An Intemational Joumal computers \& mathematics
with applications

Dynamic Programming and Minimal Norm Solutions of Least Squares Problems

R. Kalaba and H. Natsuyama
Department of Biomedical Engineering University of Southern California Los Angeles, CA 90089, U.S.A.
(Received September 2003; accepted January 2004)

Keywords-Dynamic programming, Least squares, Pseudoinverses.

INTRODUCTION

Least squares problems occur widely in regression analysis, parameter estimation, analytical mechanics, and in many other areas. In [1], we introduced a new dynamic programming approach to least squares problems. The algorithm of that paper relied heavily on knowing the rank of the given matrix and knowing columns which are linearly independent. This paper extends the previous one by removing these restrictions. We develop a new algorithm which we call the $\alpha Q \beta R$ algorithm.

This formulation introduces two cost functions, which is new to dynamic programming literature. The first cost function is the square of the length of the current discrepancy vector, and the second is the square of the length of the current solution vector. The two cost functions are to be minimized simultaneously by optimally selecting the minimum length vector solution.

Finally, a connection with Greville's formula for generalized inverses is indicated.

PRINCIPLE OF OPTIMALITY

Let A be an $m \times n$ matrix, b be a column vector of dimension m, and x be a vector of dimension n. Given the matrix A and the vector b, we wish to determine the vector x such that $|A x-b|^{2}$ is a minimum and the length of x is as small as possible. There are many approaches to this optimization problem [2]. Here we shall provide an approach through dynamic programming [3]. The reader may wish to consult [4-8].

We introduce two cost functions. First we write

$$
\begin{equation*}
f_{k}(b)=\text { the smallest square of the length of the residual vector } A_{k} x^{k}-b . \tag{1}
\end{equation*}
$$

Here A_{k} is a matrix consisting of the first k columns of A and x^{k} is a column vector of dimension k. We also introduce

$$
g_{k}(b)=\text { the smallest square of the length of the vector } x^{k}
$$

where x^{k} is subject to the restriction

$$
\begin{equation*}
\left|A_{k} x^{k}-b\right|^{2}=\min \text {.over } x^{k} . \tag{2}
\end{equation*}
$$

In these definitions, $k=1,2,3, \ldots, n$. We now obtain simultaneous recurrence relations for these functions. Having to use two cost functions is curious; yet, it seems unavoidable. We are led to new dynamic programming equations.
Suppose that $f_{k-1}(b)$ and $g_{k-1}(b)$ are known. We wish to obtain $f_{k}(b)$ and $g_{k}(b)$. We denote the individual columns of A by $a_{1}, a_{2}, \ldots, a_{n}$. There are two cases to consider, depending on whether a_{k} is linearly dependent on $a_{1}, a_{2}, \ldots, a_{k-1}$ or not. Assume first that a_{k} is linearly dependent on $a_{1}, a_{2}, \ldots, a_{k-1}$. In this case,

$$
\begin{equation*}
f_{k}(b)=f_{k-1}(b), \tag{3}
\end{equation*}
$$

because a linear combination of $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}$ cannot be brought closer to b than a linear combination of $a_{1}, a_{2}, \ldots, a_{k-1}$. We also see that

$$
\begin{equation*}
g_{k}(b)=\min _{x_{k}}^{\min }\left[x_{k}^{2}+g_{k-1}\left(b-x_{k} a_{k}\right)\right], \tag{4}
\end{equation*}
$$

where x_{k} is a scalar. This follows because if x_{k} is the $k^{\text {th }}$ component of x^{k}, then the term in square brackets is the square of x_{k} plus the smallest square of the length of a vector x^{k-1}, where $\left|A_{k-1} x^{k-1}-\left(b-x_{k} a_{k}\right)\right|^{2}=\min$.over x^{k-1}.
Next we assume that a_{k} is linearly independent of the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. In this case, we must choose x_{k}, the $k^{\text {th }}$ component of x^{k} in the approximation of b by $A_{k} x^{k}$, so that we minimize $f_{k-1}\left(b-x_{k} a_{k}\right)$. The reason is that with any choice of the scalar x_{k}, we must approximate the new target vector $b-x_{k} a_{k}$ as well as possible through choice of the sum $x_{1} a_{1}+\cdots+x_{k-1} a_{k-1}$. Thus, we may write

$$
\begin{equation*}
f_{k}(b)==_{x_{k}}^{\min } f_{k-1}\left(b-x_{k} a_{k}\right) \tag{5}
\end{equation*}
$$

