha t the determination of whether or not the vector ak is
linearly dependent on the set of vectors a l , a2 , a k - 1 depends upon the vector ak. If c% = 0,

424 R. KALABA AND H. NATSUYAMA

then ak is linearly dependent upon the vectors al , a 2 , . . . , ak-1 . Otherwise, it is independent of
them.

The recurrence relation (6) leads to the recurrence relation for Rk,

= + (I -aka+) TRk-I (I - -aka +) R~ (~:) T +

And the equation for xk becomes

X k = Ol:Olk

+
--- o~k b.

(46-)

(46")

T H E aQI3R A L G O R I T H M

Let us now specify the a Q f l R algorithm for solving the least squares problem Ax -~ b. There

are two sweeps, one forward and one backward.

A. F o r w a r d S w e e p t o C o m p u t e a n d Store Auxiliary Vectors

In the forward sweep, we set

0~1 : al ,

OLlO~1 -["
Q1 = I O~TO~I = I -- aioLt,

R1 = (a t) T a t .

Then, for each value of k, k = 2, 3 , . . . , n, there are two cases. If

(47)

(48)

(49)

ak = Q k - l a k = O, (50)

then

If, on the other hand,

then

Qk -- Qk-1 , (51)

f l k = R ~ - l a k , (52)

Rk = Rk-1 #k#[(53)
1 + a T & .

ak = Q k - l a k # O, (54)

T
~k (55) +

O~k = T :
O~ k Otk

Qk = Qk-1 - ~k~k +, (56/
+ IT + T R~ = (~ +) T + ~ . - a ~ k) R~-I (I - a ~ +) . (57)

Only the vectors as and fls need to be saved for the backward sweep.

B. Return Sweep to Compute Minimal Norm Vector Solution

In the return sweep, the components of the vector x, namely, x~, x , ~ - l , . . . , x l , are determined
in tha t reverse order as follows. First we put

bn = b. (58)

Dynamic Programming 425

Then, if a s = 0,

But if an ¢ O, then

Next, for k = n - 1 , n - 2 , . . . , 1 , we set

= 1 + aTnl3n" (59)

b~an
a an" (6o)

bk = b k + l - - X k + l a k + l (61)

and

or

if ak = 0 (62) x k - (l+a:flk)'

b~ak if ak ¢ O. (63) X k -~ T '
o~ k a k

O. P r o c e d u r e for aQf~R D y n a m i c P r o g r a m m i n g A l g o r i t h m

The algorithm is described by the following procedure.

1. Input the A matrix and the b vector
2. Sweep forward from columns 1 through n and store the na and nfl vectors

a. Column 1
i. Initialize a l , Q1, and R1 using equations (47)-(49)
ii. Define Qk-1 and Rk-1

b. Column k = 2, 3 , . . . , n
i. Compute ak using equation (32)
ii. Test length of ak against a tolerance

(a) If length is less than tolerance, use equations (51)-(53) to compute Qk, ~k,
and Rk, and store

(b) If length is greater than tolerance, use equations (55)-(57) to compute Qk
and Rk, and store; no/~k is needed

iii. Shift current Qk and Rk into Qk-1 and Rk-1
3. Sweep backward and determine the components of the vector x from the n th component

to the first
a. Initialize the bk vector for k = n

i. Set bn =- b
ii. Compute xn using (59) or (60)

b. Component k -- n - 1 , n - 2 , . . . , 1
i. Modify bk using equation (61)
ii. Test length of ak against tolerance

(a) If length is less than tolerance, use equation (62) to compute xk
(b) If length is greater than tolerance, use equation (63) to compute xk

4. Output x and other results as desired

G E N E R A L I Z E D I N V E R S E S A N D aQfiR

In view of the fact that the solution of the minimal norm least squares problem (Ax-b) T (Ax-
b) = min can be obtained by the aQbR algorithm, it is natural to seek the pseudoinverse of A,
denoted A +, through the algorithm. We now show how this may be done. The key to doing this
is the Greville sequential method [8].

