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1. INTRODUCTION

In the theory of locally compact groups there arise certain spaces
which, though not groups, have some of the structure of groups. Often,
the structure can be expressed in terms of an abstract convolution of
measures on the space. The purpose of this paper is to study a class of
spaces that have such convolutions. There is no reference to groups in
the basic definitions but most of the examples here are related to groups
in some way.

The Introduction is devoted to describing one example. The example
is not simple, however, and involves a decomposition process that may
not be familiar. This decomposition process has an analog in the theory
of differential equations: Introduce a symmetry and thereby reduce the
number of variables. While the rest of the paper does not make use of
differential equations, it is convenient to consider here two problems:
a differential equation problem that leads to a simpler differential
equation and a problem in the theory of locally compact groups that
leads to a space with an abstract convolution of measures.

It should be pointed out that there is no intention to find the most
general approach to convolution. The theory arose out of a study of
double coset spaces G /|| H = {HgH : g € G}, where H is a compact
subgroup of the locally compact group G} if H is not normal then G /| H
does not inherit a multiplication from G, but the space of finite measures
on G || H does inherit a convolution from the measure algebra of G.
We have merely abstracted the salient features of these convolution
algebras.

We turn now to the two problems. Let E, denote Euclidean 2-space.
1

Copyright © 1975 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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ProBLEM 1. Solve the Helmholtz equation in E, :

Ou
o + + u=0.

ProBLEM 2. Determine the continuous unitary representations of
the group of all orientation-preserving rigid motions of E, .

These two problems are closely related. One way to see that there is
likely to be a connection is to note that the Helmholtz equation is
invariant under each change of coordinates corresponding to a member
of G, the group in Problem 2. That is, if # is a function on E, , g is an
element of G, and v =« O g, then

Pu Pu 627; o2

The relationship between groups and differential equations, including
the case just described, is studied in the book by Talman [15], based
on the lectures of Eugene P. Wigner.

Let H be the rotation subgroup of G. That is, H consists of the
members of G which leave the origin O fixed. There is a natural cor-
respondence between the elements of E, and the left cosets gH of H:

2 {geG:g(0) = z2}.

Therefore, each function f on E, determines a function F on G by the
rule: F( g) = f(g(0)); the function F is constant on each left coset of H.

There is a simplification which leads to partial solutions of the two
problems. It involves the introduction of a symmetry based on the action
of the compact group H. For each number r > 0 let

C, ={zek:||z| =r}.

These sets are circles (for # > 0) and form a decomposition of E,.
Also, they are the orbits of H acting on E, .

For the first problem, we restrict attention to the functions on E,
which are rotationally invariant. These are the functions that are
constant on the circles C,. The Helmholtz equation can then be
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expressed more simply in polar coordinates: z = (x,y), 7 = || 2|,

u=f(r),

2
rzgr—z+r%+rzu=0.

This is Bessel’s equation of order 0, with solution # = Jy(r).

For the second problem, we again restrict attention to the rotationally
invariant functions on E, . The functions correspond to the functions
on G which are constant on the double cosets HgH of H. This is based
on the correspondence between the circles and the double cosets:

C, > {gcG:g(0)eC,).

Thus, we have functions F on G such that F(h,gh,) = F(g) forallge G
and h,, hy € H. The functions of this type which are integrable with
respect to Haar measure on G form a closed subalgebra 4 of the con-
volution algebra L,(G). Surprisingly enough, 4 is commutative, even
though L,(G) is not commutative. Moreover, the representation theory of
A leads to some, but not all, of the representations of G. In this way
the theory of commutative Banach algebras can be used to get a partial
solution of Problem 2.

By restricting the scope of the original problems we have produced
two new problems: Solve Bessel’s equation of order 0 on R+ = [0, c0);
determine the representations of the subalgebra A4 of L,(G).

It would seem that the two new problems are not related. We have a
differential equation (on a new domain) but no group of symmetries
which leave it invariant. In simplifying Problem 2 we have not produced
a new group, but only a new convolution algebra.

We have not used the fact that the points of R+ are in a natural one-
to-one correspondence with the double cosets of H:

r—{geG:|g0) =1}

Thus, each function in A4 corresponds to a function on R*, and these
functions on R* form an algebra 4’ with a (nonapparent) convolution
for its multiplication. Convolutions are usually defined for functions
and measures on groups, but R* cannot be given the structure of a
topological group. It is true that R* is a semigroup under addition, but
the convolution corresponding to this operation is not the correct one.
This brings us to one of the purposes of this paper.
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ProBLEM 3. Define and analyze the group-like structure of R+
which R* inherits from G.

While Problems 1 and 2 are widely known, Problem 3 is not. This
does not mean that it has not been raised before. In fact, there exists
an elaborate theory designed to deal with just such problems. This
theory, initiated by Delsarte [1] and developed mostly by Levitan
[5-8] is based on the idea of a generalized translation operation. The idea
comes from the translation of functions on groups:

(Tof)y) = flo).

Brief descriptions of Levitan’s theory are given by Naimark [13,
pp. 427-430], Loomis [10, pp. 182-183], and Dunford and Schwartz
[2, pp. 1622-1628].

The purpose of this paper is to develop another theory of group-like
structures. Rather than start with the translation property we start with
the convolution of measures. Since the convolution gives rise to trans-
lation operators, the objects studied here are special cases in Levitan’s
theory. But these objects are much more like groups than a typical space
with a generalized translation operation; this approach seems to be more
appropriate for structures that originate in the theory of locally compact
groups.

Recently, Dunkl [17] has defined and studied hypergroups, which
are spaces with a convolution of measures. Dunkl’s theory is therefore
much closer than Levitan’s to the one developed here, except that the
convolution of a hypergroup is assumed to be commutative. Dunkl
also gives various examples for which the underlying space is
compact. '

In the remainder of the Introduction we merely indicate how the
convolution of measures on R* is constructed. As for the algebra 4,
the convolution of functions depends on a Haar measure on Rt which
is uniquely determined by the convolution. The details are given in
Section 9.

For any locally compact Hausdorff space X, let M(X) denote the space
of complex-valued regular Borel measures on X; for x» in X, let p,
denote the unit point mass at «.

On the group G the convolution of unit point masses is quite simple:
Py % pr = pyn - The general convolution p % v of a pair of measures
in M(G) is the (continuous) linearization of the operation on the unit
point masses:
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[ Fausv) = [ | Figh) uide) o)
G GYG

= | JL L] Fato, % o)) wtde) ah).

For R+ also it is enough to specify the basic convolutions p, % p; for all
r and s in R*. However, if  and s are positive then p, X p, is not a point
mass, but is a probability measure whose support is a compact interval.
No binary operation on R+ is being used; we can convolve measures
but not multiply points.

