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I N T R O D U C T I O N  

Least squares problems occur widely in regression analysis, parameter estimation, analytical 
mechanics, and in many other areas. In [1], we introduced a new dynamic programming approach 
to least squares problems. The algorithm of that paper relied heavily on knowing the rank of 
the given matrix and knowing columns which are linearly independent. This paper extends the 
previous one by removing these restrictions. We develop a new algorithm which we call the aQ[3R 
algorithm. 

This formulation introduces two cost functions, which is new to dynamic programming liter- 
ature. The first cost function is the square of the length of the current discrepancy vector, and 
the second is the square of the length of the current solution vector. The two cost functions are 

to be minimized simultaneously by optimally selecting the minimum length vector solution. 
Finally, a connection with Greville's formula for generalized inverses is indicated. 

P R I N C I P L E  OF O P T I M A L I T Y  

Let A be an m x n matrix, b be a column vector of dimension m, and x be a vector of 
dimension n. Given the matrix A and the vector b, we wish to determine the vector x such 
that lAx  - bl 2 is a minimum and the length of x is as small as possible. There are many 
approaches to this optimization problem [2]. Here we shall provide an approach through dynamic 
programming [3]. The reader may wish to consult [4-8]. 

We introduce two cost functions. First we write 

f k (b)  = the smallest square of the length of the residual vector A k x  k - b. (1) 

Here Ak is a matrix consisting of the first k columns of A and x k is a column vector of dimension k. 
We also introduce 

gk(b) = the smallest square of the length of the vector x k, 
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where x k is subject to the restriction 

[Akx  k -- bl 2 = min .over x k. (2) 

In these definitions, k -- 1, 2, 3 , . . . ,  n. We now obtain simultaneous recurrence relations for these 
functions. Having to use two cost functions is curious; yet, it seems unavoidable. We are led to 
new dynamic programming equations. 

Suppose tha t  f k - l ( b )  and g k - l ( b )  are known. We wish to obtain f~(b) and gk(b).  We denote 
the individual columns of A by al,  a 2 , . . . ,  an. There are two eases to consider, depending on 

whether ak is linearly dependent on a l , a 2 , . . .  , a k - 1  or not. Assume first tha t  ak is linearly 
dependent on al ,  a 2 , . . . ,  ak-1. In this case, 

(3) 

because a linear combination of a l , a 2 , . . . ,  ak-1 ,  ak cannot be brought  closer to b than a linear 
combination of al ,  a 2 , . . . ,  ak-1 .  We also see tha t  

gk(b) --xk--min [x2 ~_ g k - l ( b  -- xkak)]  , (4) 

where Xk is a scalar. This follows because if xk  is the k th component  of x k, then the term in 
square brackets is the square of xk plus the smallest square of the length of a vector x k - l ,  where 

I A k _ l x  k -1  - (b - x~ak) l  2 = rain .over x k-1  . 
Next we assume that  ak is linearly independent of the vectors al ,  a 2 , . . . ,  ak-1 .  In this case, we 

must  choose xk ,  the k th component of x k in the approximation of b by A k x  k, so tha t  we minimize 

f k - l ( b  - x~:ak). The reason is tha t  with any choice of the scalar xk, we must  approximate the 
new target  vector b - x kak  as well as possible through choice of the sum x l a l  + . . .  + x ~ - l a k - 1 .  
Thus, we may  write 

f k (b  ) r a i n  f k _ l ( b  _ Xkak) .  (5) --~3 k 

If  the minimizing value of the scalar xa is x~, then we also have 

gk(b) = (x7¢) 2 + gk-1  (b - x ~ a k ) .  (6) 

Equations (3)-(6) constitute the desired system of recurrence relations. Equations (3) and (4) 

apply if ak is dependent on al,  a 2 , . . . ,  ak-1, and equations (5) and (6) apply if a k is independent 
of the earlier columns of the matrix A. The underlying role of Bellman's principle of optimality 
is clear [3]. 

In addition, for the case k = 1, we have 

Thus, 

rain fl(b) =xl (a lx l  - b ) i ( a l x l  -- b), a # O. (7) 

f l (b )  min__~l [aT alx21 -- 2aT bx l  -~- bTb] . (8) 

The minimizing condition is 
a ~ a l x l  - a~b = O, (9) 

so tha t  

, aTb = a + b  (10) 

Here we have used the fact tha t  the generalized inverse of the vector al,  a +, is a T / a T a l  (assuming 
tha t  a l ¢  0). I t  follows tha t  

+ T T + T + T 
f l ( b ) =  [b T(al) a l a l a l b - 2 b  a l a l b + b  b],  (11) 

l l ( b )  = b T [I - b. 