If the minimizing value of the scalar x_{k} is x_{k}^{*}, then we also have

$$
\begin{equation*}
g_{k}(b)=\left(x_{k}^{*}\right)^{2}+g_{k-1}\left(b-x_{k}^{*} a_{k}\right) . \tag{6}
\end{equation*}
$$

Equations (3)-(6) constitute the desired system of recurrence relations. Equations (3) and (4) apply if a_{k} is dependent on $a_{1}, a_{2}, \ldots, a_{k-1}$, and equations (5) and (6) apply if a_{k} is independent of the earlier columns of the matrix A. The underlying role of Bellman's principle of optimality is clear [3].
In addition, for the case $k=1$, we have

$$
\begin{equation*}
\left.f_{1}(b)=\right)_{x_{1}}^{\min }\left(a_{1} x_{1}-b\right)^{\top}\left(a_{1} x_{1}-b\right), \quad a \neq 0 . \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
f_{1}(b)={ }_{x_{1}}^{\min }\left[a_{1}^{\top} a_{1} x_{1}^{2}-2 a_{1}^{\top} b x_{1}+b^{\top} b\right] . \tag{8}
\end{equation*}
$$

The minimizing condition is

$$
\begin{equation*}
a_{1}^{\top} a_{1} x_{1}-a_{1}^{\top} b=0, \tag{9}
\end{equation*}
$$

so that

$$
\begin{equation*}
x_{1}^{*}=\frac{a_{1}^{\top} b}{a_{1}^{\top} a_{1}}=a_{1}^{+} b . \tag{10}
\end{equation*}
$$

Here we have used the fact that the generalized inverse of the vector a_{1}, a_{1}^{+}, is $a_{1}^{\top} / a_{1}^{\top} a_{1}$ (assuming that $a_{1} \neq 0$). It follows that

$$
\begin{align*}
& f_{1}(b)=\left[b^{\top}\left(a_{1}^{+}\right)^{\top} a_{1}^{\top} a_{1} a_{1}^{+} b-2 b^{\top} a_{1} a_{1}^{+} b+b^{\top} b\right], \tag{11}\\
& f_{1}(b)=b^{\top}\left[I-a_{1} a_{1}^{+}\right] b .
\end{align*}
$$

For $g_{1}(b)$, we have

$$
\begin{equation*}
g_{1}(b)=b^{\top}\left(a_{1}^{+}\right)^{\top} a_{1}^{+} b \tag{12}
\end{equation*}
$$

Thus, we see that $f_{1}(b)$ and $g_{1}(b)$ are quadratic forms in b which we may write as

$$
\begin{align*}
& f_{1}(b)=b^{\top} Q_{1} b, \tag{13}\\
& g_{1}(b)=b^{\top} R_{1} b, \tag{14}
\end{align*}
$$

where Q_{1} and R_{1} are symmetric positive semidefinite $m \times m$ matrices.

RECURRENCE RELATIONS

We next show that the functions $f_{k}(b)$ and $g_{k}(b), k=1,2, \ldots, n$, are positive semidefinite quadratic forms in b. As we have seen, this is true for $k=1$. We complete the proof by induction by showing that if

$$
\begin{equation*}
f_{k-1}(b)=b^{\top} Q_{k-1} b \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k-1}(b)=b^{\top} R_{k-1} b, \tag{16}
\end{equation*}
$$

then we also have

$$
\begin{equation*}
f_{k}(b)=b^{\top} Q_{k} b \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{k}(b)=b^{\top} R_{k} b, \tag{18}
\end{equation*}
$$

where the matrices Q_{k} and R_{k} are symmetric and positive semidefinite.

