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1. INCIDENCE MATRICES AND THE SPERNER PROPERTY

In his 1928 paper [29], Sperner proved that the maximum size of a
collection of pairwise incomparable subsets of an n-element set equals

e ‘Kz)} B (rn721>’

where [ x7], the ceiling of x, is the least integer m such that m>= x;
moreover, the collection consisting of all the subsets of size [n/27] is a
collection attaining this maximum. Sperner’s theorem founded two major
areas of combinatorics, extremal set theory (see, for example, [1, 12]) and
the study of the Sperner property in (partially) ordered sets. This paper
belongs to the second area.

An antichain in an ordered set P is a subset of elements of P, no two of
which are comparable. An ordered set P with a minimum 0 is said to be
ranked if for every element x in P, every saturated chain from 0 to x has
the same length. This common length is defined to be the rank of x.
The Whitney numbers (of the second kind) W(P; k) of P is the sequence
defined by W(P; k)= |P(k)|, where P(k) is the set of rank-k elements in P.
A ranked ordered set is said to be Sperner if the maximum size of an
antichain in P equals max{W(P;k)}, the maximum Whitney number. In
this terminology, Sperner’s theorem says that the Boolean algebra of sub-
sets of an n-element set ordered by containment is Sperner. Almost all the
proofs {see [1, 2, 12, 13, 23, 24, 29, 311]) of Sperner’s theorem are based on
the following regularity property: the number of subsets covering (or
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covered by) a given k-element subset depends only on n and k. This
regularity property is shared by subspaces and the proofs carry over to
lattices of subspaces of a finite vector space. Motivated by these results,
Rota [28] asked in 1967 whether partition lattices, and more generally,
geometric lattices, are Sperner. The answer to both questions is negative.
Dilworth and Greene [7] found examples of non-Sperner geometric
lattices and Canfield [4] showed that for sufficiently large n, the partition
lattice of rank » is not Sperner. (See also [11, 14,16].)

The motivation behind this paper is the following conjecture. Let G be
a finite geometric lattice. Let .#(G;k,/)} be the incidence matrix with
columns indexed by G(k) and rows indexed by G(/) with the X, U-entry 1
if X = U and 0 otherwise.

(1.1) Conjecture. Let G be a finite geometric lattice of rank » and
k < n/2. Then the rank of the incidence matrix #(G;k, k+ 1) of rank-k
elements versus rank-(k + 1) elements equals W(G; k).

This conjecture implies two difficult conjectures. Let G be a geometric
lattice. The truncation Trun,,[G] of G to rank m is the lattice obtained by
identifying all the elements in G of rank at least m; Trun,[G] is a
geometric lattice of rank m.

(1.2) LEMMA. Let G be a rank-n geometric lattice in which the incidence
matrix M (G; k, k + 1) has rank W(G; k) for all k less than n/2. Then,

W(G,0) < W(G; 1) S W(G;2)< --- S W(G; [Tnf27))

and the truncation Trun;, ., (G) is Sperner.

Proof. The inequalities follow from that fact that the number of rows in
a matrix is at least its rank. Now observe that when k <n/2, #(G; k, k+ 1)
contains a nonsingular square submatrix of size W(G; k). Because the
determinant of this submatrix is nonzero, one of the terms in its expansion
is nonzero. The permutation associated with that term gives an injection
g« G(k) - G(k + 1) such that for all X e G(k), X < g.(X). These injections
yield a decomposition of Trun,[G] into W(G; [ n/27) chains. Hence, by
Dilworth’s chain decomposition theorem [6], the maximum size of an
antichain in Trun,,-,, [G]is W(G;[n/27). |

The inequality in Lemma 1.2 can be regarded as the “lower half” of the
conjecture [17] that the Whitney numbers form a unimodal sequence.

These are three reasons for making Conjecture 1.1. First, the Dowling-
Wilson theorem ([9]; also see Sections 2 and 3), viewed from the theory
of combinatorial Radon transforms [20-227, suggests a way to prove the
conjecture by first reconstructing upwards. The need to go up is why #/2
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is a natural limit for a proof using Radon transforms. The second reason
is that most of the proofs that lattices of subsets or subspaces are Sperner
first prove that their truncation down to [n/27] is Sperner and then use
the fact that these lattices are isomorphic to their order duals. [The
“bracketing” proof (see [1, 12]) yielding an explicit chain decomposition
for the lattice of subsets is an exception.] The last reason is that the conjec-
ture holds for lattices of subsets and subspaces. This was proved by Kantor
in [18] using elementary group theory; we give a more combinatorial
proof in Section 3.