426 R. KALABA AND H, NATSUYAMA

Greville's algorithm shows how to pass from a knowledge of A+_I, the pseudoinverse of Ak-1 ,
to the pseudoinverse A + of the matrix Ak. There are, of course, two cases to consider. In
Greville's algorithm, the determination is made by considering the vector c = (I - A k _ l A + _ l) a k .
The vector c represents the component of ak that is orthogonal to the columns of Ak-1 . We see

+ a this from ak = c + A k _ l A k _ 1 k. That the vector c is orthogonal to the columns of Ak-1 follows
from

c TAk-1 a~ (I + = - A k - l A k _ l) Ak-1
= o. (64)

First let us consider the case in which c ~ 0. This means that the vector ak has a component
that is orthogonal to the vectors al, a2 , . . . , ak-1. Consequently, this is the case in which ak is

not linearly dependent upon al, a 2 , . . . , ak-1.
The Greville updating is given by

Ak+l - A+_lakc + "~
A + (6~) \ C + J '

+ which requires a knowledge of the vector c, in addition to A}_ I and ak. But the aQ~R algorithm
provides the vector c~k, which is the component of a} that is orthogonal to al, a2,..., ak-1, as

+
we saw earlier. Thus, when A}_I, a}, and ~} are known, we may determine A + as

(+ +) .%+ = Ak+-~ - A k - l a k % (66)
+ •

OL k

+ The second case is that in which c = 0. In this case, ak = Ak-~Ak_ lak , so that the vector ak

is linearly dependent on the columns of the matrix Ak-1. GreviUe's updating is given by the
formula

A+ = (Ak+l - A+- lakvT , (67)

where

+ T Ak_ l ak (68) v = (Ak-1) +
+ T +

1 + aTk (Ak-1) Ak_ 1 ak

To interpret these relations from the point of view of the aQf lR algorithm, we recall that

gk(b) = the smallest square of the length of the vector xk which minimizes IAkx k - bl 2
(69)

= bTRkb.

On the other hand, we know the solution is

so that we may write

Thus, we see that

This enables us to write

x k + (70) = A k b,

gk(b) = b T (A+) T A k +b.

+ T +
R k = (A k) A k , k = l , 2 , . . . , n .

(71)

(72)

R k - l a k
v = 1 + a-~Rk- lak ' (73)

& (74) v = 1 + aTZk '

which expresses the vector v in terms of ~k.
+ + These relations show how the updating of Ak_ 1 to A k is accomplished in terms of either ~k

or f~k, depending on whether ak ~ 0 or ak = 0.

Dynamic Programming 427

DISCUSSION

The new algorithm has been tested and used in a number of ways. Computational experience---
with testing for dependence/independence, effect of near-dependency of vectors, accumulation of
round-off errors, and applications in physical and estimation problems [4-8]--is being gained,
and results are being reported in the literature. Clearly, much more remains to be done in this
area.

The two cost functions introduced here are new to dynamic programming [3], and promise
greater extensions of the theory in the future. We know the properties of the auxiliary matrices,
the Qs, of symmetry, positive semidefiniteness, and idempotency. Yet, while this paper advances
the theory of dynamic programming, it raises a number of questions. Are there interpretations
for the f~s and the Rs similar to those for the ms and Qs? Do the Qs and Rs directly give the
generalized inverse, which plays a major role in least squares problems? Qs and Rs contain,
clearly, information that is equivalent to that of the generalized inverse. We shall expand on this
in a subsequent paper.

R E F E R E N C E S
1. R.E. Kalaba, H. Natsuyama, S. Ueno and R. Xu, The Bellman-Gauss principle for constrained motion,

Computers Math. Applic. 37 (11/12), 1-7, (1999).
2. C. Lawson and 1~. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, N J, (1974).
3. R. Bellman and R.E. Kalaba, Dynamic Programming and Modern Control Theory, Academic Press, New

York, (1965).
4. l:t.E. Kalaba, H.H. Natsuyama and S. Ueno, The estimation of parameters in time-dependent transport

problems: Dynamic programming and associative memories, Computers Math. Applic: 3'/(2), 41-45, (1999).
5. R.E. Kalaba, H.H. Natsuyama and S. Ueno, Regression analysis via dynamic programming: I. Theory, In

The 30 th ISCIE International Symposium on Stochastic Systems Theory and Its Applications, (November
1998).

6. R.E. Kalaba, H.H. Natsuyama and S. Ueno, Regression analysis via dynamic programming: II. Computational
results, In The 30 ~h ISCIE International Symposium on Stochastic Systems Theory and Its Applications,
(November 1998).

7. C. Itiki, R.E. Kalaba and H. Natsuyama, Estimation of parameters of a lower limb model, Proc. Fourth Int.
Syrup. on Artificial Life, Computers Math. Applic. 37, 1-7, (1999).

8. F. Udwadia and P~. Kalaba, Analytical Dynamics, Cambridge Univ. Press, New York, (1996).