Dynamic Programming 421 

For gl (b), we have 
g (b) = P- ( t)T  Cb. 

Thus, we see t h a t / l ( b )  and gl(b) are quadratic forms in b which we may write as 

(12) 

f1(b)=bTQ1b, (13) 
gl(b)=bT R1 b, (14) 

where Q1 and R1 are symmetric positive semidefinite m x m matrices. 

R E C U R R E N C E  RELATIONS 

We next show that the functions fk(b) and gk(b), k = 1, 2 , . . . ,  n, are positive semidefinite 
quadratic forms in b. As we have seen, this is true for k = 1. We complete the proof by induction 
by showing that if 

f k - l ( b )  = bTQk-1 b (15) 

and 

then we also have 

and 

gk-l(b) = bTRk- lb ,  (16) 

fk(b) = bTQkb (17) 

gk(b) = bT Rkb, (18) 

where the matrices Qk and Rk are symmetric and positive semidefinite. 

A. Dependent Vectors 

First let us assume that the vector ak is linearly dependent on the vectors a l , a 2 , . . . , a k - 1 .  
Then, by virtue of equation (3), we have 

Qk = Qk-1.  (19) 

From equation (4), we see that 

+ T Rk-1 (b-- 

=~:n [(i H-aTRk-lak)XB + b TRk_I b- 2b TRk_lakxk]. 
(20) 

F~om the first-order condition for minimization, we find 

~k --~ 
bT Rk_ lak  

i+ T " (21) 
a k R k - l a k  

Upon substituting this value for xk in equation (20), we find, after some simplification, 

gk(b) = bT Rkb, (22) 

where 
Rk = Rk-1  - R k - l a k a T  Rk-1  (23) 

1 + a T R k _ l a k  " 

In equation (23), the denominator is never zero since Rk-1  is assumed to be positive semidefinite. 
If we introduce the vector ~k by 

flk = R k - l a k ,  (24) 
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then we may write 

T • (25) 
1 + a k flk 

It is clear that the right side of the above equation, 

R k - 1  T ' (26) 
1 + a k f~k 

is symmetric, and from the definition of gk(b) in equation (20) must be positive semidefinite. 
Equation (21) also takes the form 

bT I3k 
~ . .  (27) 

xk = 1 + % flk 

B. I n d e p e n d e n t  Vec to rs  

Now let us pass to the case in which ak is linearly independent of the vectors al,  a2 , . . . ,  ak-1. 
Equations (5) and (6) now come into play. Also, a criterion for whether or not ak is linearly 
dependent on the earlier vectors, al, 32 , . . . ,  ak-1, will emerge. We see that 

fk(b) m i .  ( b -  xkak) T Qk-1 (b - xkak) =T, k (28) 

Since the expression on the right is merely a quadratic function of the scalar Xk, differentiation 
yields the condition for optimality that 

bTQk_lak 
Xk = T " (29) 

a k Qk- lak  

Later we shall see that, in this case, the denominator is actually positive. Substituting this value 
for xk into equation (28) yields 

fk(b) = bT Qkb, (30) 

where 

By introducing the vector 

equation (31) takes the form 

and equation (29) becomes 

Qk = Qk-1 - Qk- lakaT Qk-1 (31) 
aTQk_lak 

ak = Qk- iak ,  (32) 

T 
Qk = Qk-1 akak (33) 

O~:ak  ' 

Xk  = a:OZk"  

We now wish to show, by induction, that ak is the component of ak that  is orthogonal to the 
vectors 31,32, . . .  ,ak-1. We define Q0 = I and have 

O~1 = Q 0 a l  = a l ,  

01 = O0 ~1~1T 
a~ (~  1 ' 

~ 1-I- C~ 1 • 

(35) 

(36) 
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I t  tbllows tha t  

Q l a l  = 0 (37) 

an(] 

Q l v  = v,  (v such tha t  aTv = 0) .  (38) 

Thus, Q l a 2  -- (~2 is the component  of a :  tha t  is orthogonal to al  - a l .  Thus, a2 has the form 
a2 = ~2 + s a l ,  where s is a scalar. 

To complete the inductive proof, we assume tha t  az is the component  of al tha t  is orthogonal 
to the vectors a l , a 2 ,  . . .  , a z - 1 ,  for l = 2 ,3 , . . .  ,k. We must  show tha t  ak+l  is the component 
of ak+l tha t  is orthogonal to the vectors al ,  a 2 , . . . ,  ak-1, ak. By definition, 

First we see tha t  

~ k + l  ~ Qkak+l 

= a:a----7) a +i. 
(39) 

( T) 
a k a k  (40) 0 =  Qk-1 a ak ap, 

where p = 1 , 2 , 3 , . . . ,  k - 1. This is because ak is orthogonal to a l , a 2  . . . .  , a k - 1 .  Furthermore, 
Q k - l a p  is the component  of ap which is orthogonal to the vectors al ,  a 2 , . . . ,  ak-1. This compo- 
nent, of course, is the null vector. When p = k, the equality above holds because 

Q k - l a k  - \ a [ a k  / ak -= a k  - a k  = O. 