A. Dependent Vectors

First let us assume that the vector a_{k} is linearly dependent on the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. Then, by virtue of equation (3), we have

$$
\begin{equation*}
Q_{k}=Q_{k-1} . \tag{19}
\end{equation*}
$$

From equation (4), we see that

$$
\begin{align*}
g_{k}(b) & =\min _{x_{k}}^{\min }\left[x_{k}^{2}+\left(b-x_{k} a_{k}\right)^{\top} R_{k-1}\left(b-x_{k} a_{k}\right)\right] \tag{20}\\
& =\min _{x_{k}}^{\min }\left[\left(1+a_{k}^{\top} R_{k-1} a_{k}\right) x_{k}^{2}+b^{\top} R_{k-1} b-2 b^{\top} R_{k-1} a_{k} x_{k}\right] .
\end{align*}
$$

From the first-order condition for minimization, we find

$$
\begin{equation*}
x_{k}=\frac{b^{\top} R_{k-1} a_{k}}{1+a_{k}^{\top} R_{k-1} a_{k}} \tag{21}
\end{equation*}
$$

Upon substituting this value for x_{k} in equation (20), we find, after some simplification,

$$
\begin{equation*}
g_{k}(b)=b^{\top} R_{k} b \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{k}=R_{k-1}-\frac{R_{k-1} a_{k} a_{k}^{\top} R_{k-1}}{1+a_{k}^{\top} R_{k-1} a_{k}} \tag{23}
\end{equation*}
$$

In equation (23), the denominator is never zero since R_{k-1} is assumed to be positive semidefinite. If we introduce the vector β_{k} by

$$
\begin{equation*}
\beta_{k}=R_{k-1} a_{k}, \tag{24}
\end{equation*}
$$

then we may write

$$
\begin{equation*}
R_{k}=R_{k-1}-\frac{\beta_{k} \beta_{k}^{\top}}{1+a_{k}^{\top} \beta_{k}} \tag{25}
\end{equation*}
$$

It is clear that the right side of the above equation,

$$
\begin{equation*}
R_{k-1}-\frac{\beta_{k} \beta_{k}^{\top}}{1+a_{k}^{\top} \beta_{k}} \tag{26}
\end{equation*}
$$

is symmetric, and from the definition of $g_{k}(b)$ in equation (20) must be positive semidefinite. Equation (21) also takes the form

$$
\begin{equation*}
x_{k}=\frac{b^{\top} \beta_{k}}{1+a_{k}^{\top} \beta_{k}} . \tag{27}
\end{equation*}
$$

B. Independent Vectors

Now let us pass to the case in which a_{k} is linearly independent of the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. Equations (5) and (6) now come into play. Also, a criterion for whether or not a_{k} is linearly dependent on the earlier vectors, $a_{1}, a_{2}, \ldots, a_{k-1}$, will emerge. We see that

$$
\begin{equation*}
f_{k}(b)={ }_{x_{k}}^{\min }\left(b-x_{k} a_{k}\right)^{\top} Q_{k-1}\left(b-x_{k} a_{k}\right) \tag{28}
\end{equation*}
$$

Since the expression on the right is merely a quadratic function of the scalar x_{k}, differentiation yields the condition for optimality that

$$
\begin{equation*}
x_{k}=\frac{b^{\top} Q_{k-1} a_{k}}{a_{k}^{\top} Q_{k-1} a_{k}} . \tag{29}
\end{equation*}
$$

Later we shall see that, in this case, the denominator is actually positive. Substituting this value for x_{k} into equation (28) yields

$$
\begin{equation*}
f_{k}(b)=b^{\top} Q_{k} b \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{k}=Q_{k-1}-\frac{Q_{k-1} a_{k} a_{k}^{\top} Q_{k-1}}{a_{k}^{\top} Q_{k-1} a_{k}} \tag{31}
\end{equation*}
$$

By introducing the vector

$$
\begin{equation*}
\alpha_{k}=Q_{k-1} a_{k}, \tag{32}
\end{equation*}
$$

equation (31) takes the form

$$
\begin{equation*}
Q_{k}=Q_{k-1}-\frac{\alpha_{k} \alpha_{k}^{\top}}{\alpha_{k}^{\top} a_{k}} \tag{33}
\end{equation*}
$$

and equation (29) becomes

$$
\begin{equation*}
x_{k}=\frac{\alpha_{k}^{\top} b}{a_{k}^{\top} \alpha_{k}} \tag{34}
\end{equation*}
$$

We now wish to show, by induction, that α_{k} is the component of a_{k} that is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. We define $Q_{0}=I$ and have

$$
\begin{align*}
& \alpha_{1}=Q_{0} a_{1}=a_{1} \\
& Q_{1}=Q_{0}-\frac{\alpha_{1} \alpha_{1}^{\top}}{a_{1}^{\top} \alpha_{1}} \tag{35}\\
& Q_{1}=I-\frac{\alpha_{1} \alpha_{1}^{\top}}{\alpha_{1}^{\top} \alpha_{1}} \tag{36}
\end{align*}
$$