The convolution on M(R*) is inherited from the convolution on
M(G). In this case there is a shortcut, which uses the convolution on
M(E,), based on the structure of E, as an additive group: p, X p,, = P,y
for z, w e E, . The group G is not being ignored; the action of H on E,
will be used, and G is a semidirect product of H and E, .

There is a one-to-one correspondence between the measures on R+
and the rotationally invariant measures on E, . The rotationally invariant
measures on E, form a subalgebra of M(E,) and M(R*) is given the
structure of this subalgebra.

Let r be an element of R*. The measure on E, corresponding to p, is
by definition the unique rotationally invariant probability measure ¢,
whose support is equal to the circle C, . It is apparent that this measure
is a multiple of the length measure on C, . Using appropriate topologies
the mapping p, —> ¢, is extended to a (continuous) linear mapping of
M(R?) into M(E,).

Let  and s be in Rt, with 0 < 7 < 5. Then ¢, and ¢, are probability
measures on C, and C,, respectively. Therefore, g, % ¢, is a probability
measure supported by the set C, + C,. It is easily seen that C, - C,
is an annulus:

C,+Cs={ztuw|z]|=rlwl]|=s
={zeEy;s—r |z <r+ 3}
=J{Crs—r<t<r+s}
Since ¢, % g, is rotationally invariant, ¢, % ¢, is a combination (using
integrals) of the measures {g,:s —r <t <r + s}. It turns out then
that p, % p,, which corresponds to g, % ¢, , is a probability measure on

R+ with support [s — 7, 7 + s].
With % as its multiplication, M(R*) is a commutative Banach
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algebra. The unit point mass at 0 is the unit of M(R™). In a manner
analogous to that used for locally compact abelian groups, continuous
irreducible representations of M(R™*) are defined. Each such represen-
tation is one-dimensional and corresponds to a bounded continuous
function on R+. These functions will be called multiplicative characters,
as in the theory of LCA groups. This brings us back to Problems 1 and 2.
One of the multiplicative characters on Rt is the Bessel function J, .

2. LocaLLy CompacT HAUSDORFF SPACES

The results in this section are similar to known facts about functions
and measures. We include most proofs, however.
2.1. Notation

Let X be a locally compact Hausdorff space. The notation below is
used throughout the paper.

R The real numbers

R+ The nonnegative real numbers

C The complex numbers

C(X) The continuous complex-valued
functions on X

C(X), Cy(X), C(X) The members of C(X) which are:

bounded, zero at infinity, with
compact support

CHX), CH(X), Cyt(X), C,H(X) Those which are nonnegative.

Borel set A member of the smallest o-algebra
which contains the open sets

cA4 The closure of the set 4

B(X) The complex-valued Borel functions
on X

B*(X) The Borel functions on X with values

in [0, o]
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Lower-semicontinuous A function with values in [0, co] such
that {x:f(x) > ¢} is open for all
c=0

4 The function equal to 1 on 4 and
equal to O on the complement of 4

T sup | f(x)|

M(X) The regular complex-valued Borel
measures on X

MHX), M(X), M +(X) Those which are: non-negative, with
compact support, both

M=(X) The regular Borel measures on X with
values in [0, 0]

Pz The unit point mass at x

spt p The support of the measure u

spt f The support of the function f

pos f For nonnegative f, the set

{x:f(x) >0}

[ f (%) p(dz) Jfau

o-finite function With respect to a given measure, a
function which is 0 off a o-finite
Borel set

fu The measure, if it exists, such that

[ d(fi) = [ &f dp, for all g in C(X)

2.2. The Cone Topology

Let X be a locally compact Hausdorff space. The cone topology on
M+(X) is the weakest topology such that, for each fe C,H(X), the
mapping u — [y f dp is continuous, and such that the mapping p +> u(X)
is continuous. This is equal to the weak-* topology if and only if X is
compact.

Throughout this paper, an unspecified topology on M is the cone
topology. References to the norm are explicit.
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LemMa 2.2A. The set of measures in MH(X) with finite support is
dense in M+(X).

Lemma 2.2B. The mapping x v p, is a homeomorphism of X onto
a closed subset of M+(X).

Lemma 2.2C. Let D be a directed set. Let {ugle.p be a net in M+(X)
converging to w. Let {f}e.p be a net in CyH(X) converging to f uniformly
on compact subsets of X. Suppose that the numbers || f5 ||, are bounded. Then

Hénfsﬂa = fu.

Proof. The first two lemmas are obvious. For the third, let N =
sup || fzll, and let € > 0. Let 4 be a compact subset of X such that
(X — A4) < €¢/2N. Choose g € C,H(X) such thatg < lon Xandg =1
on A. Then

[Fodus— [fau = [ afdus— [af du— [ 2(f —f5) dus

+ [ =@ fodus — [ (1 — &) f d.

Since g has compact support, it follows that

limﬂsuplffﬂdy,ﬂ—- ffd,b| <N [(1—g)du <«
The rest is straightforward.

THeOREM 2.2D. Let L: M(X) — C be a linear mapping. Then L is
continuous on MH(X) if and only if there exists a bounded continuous
function h on X such that

L(w) = [ hdp
for each p € M(X).

Proof. If h is a bounded continuous function on X and L is defined
as above, then L is continuous, by Lemma 2.2C.

Assume that L is continuous. Let % be defined by k(x) = L(p,). By
Lemma 2.2B, & is continuous. Also, L(u) = [hdp for all measures
with finite support. If % is bounded then, by Lemmas 2.2A and 2.2C,
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L(p) = [hdp for all pe MH(X), and hence for all e M(X). Assume
that % is unbounded. For each n > 1 there exists x, € X such that
| A(x,)| = n. Let p, = (1/h( n)) s, - Thus, p, — 0 and L(y,) = 1 for

all #. This is a contradiction, since "L is continuous.

2.3. Positive-Continuous Linear Mappings

Let X and Y be locally compact Hausdorff spaces and let u > u be
a linear mapping from M(X) to M(Y). This mapping will be called

positive-continuous if:
(I) g’ >0 when p > 0;
(IT) The restricted mapping, from M+(X) to M+(Y), is continuous.

We assume in this subsection that these conditions are satisfied. If g
is a Borel function on Y then g’ is defined on X by

g = [ gd(p.),
Y
whenever this integral exists.

LEMMA. Let pe M(X) and g€ C(Y).

(2.3A) The number N = sup || p,’ || is finite.
(23B) ||| < Nllgl.

(2.3C) g is continuous and || g’ ||, < Nl gl -
(23D) frgdp' = [xg dp.