Thus, ak+l  is orthogonal to the vectors al,  a 2 , . . . ,  ak. In addition, 

(41) 

Ok = 1 - ~ aTa---~, (42) 

where the prime indicates tha t  terms with zero denominators are omitted, so tha t  if v is a vector 

such tha t  a T v  = 0, 1 = 1, 2, 3 , . . . ,  kl then QkV = v.  Thus, 

Qkak+l  = ak+l .  (43) 

I t  follows tha t  a k + l  is the component  of ak+l  tha t  is orthogonal to the vectors a l , a 2 , . . .  , ak .  

Thus, 

ak+l = ak+l  + lin. comb. of a l ,  a 2 , . . . ,  ak. (44) 

From the above representation, we also see tha t  

l- = a~+lak+l ,  k = 0,1,2,  , n  1. C~kTlak+l •.. -- (45) 

Thus, the basic recurrence relation 

may be restated as 

aTa  (46) 

a k a ~  
Qk = Qk-1 7- , k = 1 , 2 , . . . , n .  (46') 

O~ k OLk 

From the discussion above, it is clear tha t  the determination of whether or not  the vector ak is 
linearly dependent on the set of vectors a l ,  a2 . . . .  , a k - 1  depends upon the vector ak. If  c% = 0, 
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then ak is linearly dependent upon the vectors al ,  a 2 , . . . ,  ak-1 .  Otherwise, it is independent of 
them. 

The recurrence relation (6) leads to the recurrence relation for Rk, 

= + ( I -aka+)  TRk-I ( I - -aka +) R~ (~:) T + 

And the equation for xk becomes 

X k = Ol:Olk 

+ 
--- o~k b. 

(46-) 

(46") 

T H E  aQI3R A L G O R I T H M  

Let us now specify the a Q f l R  algorithm for solving the least squares problem Ax -~ b. There 

are two sweeps, one forward and one backward. 

A.  F o r w a r d  S w e e p  t o  C o m p u t e  a n d  Store Auxiliary Vectors 

In the forward sweep, we set 

0~1 : al ,  

OLlO~1 -[" 
Q1 = I O~TO~I = I -- aioLt, 

R1 = (a  t )  T a t  . 

Then, for each value of k, k = 2, 3 , . . . ,  n, there are two cases. If  

(47) 

(48) 

(49) 

ak  = Q k - l a k  = O, (50) 

then 

If, on the other hand, 

then 

Qk -- Qk-1 ,  (51)  

f l k  = R ~ - l a k ,  (52) 

Rk = Rk-1 #k#[ (53) 
1 + a T &  . 

ak = Q k - l a k  # O, (54) 

T 
~k (55) + 

O~k = T : 
O~ k Otk 

Qk = Qk-1 - ~k~k +, (56/ 
+ IT  + T R~ = ( ~ + ) T  + ~ . - a ~ k )  R~-I ( I - a ~ + ) .  (57) 

Only the vectors as  and fls need to be saved for the backward sweep. 

B. Return Sweep to Compute Minimal Norm Vector Solution 

In the return sweep, the components of the vector x, namely, x~, x , ~ - l , . . . ,  x l ,  are determined 
in tha t  reverse order as follows. First we put  

bn = b. (58) 
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Then, if a s  = 0, 

But if an ¢ O, then 

Next, for k = n - 1 , n - 2 , . . . , 1 ,  we set 

= 1 + aTnl3n" (59) 

b~an 
a an" (6o) 

bk = b k + l  - -  X k + l a k + l  (61) 

and 

or 

if ak = 0 (62) x k -  (l+a:flk)' 

b~ak if ak ¢ O. (63) X k  -~ T ' 
o~ k a k  

O. P r o c e d u r e  for aQf~R D y n a m i c  P r o g r a m m i n g  A l g o r i t h m  

The algorithm is described by the following procedure. 