It follows that

$$
\begin{equation*}
Q_{1} a_{1}=0 \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{1} v=v, \quad\left(v \text { such that } \alpha_{1}^{\top} v=0\right) \tag{38}
\end{equation*}
$$

Thus, $Q_{1} a_{2}=\alpha_{2}$ is the component of a_{2} that is orthogonal to $a_{1}=\alpha_{1}$. Thus, a_{2} has the form $a_{2}=\alpha_{2}+s a_{1}$, where s is a scalar.

To complete the inductive proof, we assume that α_{l} is the component of a_{l} that is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{l-1}$, for $l=2,3, \ldots, k$. We must show that α_{k+1} is the component of a_{k+1} that is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{k-1}, a_{k}$. By definition,

$$
\begin{align*}
\alpha_{k+1} & =Q_{k} a_{k+1} \\
& =\left(Q_{k-1}-\frac{\alpha_{k} \alpha_{k}^{\top}}{a_{k}^{\top} \alpha_{k}}\right) a_{k+1} . \tag{39}
\end{align*}
$$

First we see that

$$
\begin{equation*}
0=\left(Q_{k-1}-\frac{\alpha_{k} \alpha_{k}^{\top}}{a_{k}^{\top} \alpha_{k}}\right) a_{p} \tag{40}
\end{equation*}
$$

where $p=1,2,3, \ldots, k-1$. This is because α_{k} is orthogonal to $a_{1}, a_{2}, \ldots, a_{k-1}$. Furthermore, $Q_{k-1} a_{p}$ is the component of a_{p} which is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. This component, of course, is the null vector. When $p=k$, the equality above holds because

$$
\begin{equation*}
Q_{k-1} a_{k}-\left(\frac{\alpha_{k} \alpha_{k}^{\top}}{a_{k}^{\top} \alpha_{k}}\right) a_{k}=\alpha_{k}-\alpha_{k}=0 \tag{41}
\end{equation*}
$$

Thus, α_{k+1} is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{k}$. In addition,

$$
\begin{equation*}
Q_{k}=I-\sum_{l=1}^{k} \frac{\alpha_{l} \alpha_{l}^{\top}}{a_{l}^{\top} \alpha_{l}}, \tag{42}
\end{equation*}
$$

where the prime indicates that terms with zero denominators are omitted, so that if v is a vector such that $\alpha_{l}^{\top} v=0, l=1,2,3, \ldots, k$, then $Q_{k} v=v$. Thus,

$$
\begin{equation*}
Q_{k} \alpha_{k+1}=\alpha_{k+1} \tag{43}
\end{equation*}
$$

It follows that α_{k+1} is the component of a_{k+1} that is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{k}$. Thus,

$$
\begin{equation*}
a_{k+1}=\alpha_{k+1}+\text { lin. comb. of } a_{1}, a_{2}, \ldots, a_{k} . \tag{44}
\end{equation*}
$$

From the above representation, we also see that

$$
\begin{equation*}
\alpha_{k+1}^{\top} a_{k+1}=\alpha_{k+1}^{\top} \alpha_{k+1}, \quad k=0,1,2, \ldots, n-1 . \tag{45}
\end{equation*}
$$

Thus, the basic recurrence relation

$$
\begin{equation*}
Q_{k}=Q_{k-1}-\frac{\alpha_{k} \alpha_{k}^{\top}}{a_{k}^{\top} \alpha_{k}} \tag{46}
\end{equation*}
$$

may be restated as

$$
Q_{k}=Q_{k-1}-\frac{\alpha_{k} \alpha_{k}^{\top}}{\alpha_{k}^{\top} \alpha_{k}}, \quad k=1,2, \ldots, n .
$$

From the discussion above, it is clear that the determination of whether or not the vector a_{k} is linearly dependent on the set of vectors $a_{1}, a_{2}, \ldots, a_{k-1}$ depends upon the vector α_{k}. If $\alpha_{k}=0$,
then a_{k} is linearly dependent upon the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. Otherwise, it is independent of them.
The recurrence relation (6) leads to the recurrence relation for R_{k},

$$
R_{k}=\left(\alpha_{k}^{+}\right)^{\top} \alpha_{k}^{+}+\left(I-a_{k} \alpha_{k}^{+}\right)^{\top} R_{k-1}\left(I-a_{k} \alpha_{k}^{+}\right)
$$