This lemma follows readily from Theorem 2.2D. In view of the
lemma we may write

= [ psulds),

regarding p’ as the integral of a measure-valued function on X. Some-
times it is possible to extend the mapping to an infinite nonnegative
measure. Let m e M®(X). Suppose that [g'dm is finite for all g in
CH(Y). By the Riesz Representation Theorem there exists a unique
measure 7' in M®(Y) such that

fyg dm' = fxg’ dm
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for all g e C,*(Y). In this case also we use the notation
! —_ zI d .
m fx Do'm(dx)

THEOREM. Let m be a nonnegative measure on X and suppose that m’
is defined.

(2.3E) If g is a lower-semicontinuous function on Y then g' is lower-
semicontinyous on X and [gdm' = [g' dm.

(2.3F) If ge BX(Y) then g’ € B®(X).
(2.3G) If ge BX(Y) and g is o-finite with respect to m’' then g’
is o-finite with respect to m and [gdm' = [g' dm.

Proof. Part E is apparent. We shall prove 2.3F and 2.3G together.
This imposes no additional restriction on g since m could be a finite
measure.

Our proof is essentially the proof by Karl Stromberg [15] of a closely
related result for groups. See Hewitt and Ross [4, p. 727].

By the Monotone Convergence Theorem there is no loss of generality
in assuming that g = 7, , where 4 is a Borel subset of ¥ and m'(4) is
finite. We must show that i, is a Borel function on X and that [i,' dm =
m'(4).

Let U be an open subset of Y such that A C U and m'(U) is finite.
Let 2 be the collection of all Borel sets B such that B C U, 7’ is a Borel
function, and [7;" dm = m'(B). Now U is in 2 by (2.3E), and 73’ <
iy’ << N on X for all B in 2, where N is given by (2.3A). Note that »
contains each open subset of U.

Let 2, be a subcollection of 2 which is maximal with respect to the
properties of containing the open subsets of U and being closed under
finite intersection. Let E € X and let

Ze={BNE)U(CNF):B,CeZy

where F = U — E. Thus X contains X and is closed under finite
intersection. Moreover, 25 is contained in 2 since

UBAE)L(CAF) == IBRE T lc — lcnE -

Thus Xz = 2, and F € %, . Hence 2, is an algebra of subsets of U. Now
let Z; be the collection of all countable unions of members of X, . Then
Z, = 2,, by the maximality of 2, and the Monotone Convergence
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Theorem. Thus % is a o-algebra. It follows that 2, = X and that
Ael.

The following lemma is apparent.

Lemma 2.3H. Let x — w, be a continuous mapping from X to M+(Y).
Suppose that the numbers || w, || are bounded. Then the mapping p, > w,
has a unique extension to a positive-continuous linear mapping from M(X)

to M(Y).
2.4. Positive-Continuous Bilinear Mappings

Let X, Y and Z be locally compact Hausdorff spaces. Let (, v) >
@ % v be a bilinear mapping from M(X) X M(Y) to M(Z). This
mapping will be called positive-continuous if:

I p*¥v=0whenpg =>0andv > 0;
(I) The restricted mapping, from M*+(X) x MHY) to M*(Z),
is continuous.

We assume in this subsection that these conditions are satisfied.
The following statements are easily verified.

Lemma 2.4A.  There exists a unique positive-continuous linear mapping
a7 from M(X X Y) to M(Z) such that p v =(u Xv) for
p e M(X) and ve M(Y).

We refer to Hewitt and Ross for the properties of product measures
on locally compact spaces. In view of Lemma 2.4A, the formulation

p¥ev =] [ (9% ) u(d) W)

may be used. If pe MH(X) and m e M*(Y) then p % m is given by
p % m = (u X m)', if this latter measure is defined. Note that, if u % m
is defined, then

p¥em = [ (5 p) midy).

Lemma 2.4B. Let (%, y) = w, , be a continuous mapping from X X Y
to MH(Z). Suppose that the numbers || w,,|| are bounded. Then
(25 » Py) > @y, has a unique extension to a positive-continuous bilinear

mapping from M(X) X M(Y) toe M(Z).
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2.5. The Space of Compact Subsets

Let X be a nonvoid locally compact Hausdorff space. Let %(X)
denote the collection of all nonvoid compact subsets of X. If 4 and B
are subsets of X let € 4(B) be the collection of all C in %(X) such that
C N A4 is nonvoid and C C B. We give €(X) the topology generated by
the subbasis of all €y(V) for which U and V are open subsets of X.
This topology is thoroughly examined by Michael [12]; note pp. 161-162.
We review briefly.

(2.5A) €(X) is a locally compact Hausdorff space.

(2.5B) If X is compact then €(X) is compact.

(2.5C) If Y is a subspace of X then €(Y) is a subspace of €(X),
and if Y is closed then €(Y) is closed.

(2.5D) The mapping x +> {x} is a homeomorphism from X onto a
closed subset of €(X).

(2.5E) The collection of nonvoid finite subsets of X is dense in €(X).

(2.5F) If Q is a compact subset of €(X) then B = e 4 s a
compact subset of X.

A proof of 2.5F is as follows. Let 2 be a collection of open subsets
of X which covers B. Let 2’ be the collection of all unions of finite
subcollections of 2. Thus, if 4 € 2 then 4 C ¥V for some V € 2’. Hence
{€(V): Vel is an open cover of £2. There exists a finite subcover
{€(V,)}. But then the V; cover B.

3. SEMICONVOS

A pair (K, %) will be called a semiconvo if the following five conditions
are satisfied:

(I) K is a nonvoid locally compact Hausdorff space.
(II) The symbol % denotes a binary operation on M(K), and
with this operation M(K) is a complex (associative) algebra.
(IIT) The bilinear mapping (u, ¥v) > p % v is positive-continuous.
(IV) If x,ye K then p, % p, is a probability measure with
compact support.

(V) The mapping (x, y) — spt(p, % p,) from K X K to €(K)
is continuous.
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In view of 2.4B, a semiconvo is determined by the measures p, % p,,
and when considering examples we need only specify these measures.
As for associativity, this can be checked by verifying that

pm*(?u*l’z) = (Pz*pv)*pz;

which is the same as

[ (2% 2oy poXdt) = [ (215 p)(b2 % pi)(a1).

The connection between semiconvos and semigroups is illustrated by
the following two propositions. They need no proof.

ProposiTiON 1. Let (K, %) be a semiconvo. Suppose that for each
pair of points x, y in K there exists a point x - y in K such that p, % p, =
Dey - Then (K, -) is a locally compact topological semigroup.

ProrositiON 2. Let (S, -) be a locally compact semigroup. Let %
denote the standard convolution on M(S), defined by: [fd(n % v) =
[[f(xy) u(dx) v(dy). Then (S, %) is a semiconvo.

In the remainder of Section 3 it is assumed that (K, ) is a semiconvo.