We remark that Conjecture 1.1 is false for arbitrary 4. For exampile,
Canfield’s method in [47] shows that when # is sufficiently large, the matrix
M(IT,;n—K,—1,n—K,), where K, is the integer at which the Stirling
number S(n, k) of the second kind is maximum, is singular. It is known
[5,15,26] that K, ~n/log n. It is also true that when »> 10, the matrix
M(L(G,); K, K+ 1), where L(G,) is the non-Sperner bond lattices
constructed in [7], 1s singular for K= 2n/3.

Our main aim in this paper is to verify Conjecture 1.1 for partition
lattices and hence, provide an affirmative answer to the lower half of Rota’s
question about the partition lattice.

(1.3) THEOREM. Let k <nj2. Then the incidence matrix #(I1, , ; k, k+ 1)
has rank W(II, \; k). In particular, the truncation Trun, .-, [M, ] is
Sperner.

In Sections 2 and 4, we recall those portions of the theory of com-
binatorical Radon transform and Moébius functions needed in the proof.
The proof itself occupies Section 5.

2. RADON TRANSFORMS AND A MOBIUS FUNCTION IDENTITY

Incidence matrices are matrices associated with (combinatorial) Radon
transforms. Let G be a geometric lattice and let f: G — Q be a function
defined from the flats in G to the rational numbers Q. The function f'is said
to be supported on a subset H of flats if f(X) equals zero unless X is in H.
The Radon transform 7 is the linear transformation defined from the
rational vector space of functions defined from G to @ given by

Tf(x)= ) f(Y)

Y:¥Y<X

A function f supported on H is said to be reconstructible from its Radon
transform Tf restricted to the subset K if f is uniquely determined by
the function Tf|.: K— Q, or, equivalently, if the linear transformation
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S=Tflx is injective. The matrix of the Radon transform f|,~ Tf]|x
relative to the standard basis of delta functions é,(Y)=11if Y=X and 0
otherwise is the incidence matrix of H versus K. Hence, the rank of the
incidence matrix equals {H| if and only if every function f supported on H
is reconstructible from its restricted Radon transform 7f] .

A fundamental fact used in reconstructing Radon transforms is the
following M6bius function identity due to Doubilet [8] and Dowling and
Wilson [9]. Algebraic proofs are given in [8, 9]; a simple-minded proof is
given in [21,22].

(2.1) LemMma. Let f: G— Q be a function defined on the finite lattice G.
Then

Y wY.DI(Y)= Y  fU)

Y:Xs¥Y<Z U:uvix=27

Our first use of (2.1) is to prove a result due to Dowling and Wilson
([91]; see, in particular, the remark on p. 510) which is needed in Section 3.

(2.2) TueoreM (Dowling and Wilson). Let G be a geometric lattice of
rank n and k < nj2. A function f: G — Q supported on G(1) U G(2)u --- U G(k)
can be reconstructed from its Radon transform Tf restricted to G(n—k)u
Gn—k+1)u ---uGn-1)

Proof. We use implicitly the fact (due to Rota [27]) that the Mdbius
function u(X, 1) is nonzero in a geometric lattice.

By the submodular inequality, if rank(U)}<k and rank(X)<n—k,
then rank(U)+rank(X)<n and U v Z#1. Hence, by Lemma 2.1, if
rank(X})<n—k, then

1 .
Tf(X) = — Y, 1) I7(¥) |- 2.1
7(X) u(X,T)[y:xgy@#( ) TS )] (2.1)

(2.3) LEMMA.

T(X) = )3

Y:n—-k<rank(Y)<n

(#( Y, ) p'(X, Y)
u(x, 1)

where 1 (X, Y) is the Mobius function evaluated from the minimum X to the
maximum Y in the truncation Trun, , aex) 1 L[X, Y]] of the interval
[X, Y]

Proof. Using Eq. (2.1) and induction down the lattice, we obtain

)Tf(Y),

Tf(X) = > (X, Y) IAY),

Y:n—k<rank(Y)<n
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where

m— |

p X Y)= 3 (=1)" T] Ay, T4, 1),
(A4 i=0
the sum being over all strictly increasing chains X =A< A4, < --- <A,
=Y such that rank(A4,, _,)<n—k. However, because the numerator and
denominator of adjacent terms are equal, the product inside the sum
telescopes and equals u( ¥, 1)/u(X, 1). Hence,

yx, vy =A%) 9(2 (—1)m).