1. Input the A matrix and the b vector 
2. Sweep forward from columns 1 through n and store the na  and nfl vectors 

a. Column 1 
i. Initialize a l ,  Q1, and R1 using equations (47)-(49) 
ii. Define Qk-1 and Rk-1 

b. Column k = 2, 3 , . . . , n  
i. Compute ak using equation (32) 
ii. Test length of ak against a tolerance 

(a) If length is less than tolerance, use equations (51)-(53) to compute Qk, ~k, 
and Rk, and store 

(b) If length is greater than tolerance, use equations (55)-(57) to compute Qk 
and Rk, and store; no/~k is needed 

iii. Shift current Qk and Rk into Qk-1 and Rk-1 
3. Sweep backward and determine the components of the vector x from the n th component 

to the first 
a. Initialize the bk vector for k = n 

i. Set bn =- b 
ii. Compute xn using (59) or (60) 

b. Component k -- n -  1 , n -  2 , . . . , 1  
i. Modify bk using equation (61) 
ii. Test length of ak against tolerance 

(a) If length is less than tolerance, use equation (62) to compute xk 
(b) If length is greater than tolerance, use equation (63) to compute xk 

4. Output x and other results as desired 

G E N E R A L I Z E D  I N V E R S E S  A N D  aQfiR 

In view of the fact that  the solution of the minimal norm least squares problem (Ax-b) T (Ax- 
b) = min can be obtained by the aQbR algorithm, it is natural to seek the pseudoinverse of A, 
denoted A +, through the algorithm. We now show how this may be done. The key to doing this 
is the Greville sequential method [8]. 
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Greville's algorithm shows how to pass from a knowledge of A+_I, the pseudoinverse of Ak-1 ,  
to the pseudoinverse A + of the matrix Ak. There are, of course, two cases to consider. In 
Greville's algorithm, the determination is made by considering the vector c = ( I - A k _ l A + _ l ) a k .  
The vector c represents the component of ak that is orthogonal to the columns of Ak-1 .  We see 

+ a this from ak = c + A k _ l A k _  1 k. That the vector c is orthogonal to the columns of Ak-1 follows 
from 

c TAk-1  a~ ( I  + = - A k - l A k _ l )  Ak-1  
= o. (64) 

First let us consider the case in which c ~ 0. This means that the vector ak has a component 
that is orthogonal to the vectors al, a2 , . . . ,  ak-1. Consequently, this is the case in which ak is 

not linearly dependent upon al, a 2 , . . . ,  ak-1. 
The Greville updating is given by 

Ak+l - A+_lakc + "~ 
A + (6~) \ C + J ' 

+ which requires a knowledge of the vector c, in addition to A}_ I and ak. But the aQ~R algorithm 
provides the vector c~k, which is the component of a} that is orthogonal to al, a2,..., ak-1, as 

+ 
we saw earlier. Thus, when A}_I, a}, and ~} are known, we may determine A + as 

( + +) .%+ = Ak+-~ - A k - l a k %  (66) 
+ • 

OL k 

+ The second case is that in which c = 0. In this case, ak = Ak-~Ak_ lak ,  so that the vector ak 

is linearly dependent on the columns of the matrix Ak-1. GreviUe's updating is given by the 
formula 

A+ = ( Ak+l - A+- lakvT  , (67) 

where 

+ T Ak_ l  ak (68) v = (Ak-1) + 
+ T + 

1 + aTk (Ak-1) Ak_ 1 ak 

To interpret these relations from the point of view of the aQf lR  algorithm, we recall that 

gk(b) = the smallest square of the length of the vector xk which minimizes IAkx k - bl 2 
(69) 

= bTRkb. 

On the other hand, we know the solution is 

so that we may write 

Thus, we see that 

This enables us to write 

x k + (70) = A k b, 

gk(b) = b T (A+) T A k +b. 

+ T  + 
R k = ( A k )  A k ,  k = l , 2 , . . . , n .  

(71) 

(72) 

R k - l a k  
v = 1 + a-~Rk- lak '  (73) 

& (74) v = 1 + aTZk ' 

which expresses the vector v in terms of ~k. 
+ + These relations show how the updating of Ak_ 1 to A k is accomplished in terms of either ~k 

or f~k, depending on whether ak ~ 0 or ak = 0. 



Dynamic Programming 427 

DISCUSSION 

The new algorithm has been tested and used in a number of ways. Computational experience--- 
with testing for dependence/independence, effect of near-dependency of vectors, accumulation of 
round-off errors, and applications in physical and estimation problems [4-8]--is being gained, 
and results are being reported in the literature. Clearly, much more remains to be done in this 
area. 

The two cost functions introduced here are new to dynamic programming [3], and promise 
greater extensions of the theory in the future. We know the properties of the auxiliary matrices, 
the Qs, of symmetry, positive semidefiniteness, and idempotency. Yet, while this paper advances 
the theory of dynamic programming, it raises a number of questions. Are there interpretations 
for the f~s and the Rs similar to those for the ms and Qs? Do the Qs and Rs directly give the 
generalized inverse, which plays a major role in least squares problems? Qs and Rs contain, 
clearly, information that  is equivalent to that  of the generalized inverse. We shall expand on this 
in a subsequent paper. 
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