3.1. Translation of Functions

If f is a Borel function on K and x, y € K then we define

fl%9) = fuy) = ) = [ Fd(p.%,)

if this integral exists, though it need not be finite. Note that f(x % y) =
f(x-y) if K is a semigroup. The following results are readily proved
using (2.3) and (2.4). In the notation of those subsections, f(x % y) =

[, ).
LemMa. Let f be a continuous function on K and let x € K.

(3.1A) The mapping (s, t) — f(s X% t) is a continuous function on
K X K.

(3.1B) f, and f= are continuous functions on K.

Lemma. Let f € BY(K), let p, v e M*(K), and let x, y, 2 € K.
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(3.1C) The mapping (s, t) — f (s % t)is a Borel functionon K X K.
(3.1D) f, and f= are Borel functions on K.

() fufd(u %v) = Jx [f(s % 1) u(ds) (d).

(BIF) [xfodp = [xfd(ps % p).

B1G) fy % 2) =fHx ¥ y)

3.2. Conwolution of Sets
If 4 and B are subsets of K then the set 4 % B is defined by
A% B = U Spt( Py K D).

xeAd
yeB

Note that 4 % B = A - B if K is a semigroup.

LeMMA. Let A, B and C be subsets of K.

(3.2A) (cA) % (cB) C¢(A * B).

(3.2B) If A and B are compact then A X B is compact.

(3.2C) Conwvolution is a continuous operation on €(K).

(3.2D) If A and B are compact and U is an open set containing A % B

then there exist open sets V and W such that ACV, BCW, and
VxWCU.

(32E) (4 % B) % C = A % (B % C).

Proof. Recall that ¢4 is the closure of 4. Also, 3.2B follows from
2.5F. The only thing needing proof in this subsection is 3.2C.

It is enough to consider subbasic open sets. Let V" and W be open
subsets of K and let

2 ={4,B): A% Be%,(W)}.

We must show that X is open in (K) X €(K). Let
P = {x,y): spt(py % py) € €,(K)}

Q = {(% ¥): spt(ps X p,) € E(W)}.

So P and Q are open subsets of K X K. And 2 is the union of all
Fr(S) X €7(U) for which R, S, T, U are open in K and R X TCP,
SxUCOQ.
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LEmma. Let u, ve MH(K).

(3.2F) spt(p % v) = c((spt p) * (sptv)).
(3.2G) If u and v have compact support then p % v has compact
support and spt(p X% v) = (spt p) X (sptv).

3.3. Subinvariant and Invariant Measures

A measure m in M*®(K) will be called left-subinvariant if p, X% m is
defined and p, ¥ m < m for each x in K. A measure m in M®(K) will
be called left-invariant if p, % m is defined and p, % m = m for each »
in K. Thus, by definition, 3.3A and 3.3F are valid for all f in C,*(K).
Note that the natural analog of 3.3B for left-invariant measures
(= replacing <) is not valid. This is so because the measures p, % p,
are not point masses in general. For example, in 9.1D the function f = £
is not identically zero, but f;, = 0, since f(x) = f(b % x) = f(b)f(x) =0
for all x € K. This does not contradict 3.3F since [fdm = 0.

LEMMA. Let m be a left-subinvariant measure on K. Let f e B¥(K),
xe K, and p,v e M+(K).

(33A) [xf,dm < [ fdm.

(33B) If1<p < oo then || fyll, < fl-

(3.3C) If A is a compact subset of K then m(A4) < m({x} % A).
(3.3D) The measure pn % m is defined and p % m < u(K)m.

(3.3E) If v is absolutely continuous with respect to m then py X% v
is absolutely continuous with respect to m.

Proof A. This follows from 2.3G if f is integrable.

Proof B. Suppose that p << co. If ye K then [f(x Xy)]? <
JP(x % ), by Holder’s Inequality. Hence (f,)? < (f?), on K. Thus
£l < £l -

Suppose that p = oo and that || f||, << co. Then f = g + h, where &
is locally null and g < || f||» on K. It is enough to see that A, is locally
null. Let 4 be a compact subset of K and let B = {x} % 4, which is also
compact. Then &, = (izh), on 4 and

f h,, dm <f (igh), dm <f igh dm :f hdm = 0.
A K K B
Proof C. Let B ={x} %A and let € > 0. Choose fe CHK)

607/18/1-2
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such that f =1 on B and [fdm < m(B) + . Then f, =1 on 4 and
m(A) < [fodm < [fdm < m(B) + e.

Proof D. 1If fe C#(K) then

[[ e % 3) i@y miay) = [ [ £(3) midy) i)
< [[ £(5) mids)

— w(K) [ fdm.

Proof E. There exist measures v, € M+(K) and positive numbers ¢,
such thateachv, < ¢,mandv =v»; + v, + . Thusp X v =Y p X v,
and this sum converges in norm. Moreover, each p % v, is absolutely
continuous with respect to m since p ¥ v, < c,u(K)m.

THEOREM. Let m be a left-invariant measure on K. Let fe B*(K),
x € K, and p € M*(K).
(3.3F) If f is o-finite with respect to m then f, is o-finite with
respect to m, and

fxfx dm = fodm.

(3.3G) p ¥ m = u(K)m.
Proof. These are similar to 3.3A and 3.3D.

3.4, Involutions

Let X be a nonvoid locally compact Hausdorff space. A mapping
x> x~ will be called a topological involution of X if it is a homeo-
morphism of X and ()~ = « for all x in X. Let such 2 mapping be
given, If f is a function on X, A is a subset of X, and p is 2 Borel measure
on X then f—, A~ and p~ are defined by

f@ =f@) A ={:xed} w(B)=puB)
Note that if f& B©(X) and p € M®(X) then

[1-du=] Fau
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A mapping x +— x’ will be called an involution of the semiconvo K if
it is a topological involution of K and

(% vy =v= K p~

for all p and v in M(K). Note that it is enough to check that ( p, % p,)~ =
by~ % p,- for all x, y € K. The following results are apparent.

LemMA, Let x> x~ be an involution of K.

(3.4A) The mapping p+> p~, from M(K) to M(K), is linear and
positive-continuous.

(3.4B) If fe B(K) and x,y € K then f~(x % y) = f(y~ % x7).

(3.4C) If A and B are subsets of K then (A % B)~ = B~ % A~.

(34D) If m is a left-invariant measure on K then m~ is right-
tnvariant.

4. ConNvos

A pair (K, %) will be called a convo if the following three conditions
are satisfied:

(I) (K, %) is a semiconvo.

(IT) 'There exists a (necessarily unique) element ¢ of K such that
Do K Py = P = P ¥ P, for all x in K.

(III) 'There exists a (necessarily unique) involution x > x~ of K
such that (for x, y € K) the element ¢ is in the support of p, % p, if and
only if x = y~.

The connection between convos and groups is illustrated by the

following two propositions.