w(X, 1) \eay
But, by Philip Hall’s theorem (see [27, p. 346]),

Y(="=4'(X,Y). 1
()
Let M be a variable standing for the unknown Radon transform Tf(1).
By Lemma 2.3 and the fact that f'is supported on G(1) U G(2) v --- U G(k),

0=/10)=Tf(0)=a+ BM,

where a and f§ are known rational numbers and = u*(0, 1)/u(0, 1) is non-
zero. Thus, we can solve for M and use Lemma 2.3 to reconstruct the
Radon transform Tf on all of G. Once we know T, f can be reconstructed
using Md&bius inversion. |}

3. LocaLLYy PROJECTIVE LATTICES

Before embarking in the proof of Theorem 1.3, we prove Conjecture 1.1
for geometric lattices with a strong regularity property.

(3.1) THEOREM. Let O<k<m<n—k andlet G be a geometric lattice of
rank n satisfying the following regularity property: There exist positive
integers c¢,, m+1<r<m+k—1, such that for every rank-k flat L and
rank-r flat X, the number of rank-m flats U such that L < U < X equals the

constant c,.
Then W(G, k)< W(G,m) and the rank of the incidence matrix
M(G; k, m) equals W(G, k).

Proof. 1t suffices to show that a function f: G — @ supported on G(k)
can be reconstructed from its Radon transform 7f: G(m) — Q restricted to
the rank-m flats.
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We begin by reconstructing the values of the Radon transform Tf(X)
for a rank-r flat X, where m+ | <r<m+k— 1. This is done using the
equation

) THU)= )

U:raok(U})=mand U< X U:rank(U)=m and U'< X

| s |

L:rank{L)=k and L< U

= Y f(L).
L, U:rank(L)=k, rank(U)=m and L< U< X
Each function value f(L) contributes as many times to this sum as there
are flats U such that L < U < X. Hence, this sum equals

Y. o f(L)y=c Tf(X).
L:L<X
Since ¢, 1s nonzero, Tf(X) is reconstructed. We can now reconstruct f using
Lemma 2.2. |

Besides Boolean algebras of subsets, natural examples of lattices satis-
fying the regularity property in Theorem 3.1 are Jocally projective lattices
introduced by Kantor [ 19]. These are lattices in which every proper upper
interval [U, 1] is isomorphic to the lattice of flats of a projective
geometry. In particular, projective and affine geometries have locally
projective lattices of flats. Affine geometries are obtained by deleting a
hyperplane from projective geometries; in fact, if one deletes g— 1
hyperplanes H,, H,, .., H, | with intersection [} H, a flat of codimension
2 from the projective geometry PG(n, q) of dimension » over the finite field
GF(q), then the remaining points, consisting of the disjoint union of
two affine geometries of dimension n— 1, has a locally projective lattice
of flats.

(3.2) COROLLARY. Let G be a locally projective lattice and k and | be
integers satisfying 0<k<lI<n—k. Then #(G;k, 1) has rank equal to
W(G, k).

Since the lattice L(n, gq) of flats of PG(n—1, g) is isomorphic to its
order dual, Corollary 3.2 yields another proof of a result of Kantor [18].

The g-binomial coefficient (), is the number of flats of dimension m in
PG(n—1, q).

(3.3) CorOLLARY. The rank of the incidence matrix between the flats
of dimension k and the flats of dimension | in PG(n—1,q) equals

min{(;),, (}),}-

607 101 1-9
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4. PARTITION LATTICES

We prove Theorem 1.3 using the fact that partition lattices have
regularity properties similar to the property in Theorem 3.1. We first recall
several elementary facts about the partition lattice, due to Birkhoff [3] and
Ore [25].

A partition 1 of the set S is a collection of nonempty pairwise-disjoint
subsets By, B,, .., B, called parts such that the union B,u B,u --- UB,
equals S. A part containing exactly one element is said to be trivial. We
write

1=B ®B,® --- ®B,.

If n= @ B, is a partition of S, o =@ C, is a partition of 7, and S and T
are disjoint, the partition 7@ ¢ is the partition of S 7 with parts B, and
C,. Partitions can be ordered by reverse refinement: n <o if every part of
7 is contained in a part of 6. Under this order, the partitions of a finite set
S form a geometric lattice 77(S). Its maximum 1 is the partition with
exactly one part and its minimum 0 is the partition with |S] trivial parts.