And the equation for x_{k} becomes

$$
\begin{align*}
x_{k} & =\frac{\alpha_{k}^{\top} b}{\alpha_{k}^{\top} \alpha_{k}} \\
& =\alpha_{k}^{+} b .
\end{align*}
$$

THE $\alpha Q \beta R$ ALGORITHM

Let us now specify the $\alpha Q \beta R$ algorithm for solving the least squares problem $A x \cong b$. There are two sweeps, one forward and one backward.

A. Forward Sweep to Compute and Store Auxiliary Vectors

In the forward sweep, we set

$$
\begin{align*}
& \alpha_{1}=a_{1}, \tag{47}\\
& Q_{1}=I-\frac{\alpha_{1} \alpha_{1}^{\top}}{\alpha_{1}^{\top} \alpha_{1}}=I-a_{1} \alpha_{1}^{+}, \tag{48}\\
& R_{1}=\left(a_{1}^{+}\right)^{\top} a_{1}^{+} . \tag{49}
\end{align*}
$$

Then, for each value of $k, k=2,3, \ldots, n$, there are two cases. If

$$
\begin{equation*}
\alpha_{k}=Q_{k-1} a_{k}=0, \tag{50}
\end{equation*}
$$

then

$$
\begin{align*}
Q_{k} & =Q_{k-1} \tag{51}\\
\beta_{k} & =R_{k-1} a_{k}, \tag{52}\\
R_{k} & =R_{k-1}-\frac{\beta_{k} \beta_{k}^{\top}}{1+a_{k}^{\top} \beta_{k}} . \tag{53}
\end{align*}
$$

If, on the other hand,

$$
\begin{equation*}
\alpha_{k}=Q_{k-1} a_{k} \neq 0 \tag{54}
\end{equation*}
$$

then

$$
\begin{align*}
\alpha_{k}^{+} & =\frac{\alpha_{k}^{\top}}{\alpha_{k}^{\top} \alpha_{k}} \tag{55}\\
Q_{k} & =Q_{k-1}-\alpha_{k} \alpha_{k}^{+} \tag{56}\\
R_{k} & =\left(\alpha_{k}^{+}\right)^{\top} \alpha_{k}^{+}+\left(I-a_{k} \alpha_{k}^{+}\right)^{\top} R_{k-1}\left(I-a_{k} \alpha_{k}^{+}\right) \tag{57}
\end{align*}
$$

Only the vectors $\alpha \mathrm{s}$ and $\beta \mathrm{s}$ need to be saved for the backward sweep.

B. Return Sweep to Compute Minimal Norm Vector Solution

In the return sweep, the components of the vector x, namely, $x_{n}, x_{n-1}, \ldots, x_{1}$, are determined in that reverse order as follows. First we put

$$
\begin{equation*}
b_{n}=b \tag{58}
\end{equation*}
$$

Then, if $\alpha_{n}=0$,

$$
\begin{equation*}
x_{n}=\frac{b_{n}^{\top} \beta_{n}}{1+a_{n}^{\top} \beta_{n}} \tag{59}
\end{equation*}
$$

But if $\alpha_{n} \neq 0$, then

$$
\begin{equation*}
x_{n}=\frac{b_{n}^{\top} \alpha_{n}}{\alpha_{n}^{\top} \alpha_{n}} . \tag{60}
\end{equation*}
$$

Next, for $k=n-1, n-2, \ldots, 1$, we set

$$
\begin{equation*}
b_{k}=b_{k+1}-x_{k+1} a_{k+1} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{k}=\frac{b_{k}^{\top} \beta_{k}}{\left(1+a_{k}^{\top} \beta_{k}\right)}, \quad \text { if } \alpha_{k}=0 \tag{62}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{k}=\frac{b_{k}^{\top} \alpha_{k}}{\alpha_{k}^{\top} \alpha_{k}}, \quad \text { if } \alpha_{k} \neq 0 \tag{63}
\end{equation*}
$$

C. Procedure for $\alpha Q \beta R$ Dynamic Programming Algorithm

The algorithm is described by the following procedure.