ProposiTiON 1. Let (K, %) be a convo. Suppose that, for each pair
of points x, y in K, there exists a point x - y in K such that p, % p, = Py, -
Then (K, *) is a locally compact group.

ProposiTiON 2. Let (G, ) be a locally compact group. If % denotes
the standard convolution on G then (G, %) is a convo.

In the remainder of Section 4 it is assumed that (K| X) is a convo.
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The element e will be called the identity of K. For x in K, the element x~
will be called the adjoint of x.

4.1. Convolution of Sets

If {%g}sep is @ net in K then the expression x; — c0 means that
%y € K-A eventually, for each compact subset 4 of K. If {Ag}s.p is a net
in €(K) then the expression 4; — {00} means that 4; C K-4 eventually,
for each compact subset 4 of K. Note that 4; — oo and 4, — {0}
have different meanings.

Lemma. Let A, B and C be subsets of K.

(4.1A) A~ X B contains e if and only if A N B is nonvoid.

(4.1B) (4 % B)n C is nonvoid if and only if BN (A— % C) is
nonvoid.

(4.1C) Let {Ag}sep and {Bglsep be nets in €(K). If Ag— A and
By — {00} then Ay % By — {o0}.

(4.1D) If B is open then A % B is open, and (cA) ¥ B = A % B.

(4.1E) If A is compact and B is closed then A % B is closed.

Proof. We shall prove only 4.1B and 4.1D. For 4.1B, assume that
(4 % B) N C is nonvoid. By 4.1A, C~ % (4 % B) contains e. By 3.2E
and 3.4C, C~ % (4 % B) = (A~ % C)~ % B. The rest is clear.

For 4.1D, let ae€ A. Then x € {a} % B if and only if {a—} % {x} is an
element of €»(K). Thus {a} % B is an open subset of K. Hence 4 % B
is open. Now, let xe(c4) % B. Then (cd)~ % {x} meets B. Thus
A~ % {x} meets B, by (3.2A). Hence, x€ A % B.

4.2. Convolution of Functions and Measures

Let p € M+(K) and f € B®(K). Then the convolutions p. % f and f % pu
are defined on K by ‘

(1% 1)) = [ S5 % 2) w(dy)
(f% @) = [ f% 57) ).

Lemma. Let p e MH(K) and f e CyH(K).
(4.2A) u % f is continuous.
(42B) |lp X fllu <lell I fll-
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Lemma. Let p € M*(K) and let f be lower-semicontinuous on K.
(4.2C) p X f is lower-semicontinuous.
(42D) pos(u % f) = (spt u) % (posf).
Lemma. Let p e MH(K) and f € Cy*(K).
(4.2E) p % fe C/H(K).
(42F) If py— p in MH(K) then lim || pg % f — p % f1l, = O.

Proof. See 2.3C and 2.3E. For 4.2F, note that if p and f have
compact support then p % f has compact support.

LemMa. Let p, v € M*(K) and f € B®(K).
(4.2G) p * f is a Borel function.
(42H) [ (u= % f)dv = [xf d(u % ).
(421) pX @ Xf)=(uXv)*f
(42]) pX(f%v)=(u*f) %
(42K) (u % f) = f~ %,

Proof. By 2.3F, p % f is a Borel function. Also,
[ *av = [ [ f(3= % 3) p(dy) an)

= [[f(3 % %) u(dy) v(dx) = [ fau* v).

Now, let xe K and let = = p_ .
For 4.21,

[ % 6% NN = [ [ % (% Pldn = [ (% f) du= % 7)

— ffd(v‘%;r—)évr) = f[(y.*v)*f] dr.
For 4.2],

1% (f % 9)](x) = [ [ % (f % »)] dm

= [F* v d=*m) = [ fd@ % 7% ).



20 ROBERT 1. JEWETT
For 4.2K,
(% F) (@) = (% ) = [ f( % ) pldy)

= [f* ) uldy) = [ f(% ) w(d).

Lemma 4.2L. Let pe MH(K) and me M™(K). If u has compact
support then p % m is defined, and spt(n % m) = (spt p) % (spt m).

Proof. 'This is straightforward. Note 4.1E.

4.3. Existence of a Subinvariant Measure

The proof of the following theorem is adapted from Weil’s proof, as
given by Loomis [11], of the existence of an invariant measure on a
locally compact group. However, the conclusion here is weaker. On a
group, subinvariant implies invariant. On a convo, it does not. See
Section 9.5.

Lemma 4.3A. Let f and k be in C,5(K). Suppose that k = 0. Then
there exists u € M H(K) such that f < p % k.

Proof. Choose a € K such that k(@) > 0. One readily sees that, if
xe K, then (p, % p,- % k)(x) > 0. Thus, p can be chosen to be a
finite linear combination of measures of the form p, X p,. .

LemMA 4.3B. Let fe CH(K) and let € > 0. Then there exists an
open neighborhood W of e with the following property: If x,y € K and

(Do~ X P )W) > 0 then | f(x) — f( )] <e.
Proof. This follows from 4.1C.

TuEOREM 4.3C. There exists a measure m in M*®(K) such that m is
left-subinvariant and the support of m is equal to K.

Proof. We make the following definition. If f, ke C;%(K) and & £ 0
let

[f, ] = inf{u(K): » € M;(K) and f < % B).

We now prove several lemmas.
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Lemma 4.3D. Let pe MH(K), ¢ > 0, and f, g, k € C;}(K). Suppose
that k #~ 0. Then
[ % £, k] < WK)LS, A,
[f +& Rl < [f, k] + [g ],
[ef; k] = [f, &],

Lf; &l < [g %] if <&
[f, k] < [, gllg %] if g+#0,
[/, k] >0 if f#0.

Proof. For the first, if f <<v %k then p % f < p %¥v %k and
[n X1 k] < (p ¥ v)(K) = w(K)»(K). For the last, if f < u % k then
Nl <l -l 2lly = p(K)|| ], The others are clear. The next
lemma follows readily.

DreriniTION. Let F be a fixed nonzero element of C,HK). If
f, ke C,H(K) and k& #~ 0 then set

_ LAA

LemmA 4.3E. Let pe MH(K), ¢ = 0, and f, g, k € C;H(K). Suppose
that k 5= 0. Then

L{p % f) < p(K) I f,
I(f+8 < Iif + 1L,
Ii(cf) = clif,
Lf<ILg if f<g

Moreover, if f == O then

T <D <AL

Lemmva 4.3F. Let f,, fo€ C;H(K) and let € > 0. Then there exists an
open neighborhood W of e with the following property: If ke C,HK),
k#£0,and k = 0 off W, then
Lifi+Lifs <Ilfi +fo) + =
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Proof. Let S = spt(f; + f,). Let ¥V be an open set containing S
such that ¢V is compact. Choose g € C,7(K) such that g = 1 on V. Let

a > 0 and let b = 3a + 242
Leth = f; + f, + ag. Thus, 2 > a on V. Define g; and g, by letting
g; equal f;/h on V, and O elsewhere. Thus each g; is continuous and is

zero off S. Also, g; + g, << 1 on K.
By 4.3B, there exist open neighborhoods W, of e such that

| g:(%) — g ¥)| < @ when (p,- X p,Y(W;) > 0. Let W = W, W,.
Suppose that ke C,/(K), k%0, and that 2 =0 off W. Choose
p € M (K) such that 2 < p % k and such that w(K) < (1 + a)[4, &].