We denote the lattice of partitions of {1,2,..,n} by IT,. The rank of a
partition 7 in /7, is given by

rank(n) = n — number of parts in 7.

In particular, the maximum partition {1,2,..,n} has rank n—1. This
shifting of the rank leads to a notational morass. We avoid most of this
by working with the rank-n lattice 77,,, of partitions of the set
{1,2,.,n+t}. To avoid shifting subscripts, we denote the rank-n
partition lattice by Q,,.

The partition lattice Q, satisfies two regularity properties. The first is
that it is upper homogeneous, that is,

[na 1] = Qn — rank(x)

for every partition n. The second property concerns all intervals. Let 7 < g.
If 6=C,®C,;®---®C,, then n=n,®n,® --- Dn,, where =, is a
partition of C,. The interval [n, o] is determined up to isomorphism by the
ranks of the partitions 7; in the following way:

[7[, 0’] = [7[1, CI] X [7[2, C2] X e X [7[,,, Cp]
= Qranlel)n rank(n|) X Qrank(Cg)— rank{m;) X e X Qrank((‘,,) - rank(m,)*

Note that rank(C,)=|C,;/ — 1. Suppose that [0,c]=Q, xQ,x --- xQ, ,
where ¢,2 1 for all i. The rype of ¢ is the multiset 7,, ¢, ..., ¢,,, written in
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the following way: ¢, B, ® --- @©1t,,. The height ht(s) is the maximum
integer max{¢,} in its type. The extent ex(c) of ¢ is defined by

ex(my=t,+1,+ - +1,+m.

The extent is the size of the set obtained by taking the union of the non-
trivial parts of o.

We denote the Whitney numbers of O, by W(n, k). These numbers are
related to the Stirling numbers by the relation

Wn, k)y=S(n+1,n+1—-k).

In particular, W(n, 1)=("3"). The M&bius function of @, was computed
by Rota in [27]. For upper intervals, it is given by the formula

pu(m, 1) = (—1)" &) (n — rank(n))\.

(4.1) LEMMA. 3 _o (= 1) /' (r—j+ DU W(r, jy=(—1)""".
Proof. The identity follows from Stirling’s formula [30]

x ! =ri S(r+1, )x(x—1Hx~2)---(x—j+ 1)

J=1
evaluated at x=—1. |

We use the following notation. If s={(s;,s,,..,5,) 1s a p-tuple
and t=(¢,,1,,..,¢) is an r-tuple, then (s,t) is the (p+r)-tuple
(S15 S35 s 8,5 11, L2, ..., 1,) Obtained by concatenating s and t.

5. RECONSTRUCTION

In this section, we prove Theorem 1.3 by showing that when k <n/2, a
function f: Q, — Q supported on the rank-k partitions can be reconstructed
from its Radon transform T restricted to the rank-(k + 1) partitions.

We first observe that since k <n/2, n> 2k + 1. Moreover, every rank-&k
partition = is less than a partition consisting of a single nontrivial part of
size 2k + 2. Relabelling if necessary, we may assume that this partition is
{1,2,.,2k+2}@{2k+3}® --- @ {n+1}. By deleting the trivial parts
{2k +3},.., {n+1}, n may be regarded as a partition of {1, 2,..,2k+2}
in the lattice Q. ,. We show that f(r) can reconstructed from the values
of the Radon transforms Tf(¢), where ¢ ranges over all the rank-(k+1)
partitions in Q5. .



122 JOSEPH P. S. KUNG

Let = be the partition B,® B,® --- ® B, and r=(r,, r,, .., r,) be the
p-tuple of integers such that r,=|B;| — 1. Let s=(s,, 55, ..., 5,,) be a p-tuple
of integers such that 0<s,<r, and s, +5,+ --- +5,=k. Define X,(s) as

Xos)= 2 J(@),

aia=@ o, < r, rank(z) =4,

where the sum ranges over all rank-k partitions a =a; Qa, ® --- @ «, such
that «, is a rank-s, partition of B,. Let % , be the set of p-tuples
(51552, .,5,) such that 0<s;<r,and s, +5,+ -+ +5,=k.

The idea behind the reconstruction is to find and solve systems of linear
equations in the unknowns X (s). When the unknowns X _(s) are found,
Tf(n) can be obtained using the following obvious lemma.

(5.1) Lemma. Tf(m)=3, ., , X.(s)

Most of our equations for the unknowns X (s) are a consequence of the
following counting lemma.