1. Input the A matrix and the b vector
2. Sweep forward from columns 1 through n and store the $n \alpha$ and $n \beta$ vectors
a. Column 1
i. Initialize α_{1}, Q_{1}, and R_{1} using equations (47)-(49)
ii. Define Q_{k-1} and R_{k-1}
b. Column $k=2,3, \ldots, n$
i. Compute α_{k} using equation (32)
ii. Test length of α_{k} against a tolerance
(a) If length is less than tolerance, use equations (51)-(53) to compute Q_{k}, β_{k}, and R_{k}, and store
(b) If length is greater than tolerance, use equations (55)-(57) to compute Q_{k} and R_{k}, and store; no β_{k} is needed
iii. Shift current Q_{k} and R_{k} into Q_{k-1} and R_{k-1}
3. Sweep backward and determine the components of the vector x from the $n^{\text {th }}$ component to the first
a. Initialize the b_{k} vector for $k=n$
i. Set $b_{n}=b$
ii. Compute x_{n} using (59) or (60)
b. Component $k=n-1, n-2, \ldots, 1$
i. Modify b_{k} using equation (61)
ii. Test length of α_{k} against tolerance
(a) If length is less than tolerance, use equation (62) to compute x_{k}
(b) If length is greater than tolerance, use equation (63) to compute x_{k}
4. Output x and other results as desired

GENERALIZED INVERSES AND $\alpha Q \beta R$

In view of the fact that the solution of the minimal norm least squares problem $(A x-b)^{\top}(A x-$ $b)=\min$ can be obtained by the $a Q b R$ algorithm, it is natural to seek the pseudoinverse of A, denoted A^{+}, through the algorithm. We now show how this may be done. The key to doing this is the Greville sequential method [8].

Greville's algorithm shows how to pass from a knowledge of A_{k-1}^{+}, the pseudoinverse of A_{k-1}, to the pseudoinverse A_{k}^{+}of the matrix A_{k}. There are, of course, two cases to consider. In Greville's algorithm, the determination is made by considering the vector $c=\left(I-A_{k-1} A_{k-1}^{+}\right) a_{k}$. The vector c represents the component of a_{k} that is orthogonal to the columns of A_{k-1}. We see this from $a_{k}=c+A_{k-1} A_{k-1}^{+} a_{k}$. That the vector c is orthogonal to the columns of A_{k-1} follows from

$$
\begin{align*}
c^{\top} A_{k-1} & =a_{k}^{\top}\left(I-A_{k-1} A_{k-1}^{+}\right) A_{k-1} \tag{64}\\
& =0 .
\end{align*}
$$

First let us consider the case in which $c \neq 0$. This means that the vector a_{k} has a component that is orthogonal to the vectors $a_{1}, a_{2}, \ldots, a_{k-1}$. Consequently, this is the case in which a_{k} is not linearly dependent upon $a_{1}, a_{2}, \ldots, a_{k-1}$.

The Greville updating is given by

$$
\begin{equation*}
A_{k}^{+}=\binom{A_{k-1}^{+}-A_{k-1}^{+} a_{k} c^{+}}{c^{+}} \tag{65}
\end{equation*}
$$

which requires a knowledge of the vector c, in addition to A_{k-1}^{+}and a_{k}. But the $\alpha Q \beta R$ algorithm provides the vector α_{k}, which is the component of a_{k} that is orthogonal to $a_{1}, a_{2}, \ldots, a_{k-1}$, as we saw earlier. Thus, when A_{k-1}^{+}, a_{k}, and α_{k} are known, we may determine A_{k}^{+}as

$$
\begin{equation*}
A_{k}^{+}=\binom{A_{k-1}^{+}-A_{k-1}^{+} a_{k} \alpha_{k}^{+}}{\alpha_{k}^{+}} \tag{66}
\end{equation*}
$$

The second case is that in which $c=0$. In this case, $a_{k}=A_{k-1} A_{k-1}^{+} a_{k}$, so that the vector a_{k} is linearly dependent on the columns of the matrix A_{k-1}. Greville's updating is given by the formula

$$
\begin{equation*}
A_{k}^{+}=\binom{A_{k-1}^{+}-A_{k-1}^{+} a_{k} v^{\top}}{v^{\top}} \tag{67}
\end{equation*}
$$

where

$$
\begin{equation*}
v=\frac{\left(A_{k-1}^{+}\right)^{\top} A_{k-1}^{+} a_{k}}{1+a_{k}^{\top}\left(A_{k-1}^{+}\right)^{\top} A_{k-1}^{+} a_{k}} \tag{68}
\end{equation*}
$$