If x,yeK and k(x~ % y) > 0 then g(y) < a + gix). Thus, if
y € K then

fdy) = g) k() < g¥)(p % £)(3)

— [ £5) K % 3) p(d)
< [ [0 + g)] k% 3) ()

- f k(x= % y)[(a + g)pl(dz)

= ([(@ + gi)u] ¥ £)()-
It follows that [f;, k] < [(a + g;) du. Combining we have

Ui B+ e < [ Qo+ g +g0) du
< (2 + 1) u(K)
< (2a + e+ D[k A]
= (1 + b)[h, .
After dividing by [F, k] we have
Lfy + Lfe < (1 + ) L(fi + f2 + ag)
S A+ L[+ 1) +a(l +b)Ig
<Iffi +f)+e

if a is sufficiently small.
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Completion of Proof. Choose an appropriate net of functions {kg}scp
such that each k, 5 0, such that spt 2, — {e}, and such that the functions
T k, CONVErge pointwise on the set C,*(K). Let J = lim, I, . Then Jis
nonnegative and semilinear. Moreover, if f % 0 then Jf > 1/[F, f] > 0.
Also, if pe MH(K) and fe C,H(K) then J(u % f) < p(K) Jf. By the
Riesz Representation Theorem, there exists a unique m in M*(K) such
that Jf = [ fdm for all fe C,#(K). Also, the support of m is equal to K.
Finally, if fe C,#(K) then

[ fae.%m) =] (-%fram <[ fam.

5. HAAR MEASURE

A nonzero left-invariant measure on a convo will be called a left
Haar measure,

Conjecture. Every convo has a left Haar measure.

We shall see later that discrete convos, compact convos, and double
coset convos have Haar measures.

In this section it is assumed that K is a convo and that m is a left
Haar measure on K.

5.1. The Adjoint Property

In most computations it is the equation in 5.1D rather than the left-
invariance of m that is used. On a group, of course, the equivalence of
the two is obvious.

It follows from 5.1D that the mapping f+ f,- is the adjoint of the

mapping f > f,, both mappings being bounded linear operators on
Ly(m).

LemMma 5.1A.  The support of m is equal to K.

Lemma.  Let {ks}sep be a net in C;H(K) such that each [kydm = 1,
and such that spt ks — {e}.

(5.1B) If fe CH(K) then lim, ||(fm) % k= — f|l, = O.
(5.1C) If p e MH(K) then lim, (1 % k)ym = p.

Proof. 'The first is clear. For 5.1B, let ¢ > 0. By (4.3B), there exists
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Boe D with the following property: If x,yeK, 8 >8,, and

ko(x= % y) > 0, then |f(x) —f(y)] <e Let x€ K and let k = ks,
where 8 = B, . Then

((fm % B)w) = £ = | [ h(m % ) f(5) mldy) — f(x) [ W= ¢ 5) midy)
< [ R % 5) 1 £(3) — £ ()| m(d)

< ¢ [ B % 3) midy)

For 5.1C, let ge C;HK). Using 4.2H, [g(p % k) dm = [ (u % k)
d(gm) — [ ky d(u~ % gm) = [k di(gm)- % ] = [ (gm % k") dy, and
this last integral converges to [ g du. Also,

[ (0% By dm = [ [ (3= % ) uldy) m(dw) = [ ds = p(K).

THEOREM 5.1D. Let f, g€ BX(K) and let x € K. If either f or g is
o-finite with respect to m, then

[ 16 %) 5(2) midy) = [ F(5) e ) m(dy).

Proof. By symmetry and the Monotone Convergence Theorem,
we may assume that [gdm is finite. Let {Rg}scp be as in 5.1B. Let
he CHK). If j e C,5K) then

[idhmy = [ B d(m) = [ (p,-% h) d(jm)
= [ hd(p, % jm)
= lim f (hm % kg™) d(pp % jm)
= lim f (p,- X bm % k") d(jm)
= lim f j d[(p,- ¥ hm % kg~ym]

— f Fd(p,- ¥ hm).
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Thus h,m = p,_ % hm. By 3.1E, we have
[ 1d(p, % gm) = [ hx % 3) g(5) midy) = [ h g dm = [ g d(p,- * hm)

- j g, d(hm) = f hd(g, m).

Hence,
Pa: * gm = (ga:‘)m'
Finally,

[fle % 02 midy) = [Fd(p, % gm) = [ fd(g,m) = [ fe,- dm

= [ 1(5) 2 % 3) m(y).

5.2. The Uniqueness of Haar Measure

The proof here is a copy of the proof by Loomis [11] of the uniqueness
of Haar measure on locally compact groups.

THrOREM 5.2. If n is a left-invariant measure on K then there exists
a nonnegative real number c such that n = cm.

Proof. Let n be a left-invariant measure on K. Let € > 0 and let
f, g € C,H(K). Suppose that f 5= 0 and g 5 0. Then

Lim ) py % f — f % 2yl =0,

by 4.2F. Since f has compact support, we have

y-e

1imf (f, —f7|dn =0.

1.4

Thus there exists an open neighborhood U of e such that
[ 1f=fridn < () [ fam,
X X

[lay—gr1dn<(ef2) | gam,
X K
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for all y e U. Choose k& C,#(K) such that fhdm > 0, h = h~, and
h =0 off U. Then

([ e 1) = 10 ([ - o
= [ [ () Wy~ % 2) n(d) m(dy)
= [ [ 1) I ¢ 3) m(dy) n(a)
= [[ 1) e ¢ 3) m(dy) nlaix)
= [ [ (e % 3) h(3) midy) n(d)
= [ [ £ % 3) W) nlds) m(dby)
= [ 1) ([ 77 dn) mia).

But £ = 0 off U. Therefore,
([ 0) = ([ ) [ m) = | 50 ([ 1= 96) i)
<] )] 1),

Dividing both sides of the inequality, we have

o~ | <

£
3
The same argument applies to g, and thus

e — o] <

This implies that » = ¢m for some ¢ > 0.
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5.3. The Modular Function
The modular function 4 is defined on K by the identity

mXp,. = Ad(xym.