(5.2) LEMMA. Let t=(t,,1,,...t,) be a p-tuple of integers such that
O0<t;,<r,. Then

2. Clts) X, (s)= )3 Tf(0), (E))

s:s<t g:0= o,<n, rankls,) =1,

where the left-hand sum ranges over all p-tuples s such that s;<t; the
right-hand sum ranges over all rank-(t,+1t,+ --- +1,) partitions
6=06,D0,® --- Do,, where o, is a rank-t, partition of B,, and

r
C(ts S)= l—l W(ri—si, ti_Si)'

i=1

Proof. Consider a rank-k partition x =0, @a,® --- Da,, Where o, is a
rank-s; partition of B,. The interval [«, ] is isomorphic to the product
QX QX - xQ, _, . Because there are W(r,—s,, 1,—s;) partitions
g; of rank ¢, in the interval [o,, B,], the function value f(x) occurs in
exactly [17_, W(r,—s,, t;—s;) Radon transforms in the right-hand sum.
Since the number [17_, W(r,~s,, t;—s;) depends only on the type of «, we
can group together function values f(x) of rank-k partitions « of the same
type to obtain the left-hand sum. |

The zeroth step in the reconstruction is to reconstruct the Radon
transform for partitions in @, , having height greater than k.
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(53) LeMMA. Let n=B @ B,® --- @B, where |B|—1>k, and
r;=|B]|—1. Let &, , be the set of p-tuples in &, , . | which are in the image
of the injection &, = & ., defined by

$+—§, (S1y 520 00y Sp 15 S) 3 (5], 82, 00y sp,+ 1)

14 p—1

Then, the system of equations E,, where t ranges over ¥ v x> 15 a system of I,VA; 2
linearly independent equations in the same number |, .| of unknowns X (s).

Proof. Let C=[C(t,s)] be the matrix of coefficients of the system E,.
Index the columns s',s% .. of C so that the pth component is non-
decreasing, that is, sj, sz; whenever / < j. Next, index the rows of C using
the injection s — §. Suppose that /> j. Because

sy+sh+ -+, <SSt 45

i PY;

ands'#¢/,§' =5’ <s/ for some m. When this is the case, W(r,,— s.,, §,, — s.,)
=0 and hence, C(§8,s')=0. In addition, the diagonal entry C(§',s’) is
Wi(r,— s;, 1), which equals the nonzero binomial coefficient

(rp—sf,,+l>
B .

We conclude that C is upper triangular with nonzero diagonal entries. J

EXAMPLE. Fork=3and n={1,2,3}® {4, 5,6, 7, 8}, the matrix C has
row Indices 2®2, 1®3, 084 and column indices 2® 1, 1 @2, 0@ 3 and

equals

By Lemma 5.3, we can solve for the unknowns X (s} in the system E, and
reconstruct 7f(n) using Lemma 5.1.

With the reconstruction of function values of partitions with height greater
than &, we have completed the zeroth step of the reconstruction. The remain-
ing steps consist of reconstructing inductively function values of partitions
with height r, where r =k, k— 1, ..., 2, 1. The crucial partitions are those of
the type rd@ 1@ --- ® 1 @r. For these partitions, the system E, has more
unknowns than there are equations. Fortunately, there is an extra equation
arising from the Mbius function identity in Lemma 2.1.

We use [m] to denote, depending on the context, the multiset with m 1’s
or the m-tuple with m 1’s; that is,

k times k times
P

[ml=1® ---®1 or [m]=(1,.,1).
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(5.4) ALTERNATING SuM LEmMMmA. Let [ and r be integers such that
I<k—r,k2zr, and2r=k+ 1. Let © be the partition

(L2, ., r+1}@{r+2,r+3}@{r+4,r+5}@ - @ {r+2Lr+2(+1}
@r+204+2,.,2r+ 242} ® {2r + 21+ 3}
@{2r+21+4}® --- ® {2k +2}

having type r@ [11®r. Then

i (—1y " X (k—I-m[I},m)=A+B, (Al 1)

m=0
where

(1) A is linear combination of Radon transforms Tf(w), where w has
height at least r + 1, and

(2) Bis a linear combination of values X (s), wheres = (m’, ..., 0, .., m"
is a {1+ 2)-tuple in which at least one of the middle | components is zero, or,
equivalently, m" + m”" >k — 1.