To interpret these relations from the point of view of the $\alpha Q \beta R$ algorithm, we recall that

$$
\begin{align*}
g_{k}(b) & =\text { the smallest square of the length of the vector } x_{k} \text { which minimizes }\left|A_{k} x^{k}-b\right|^{2} \tag{69}\\
& =b^{\top} R_{k} b .
\end{align*}
$$

On the other hand, we know the solution is

$$
\begin{equation*}
x^{k}=A_{k}^{+} b, \tag{70}
\end{equation*}
$$

so that we may write

$$
\begin{equation*}
g_{k}(b)=b^{\top}\left(A_{k}^{+}\right)^{\top} A_{k}^{+} b . \tag{71}
\end{equation*}
$$

Thus, we see that

$$
\begin{equation*}
R_{k}=\left(A_{k}^{+}\right)^{\top} A_{k}^{+}, \quad k=1,2, \ldots, n \tag{72}
\end{equation*}
$$

This enables us to write

$$
\begin{align*}
v & =\frac{R_{k-1} a_{k}}{1+a_{k}^{\top} R_{k-1} a_{k}}, \tag{73}\\
v & =\frac{\beta_{k}}{1+a_{k}^{\top} \beta_{k}}, \tag{74}
\end{align*}
$$

which expresses the vector v in terms of β_{k}.
These relations show how the updating of A_{k-1}^{+}to A_{k}^{+}is accomplished in terms of either α_{k} or β_{k}, depending on whether $\alpha_{k} \neq 0$ or $\alpha_{k}=0$.

DISCUSSION

The new algorithm has been tested and used in a number of ways. Computational experiencewith testing for dependence/independence, effect of near-dependency of vectors, accumulation of round-off errors, and applications in physical and estimation problems [4-8]-is being gained, and results are being reported in the literature. Clearly, much more remains to be done in this area.

The two cost functions introduced here are new to dynamic programming [3], and promise greater extensions of the theory in the future. We know the properties of the auxiliary matrices, the $Q \mathrm{~s}$, of symmetry, positive semidefiniteness, and idempotency. Yet, while this paper advances the theory of dynamic programming, it raises a number of questions. Are there interpretations for the β_{s} and the $R \mathrm{~s}$ similar to those for the $\alpha \mathrm{s}$ and $Q \mathrm{~s}$? Do the Q_{s} and $R \mathrm{~s}$ directly give the generalized inverse, which plays a major role in least squares problems? $Q \mathrm{~s}$ and $R \mathrm{~s}$ contain, clearly, information that is equivalent to that of the generalized inverse. We shall expand on this in a subsequent paper.

REFERENCES

1. R.E. Kalaba, H. Natsuyama, S. Ueno and R. Xu, The Bellman-Gauss principle for constrained motion, Computers Math. Applic. 37 (11/12), 1-7, (1999).
2. C. Lawson and R. Hanson, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ, (1974).
3. R. Bellman and R.E. Kalaba, Dynamic Programming and Modern Control Theory, Academic Press, New York, (1965).
4. R.E. Kalaba, H.H. Natsuyama and S. Ueno, The estimation of parameters in time-dependent transport problems: Dynamic programming and associative memories, Computers Math. Applic. 37 (2), 41-45, (1999).
5. R.E. Kalaba, H.H. Natsuyama and S. Ueno, Regression analysis via dynamic programming: I. Theory, In The $30^{\text {th }}$ ISCIE International Symposium on Stochastic Systems Theory and Its Applications, (November 1998).
6. R.E. Kalaba, H.H. Natsuyama and S. Ueno, Regression analysis via dynamic programming: II. Computational results, In The $30^{t h}$ ISCIE International Symposium on Stochastic Systems Theory and Its Applications, (November 1998).
7. C. Itiki, R.E. Kalaba and H. Natsuyama, Estimation of parameters of a lower limb model, Proc. Fourth Int. Symp. on Artificial Life, Computers Math. Applic. 37, 1-7, (1999).
8. F. Udwadia and R. Kalaba, Analytical Dynamics, Cambridge Univ. Press, New York, (1996).