By 5.3A, this definition makes sense. The mapping x> A(x) is a
homomorphism from the convo X to the multiplicative group of positive
real numbers. Note that the constancy of 4 on the sets {x} % {y} is
essential. The multiplicative functions studied in Sections 6.3 and 7.3
are not usually homomorphisms from the convo to the multiplicative
semigroup of complex numbers.

Lemma S.3A. If x € K then there exists a unique positive real number
¢ such that m % p, = cm.

THEOREM 5.3B. The function 4 is continuous, and
44- =1 m = dm~.

TuroreM 5.3C. Let x,y € K. Then A is constant on {x} % {y}, and
the value of A on this set is equal to

A % 5) = A(x) A().

Proof A. 'The measure m % p, is defined, by (4.2L). It is clearly
left-invariant.

Proof B. Let fe C,#(K), with f 5= 0. If x € K then

A(s) [ fdm = [ fdm* p,) = [ (f%p,) dm.
Thus 4 is continuous, by 4.2F. If g € C,#(K) then

[fam [gam — [fam [ gdm = [ [ 1(x) g~(v % 3) m(dy) m(av)
= [ ] £ g(3~ % 2) m(dx) m(dy)
= [ [ £(y % 5) g(x) m(dx) m(ay)
= [ g(x) ([ 2 dm) m(ax)
= ([ £am) [ o) 26 m(a)
= f fdm f g d(4-m).
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Thus m~ = A-m. Therefore, m = (m~)~ = (4d~m)~ = dm~ = 4d~m.
Proof C. If x, y € K then
A(x) A(y)m = (m *Pq/_) *P{c‘ =M * (Pz *Py)-'

Thus 4(x) A( y) = A(x % y). It follows that

[adusyy=[adp [aav

for all u, ve M(K).
Let x,y€ K. Set p = p, ¥ p,, S = spt u, and

v=pkpm =p K KD KD

Thus v~ = v and »(K) = 1. Moreover,
[4dr = 40 43 43y d) = 1

j—}dv:fé—dv‘:jd"dv‘f&ldv =1

f(A +_jr)dv=2.

Since ¥(K) = 1, it must be that 4 = 1 on the support of ». Thus, if
s,teS then 4 =1 on {s} % {t7}, and so 1 = 4(s % ¢7) = A(s)/A(2).
It follows that 4 is constant on S, and its value there must be equal to
A(x) A()-

5.4. Convolution of Functions and Measures

Hereinafter the expressions o-finite and almost everywhere refer to the
measure m. By 5.2 and 5.3B, their meanings do not actually depend on
which Haar measure is used.

LeEMMA. Let {f,} be a nondecreasing sequence in B*(K). Suppose that
Jo 1.
(5.4A) If x,y € K then f (x % y) > f(x ¥ y).
(54B) If pe MHK) then p % f, — p % .
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Proof. By a straightupward use of the Monotone Convergence
Theorem.

THEOREM. Let u e MH(K) and let f, g € B®(K).
(5.4C) If f is o-finite then p % f is o-finite.
(54D) If [fdm << o then (u % f)m = p % (fm).
(5.4E) If [fdm < oo then [y (n % f)dm = w(K) [x fdm.
(5.4F) If either f or g is o-finite then

[ w*frgdm =] fu=%g)dm.
K K
Proof. For 54D, we have by previous results that

[ew fydm = [ (u f) d(gm)

= [fd(u= % gm)

= [[ % )em)(dy) w-(ai)
= [[ 16 % 3) 8(3) mldy) ()
= [[#(3) 8= % 3) m(dy) (et
= [[ e % 5)fm)dy) )

— [gd(u fm).
The other parts follow readily.

LemmA. Let pe MHK), fe BY(K), and 1 < p < 0.

(54G) Ifllfll, < oo then||p % fll, <l pll-lfllp-
(54H) If p < oo, |Ifll, < o0, and {pslpep s a net in MH(K)

converging to u, then

lim{ pg X f—pn*fl, =0.
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Proof G. Recall the proof of 3.3B. Assume that u(K) = 1. First,
suppose that p < co. Then

(w5 1) = ([ £ % ) (@)
< [ (% =) udy)

< [ 123 % %) uldy)

= (u X f2)(=).

for each x e K. It follows that

[ pydm < [ (u 12) dm = w(K) [ {7 dm = [ {7 dm.

The case where p = co is similar to 3.3B.
Proof H. Since p < o and the numbers || pg || = pe(K) converge
to u(K), it is enough to consider only f e C,*(K). By (4.2F),

lignll#e*f—#*fllu =0.

And by 54E, the [(us % f)dm converge to [(u % f)dm. Thus
pg ¥ f— u % f in both Ly(m) and L.(m). This implies convergence
in L ,(m).

5.5. Convolution of Functions

Let f and g be in B*(K). If (and only if) at least one of these functions
is o-finite, the convolution f % g of f with g is defined on K by

(% 8)(w) = [ f=%3)2(3) m(ds).

Note that the choice of m does introduce a scalar factor into the definition
of f % g. However, by Lemma 5.5A, below, the corresponding formula
with the right Haar measure m~ yields the same function.

In the remainder of this subsection it is assumed that p, g € [1, 0]

and 1/p 4 1/g = 1.

LeMMA. Let f and g be in B®(K).
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(5.5A) If x € K and if either f or g is o-finite, then

(fXg)x) = foxg“ dm = fo‘g”‘ dm-.

(5.5B) If either f or g is o-finite, and if {f,} and {g,} are non-
decreasing sequences in B®(K) converging to f and g, respectively, then
Juo % gn—f*%¢&.

(5.5C) Iff, = f almost everywhere, g, = g locally almost everywhere,
and f is o-finite, then f; % g, = f % g at all points of K.

Proof. These results are apparent.
PP

THEOREM. Let g, h € B*(K). Suppose that | g, < coand| k||, < co.
(5.5D) g > h— is continuous.
(5:5E) g *h |l <lglpllAll,-

Proof. These follow from 5.4G and 5.4H, since (f % g7)(x) =

LemMA. Let f, g € B®(K) and suppose that either f or g is o-finite.
(5.5F) f % g is lower-semicontinuous.
(5.5G) (f*g)y =g *f~.
(5.5H) If both f and g are lower-semicontinuous, then
pos(f ¥ g) = (pos f) ¥ (pos g)-

Proof. The first part follows from 5.5B and 5.5D. For the third,
see 4.1B.

THEOREM. Let p € MH(K) and let f, g, h € B¥(K).
(5.5I) If [fdm << oo then f ¥ g = (fm) % g.
(5.5]) If either f or g is o-finite then u X% (f X g) = (u X f) % g.
(5.5K) If [fdm < o0 and [gdm < oo then
(f ¥ gym = (fm) % (gm).

(5.5L) If [fdm < oo and [gdm < o then [x(f % g)dm =
fxfdm [y g dm.