Proof. Let ¢ be the partition
(L2, ,r+1}@{r+2,r+3}@{r+4,r+5}® ---
@{r+2Lr+2+11@{r+2142}@®{r+2+3}
® - ®{2k+2}
of type r ® [/] and w be the partition

(L2, r+bu{r+242, ., 2r+ 2042} @ {r+2,r+3}® {r+4,r+5}
@ - ®r+2Lr+20+1}P{2r+ 21+ 3}
®{2r+214+4}® .- @ {2k + 2},

of type 2ra@([/]. The interval [o, w] is isomorphic to @,. Applying
Lemma 2.1, we obtain the equation

Y uro)If(= Y f(O)

Tig€ TS W Elvo=w
We simplify this equation in three steps.

(1) If 7¢[o,n], then at least one of the trivial parts {j},
r+214+2<<2r+2/+2, of o is contained in the part containing
{1,2,.,r+1} in 7. Hence, 7 has a part of size greater than r+2,
ht(z) = r + 1, and we can take the term involving Tf(t) to the right-hand side.

(2) If ¢vo=w, then ¢ has a part containing all the elements
r+214+2, r+21+3,..,2r+2l+2 and at least one element from the part
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{1,2,..,r+1}. Hence, £ has a part of size greater than »+ 2 and height at
least r + 1. Moreover, since ¢ 1s a rank-k partition, f(&)= Tf(£).

(3) The sum remaining on the right hand side equals
Y oz, o) If(1).
tire (o n]

If 7 is a partition in [, ], r < rank(z) < 2r and the Mdbius function u(t, w)
equals

(—1)¥ =) 2y — rank(t))!,

an integer depending only on rank(t). Hence, we can group together all the
partitions of rank r + j in [0, n] to obtain

Z (——1)"1“(r—j+1)![ Y Tf(r):I. (5.1)

r:1€ (o, n] and rank(t)=j
The inner sum can be expressed in terms of X (s) by counting the number of

rank-(r + j) partitions containing a given rank-k partition as in the proof of
Lemma 5.2. Doing so, we obtain

K
Y Tf(t)= ) W(r—m, j—m)X (k—I—m,[1], m)

t:te[o, n] and rank(t) =/ m=0

+ terms involving X (», ..., 0, ..., m"),

where m' +m">k—1

We substitute this into Eq. (5.1), move the terms involving X (m/, ..., 0, .., m")
to the right, and interchange summations to obtain

k r
Y [Z (=T r—j+1)! W(r——m,j—m)] X k—1—m, [I], m).
m=0L;j=0

Since W(r—m, j—~m)=0 when j<m, the inner sum is really from j=m
to j=r. Changing index of summation from j to j—m and using (4.1), we

conclude that the inner sum equals

l

r—m

(—1y " I r—m— 4+ ) W(r—m, j)=(—1) "1,
0

il

j
This completes the proof of Lemma 54. |}

Let n be the partition of type r@® [[/]é®r defined in Lemma 5.4 and
let t=(ty, 5, .., t;,,,) be an (/+2)-tuple such that 0<¢,<r, t;,=1 for
t=2,3,.,014+1, and 0<1,,,<r. The expurgated equation E} is the
equation obtained from E, by moving all the terms involving
X.(m',..,0,.,m"), where m"+ m” > k — [, to the right-hand side. The reason
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for moving such terms to the right is that the values X (m, ..., 0, ..., m”
equal values computed earlier in the reconstruction. This is made precise in
the next lemma.

(5.5) LeMMA. Ler n be as defined in the previous lemma. Suppose
s=(m', .., 0,..,m")is a ({+ 2)-tuple with the (j+ 1)st component zero. Then
X (s)= X3(8), where 7 is the partition of type r @ [/ — 1] @ r obtained from n
by splitting the part {r+2j,r+2j+1} into two trivial parts {r+2j} and
{r+2j+1} and §=(m’, .., .., m"), the (I+ 1)-tuple obtained from s by
deleting the (j+ 1)st component.

Proof. Observe that rank(x,;,,)=0 in the rank-k partition x = @ «a, if
and only if the elements r + 2/ and  + 2j + 1 are in two trivial parts. |

The equation (Alt(r, /)) arises from an identity true in all lattices while the
expurgated equations E ¥ arise from rather specific facts about the partition
lattice. Thus, we expect them to form a linearly independent system of
equations. This is in fact the case.

(5.6) LEMMA. Let r and [ be integers such that kzr and 2rzk— 1+ 1.
Then the 2r —k + 1 row vectors of the coefficient matrix D of the system
of expurgated equations E¥, for t ranging over r@[I]®k—I1—r+1,
r—1@®]®k—1—r+2,. . k—1—r+ 1@ [I]1®r, and the vector

a=(—-1.1-1,.1,.,1,—1)

are linearly independent.

Proof. By Lemma 5.3 and the fact that W(n, 1)=("3"), the coefficient
matrix D is the following (2r —k +17)x(2r —k + /+ 1) rectangular matrix
with the nonzero entries on a “diagonal” of width 2:

( A
(2r—k+l+1> q 0 0 .. 0 0

0 0 (2’*k2+'_1> 6 .- 0 0 0

(=]

0 0 0 0.0 ) <2r_k+1+l)J
" 2
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We need to show that the vector a is not in the row space of D. To do this,
we observe that the vector

| —(Zr—k2+1+ 1>’ <2r—k2+1+ 1)<2r—2k+1)’
2 ()G)
(2r-k+1+1>(2r k+!)(2r— +1—1> )
HHE

(2r—k2+l+ 1)(2r—k+l> (2r—k+1+ 1)
G)G) (2

is orthogonal (under the usual dot product) to all the rows of D. [ This can
be established by an easy computation, but the underlying reason why is that
the i th coordinate of u is the quotient

k)

. 1

(—=1¥~"'det D, ,/det D |,

where D; is the j x j matrix obtained by taking the first j rows and columns
of D and D" is the j x j matrix obtained by taking the second to (j+ 1)st
rows and the first j columns of D.] Hence, the codimension-1 row space of
D is the kernel of the linear functional x — x -u. However, a -u is a sum of
strictly negative terms. We conclude that a and the rows of D form a linearly
independent set.

The next two lemmas are used to reconstruct the Radon transforms of
those partitions not having type r® [/ ] ® r.

(5.7) LeMMA. Letr r<k. Suppose that for all rank-k partitions o with
height at least r, the function values f(a) have already been constructed. Let n
be a partition such that rank(rn)=k and ht(n)=r. Then Tf(n) can be
reconstructed.

Proof. Let n=B @®B,®---®B, ®B,, r,=|B]-1, r,<r, and
r,=r. As in the first step of the reconstruction, consider the set & , of
p-tuples (s;) such that s,<r, and Y} 5,=k. Let  be the set of p-tuples
in &, ,,, of the form §, where the pth component s, of s is strictly less
than r.
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Consider the system of equations E,, where t ranges over . This is a
rectangular system of || equations in [ .| unknowns. Indexed as
earlier, the matrix C of coefficients of this system is upper triangular in the
sense that its i, j-entry is zero whenever /> j. Moreover, the diagonal
entries are nonzero binomial coefficients. The columns of C not in the
principal square submatrix are indexed by p-tuples (s',r), where s’ is a
(p—1)-tuple with s;<r,and 5, +5,+ --- +5, =k—r.

By hypothesis, the values X, (s’, r) are sums of already reconstructed
function values and can be computed. Substituting the actual values of
X,(s', r) into E, results in an upper triangular system of | ,| equation in
the same number of unknowns with nonzero diagonal entries. We can now
reconstruct Tf(n) by solving this system for the remaining values of X (s)
and using Lemma 5.1. }

ExampLE. Let k=3, r=2, and the type of = be 1P 2@ 2. The matrix
C has row indices

1®20, 1®o1l, 09201, 1€002 0D1®2

and columns indices
1®2@1, 1@1@2, 002P2

and equals

31100

01t 0 3 1

001 01

The values f(x) where a has 1 0P 2, 0@ 1 @ 2 are assumed to have been
reconstructed. Hence, X (1®0®2) and X (0@ 1@ 2) are known and the

last two columns of C and be eliminated, leaving us with a square upper
triangular matrix.

(5.8) LEMMA. Let r<k. Suppose that for all rank-k partitions o with
height greater than r, the function values f(a) has already been reconstructed.
Let a be a rank-k partition such that ex(a) <2k —r+ 1. Then f(x) can be
reconstructed.

Proof. Relabelling if necessary, we may assume that « is a partition all
of whose nontrivial parts lie in {1, 2, .., 2k —r}. Let ¢ be the rank-(r + 1)
partition with the single nontrivial part {2k—r+1,2k—r+3, .., 2k +2}
and m=ua v o, the partition whose nontrivial parts are the nontrivial parts
of 2 and o.
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Consider the interval [o, n]. All the partitions 7 in this interval have a
part, namely the part containing {2k—r+ 1,2k —r+2,.., 2k + 2}, having
size at least r+ 2. Hence, ht(r)>r and by Lemma 5.7, the Radon trans-
forms Tf(t) can be reconstructed. By Lemma 2.1 and the fact that « is the
unique rank-k partition whose join with ¢ is =,

fly= 3 ) If(x).

1T:0€TE™
We can now reconstruct f(«). |

The next lemma shows that Lemma 5.8 can be applied in many cases.

(5.9) LEmMa. Except for the partitions of type r® [k—r], all the
partitions of rank-k and height r have extent at most 2k —r.

Proof. The maximum extent of a rank-k height-r partition is
r+1+2(k—r)=2k—r+ 1. A partition attains this maximum extent if and
only if it has type réd [k—r]. |}

With the technical lemmas in place, we can reconstruct the values of f(«)
inductively. The function values of height-k partitions are reconstructed
first; next, the function values of partitions of height k—1 are recon-
structed, and so on. The reconstruction is completed at the kth step when
the function values of height-1 partitions are reconstructed.

At the (i+1)st step of the reconstruction, the Radon transforms or
function values of partitions of height greater than k — i have already been
reconstructed. Let r =k —i. We first reconstruct f{«) for « having height r
and extent less than 2k — r. By Lemma 5.8, the only remaining values to be
reconstructed are f(o), where a has type r@ [k —r]. We go through the
reconstruction of f(«), where

a={1L2, ., r+1}@®{r+2,r+3}®{r+4,r+5}
@ - D{r+2,r+2i+1}@{r+2i+2}
@{r+2i+2}@® - ®{2k+2}.
We first reconstruct f(ny) for the partition
To={1,2,,r+1}@{r+2}®{r+3}@{r+4}® - ® {r+2i+1}
@{r+2i+2,.,2r+2i+2}®{2r+2i+3}
@{2r+2i+4}® - - ®{2k+2}

by solving the expurgated equations E ¥ and the equation (Alt(r, 0)). Next, we
reconstruct f(rn,) for all partitions =, of type r & 1@ r, obtained from n, by
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merging into one part one of the pairs {r+j}, {r+,j+1}, where
j=2,4,6, .., 2i Proceeding in this way, we reconstruct, after k —r + | itera-
tion, f(m, _,), where n, _, is the partition

T, ={1L,2,.,r+1}@{r+2,r+3}@{r+4,r+5}
@ - @®{r+2i+1,r+2i+2}
@{r+2i+2,.,2r+2i+2}® {2r +2i+3}
B{2r+2i+4)® - @ {2k +2)

of type r @ [k — r] @ r by solving £ ¥ and (Alt(r, kX — r)). When we solve these
equations, we also obtain the quantity X, {(r, [k—r],0), which
equals f(x). We remark that when { is large, partitions =, of type
k—i® [/1®k —i may have rank less than k. When this is the case, Tf(n,)
and X, (s) are empty sums and equal zero. We finish the (i + 1)st step by
reconstructing Tf(x) for all partitions of height k — i using Lemma 5.7.

At the kth and last step, all the Radon transforms of partitions of rank
greater than & have been reconstructed. (This is because in the partition

Step 0. 13,12, 12@®1, 11,111, -- , 765, 7®4,---, 72,76 1,7
i
Step 1. 6M6 — -—» height-6 partitions
i
Step2.  5@®5-— 53105 — [5@ 1] — height-5 partitions
!
Step 3. 102
!
49104 — 40 (2] @4 — |40 (2] — height-4 pastitions
1
sip .
1
30203 —30B8 03— — height-3 partitions
i
Step5.  [20202,2820 (2]
1
20 4|2 —o-——»height»Z partitions
1
Step 6. (6]

FiG. 1. Reconstruction scheme for k = 6.
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lattice Q.. ,, partitions of rank greater than k + 1 have height at least 2.
Hence, their Radon transforms have been reconstructed in an earlier step.)
Thus, we can reconstruct f(a) where o has type [k] by using Lemma 2.1.

it

This completes our proof of Theorem {.3. The proof is designed so that
extends in a straightforward way to Dowling’s group-labelled partition

lattices [10] when appropriate ¢'s are inserted. A flow-chart of the

Ie

12.

13.

14.

19.

20.

construction process when k =6 is given schematically in Fig. 1.
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