607/18/1-3



32 ROBERT I. JEWETT

(5.5M) If f and g are both o-finite then f % g is o-finite.

(5.5N) If g is o-finite, and if either f or h is o-finite, then
X (g %h)=(f*g *h

(5.50) In 5.5N, also [x (f % g)hdm = [ f(h % g~) dm.

Proof. For5.5],if [fdm < co,thenp % (f % g) = p % (fm % g) =
(pXfm)*g=(nxXf)m*g=(uX*f)*g And if [gdm < oo,
then i % (f % g) — u % (f % gm~) = (u % f) % gm = (u % f) % g.

For 5.5N, if [fdm < o and [gdm < oo, then f% (g % h) =
Jm % (gm X h) = (fm % gm) X h = (f X gym ¥ h = (f % g) % h.

For 5.50, [(f % g) hdm = [(f % g) % k](e) = [f % (g ¥ h")](e) =
[f % (b % g7)e) = [f(h*g)dm.

TueorEM. Let f, g, h € B¥(K).

(5.5P) Ifl<p<ool|gl, <o and|h|, < oo theng X*h e
CyH(K).
(5:5Q) Iflflh < wandlgl, < othen|f*gl, <fl.lglp-

Proof. For 5.5P, g and h can be approximated by functions with
compact support.

5.6. Absolutely Continuous Measures

The set of measures in M(K) which are absolutely continuous with
respect to m (or, equivalently, to any other Haar measure, left or right)
will be denoted by M (K).

TreoreMm. Let v e M, (K).
(5.6A) If pe MH(K) then both pn % v and v % p are in M, *(K).
(5.6B) If {uslsen is a net in M+(K) converging to ., then
lim || g % v — ¥ v | = 0.
Proof. 'The first part follows from 3.3E. For the second part, let
fe CHK). Then, using 6.1D in advance,
lpg X v —p*v
Sl Xv—ngXfm|l 4l pg X fm — p X fm|| + | X fm — p X% v
Slusllllv —fmll + g % f —pw X flh + el [ fm—v|.
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Thus, by 5.4H,
limsup || pg X v — p X v < 2u(K) | v — fm].

But || v — fm|| can be made arbitrarily small.

Lemma 5.6C. Letve MH(K). Suppose that lim,,_, || p, X v — v || = 0.
Then v € M, H(K).

Proof. Let € > 0. Let U be an open neighborhood of e such that
| ps ¥ v —v| < eforallxe U. Choose k € C,#(K)such that [kdm— =1
and such that spt k& is contained in U. It is easily verified that
| km= % v — v || < e. But km~ % v = (k % v) m~, which is in M,7(K).
Also, M,*(K) is norm-closed. Hence, v € M, *(K).

6. CONVOLUTION ALGEBRAS

In preceding sections, the functions and measures considered were
usually nonnegative, and the operations were semilinear or semibilinear.
As a result the functions were defined everywhere on the convo. We
shall assume here that the obvious extensions to complex-valued
functions and measures have been made, insofar as the appropriate
integrals exist, and state the results without proof in Sections 6.1 and 6.2.

In this section it is assumed that K is a convo. Recall that if p € M(K)
and fe B(K) then there exist measures p, € M*(K) and functions
fi € BH(K) such that each p, < |p |, each f;, < |f|, and

p=m—ptip—iy, [f=Hh—fitis—i.
6.1. Complex-Valued Functions and Measures

For p € M(K), the adjoint p* of p is defined by p* = (3)~ = p~.

LemMa. Let p, v e M¥*(K) and f e B(K).

(6.1A) Ifx,ye K and |f|(x X y) is finite, then f(x % y) is defined,
and | f(x % y)| < |fl(x % ).

(6.1B) At the points of K where | u | % | f | is finite, p % f is defined,
and |p X f| < |p|*|f]

(6.1C) [pXv|<|n|*]v]

(6-1D) flp X vl <l pll-ilvll
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(6.1E) (u % »)(K) — w(K) «K).
(6.1F) If f is bounded then

[ rawy = [ [ 1% ) pid) i)

Tueorem 6.1G. The space M(K) is a Banach *-algebra with unit.

6.2. The L, Spaces

In this subsection it is assumed that m is a left Haar measure on K.
For a function f in B(K), the adjoint f* of f is defined by f* = (4f)~.
Note that if f e L,(m) then f* € L,(m) also.

For each p in M(K), a mapping T, : Ly(m) — Ly(m) can be defined by
T,f = p % f. Each such T, is a bounded linear operator on Ly(m).
The mapping p + T, from M(K) to the Banach *-algebra of bounded
linear operators on Ly(m) will be called the left-regular representation

of K.

Lemma 6.2A. Let f, g€ B(K). At those points where |f| X |g]| is
Jinite, f % g is defined, and |f X g | < |f| *|gl.

TrEOREM. Let pe M(K) and feL,m). Let p,qell, o] with
1/p 4+ 1/g = 1, and let g e L,(m) and h € L(m).
(62B) p ¥ geLy(m) and || p % gl, <lnl-lgly-
(62C) % geLym)and|f % gl, <|flllgl,-
(62D) [i (% g) hdm = [x g(u= % h) dm.
(6.2E) g % h~ is continuous, and ||g ¥ b=, <|lglplihl,-
(6.2F) If p and q are finite then g % h is in C(K).

TueoreM 6.2G. The space L,(m) is a Banach *-algebra.

TueoreM 6.2H. The space M (K) is a closed self-adjoint ideal in
M(K).

THEOREM 6.21. The left-regular representation is a faithful norm-
decreasing *-representation of M(K).

Proof. Let pe M(K) and suppose that p = 0. Then there exists
feCy(K) such that [fdu 0. Let h =f-. Then (T,h)e) =
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(u X h)e) = [fdu %~ 0. And p X h is continuous, by (4.2A). Thus
T, #0.

LevMA 6.2]. Let feLy(m) and let {g,, g5 ..., gn} be an orthonormal
set in Ly(m). Then

<IIfIlE-

©

Y 1f%e P

k=1

Proof. Note that the g; also form an orthonormal set. Let x € K.
By Bessel’s Inequality,

S *g)@E =3

k=1 k=1

jfxgk dm r

= Y K Bl < IS lE < IFIE
k=1

6.3. Multiplicative Functions

A complex-valued function y on K will be called a multiplicative
function if y is continuous and not identically zero, and has the property
that

x(x % y) = x(®) x(¥)

for all x and y in K. We denote the set of all such functions by ¥(K),
and give X¥(K) the topology of uniform convergence on compact subsets
of K. The set of all ¥ in X¥(K) which are bounded will be denoted by
X,(K). Note that the constant function 1 is in X,(K).

While a bounded multiplicative function is not in general a homo-
morphism from the convo to the semigroup of complex numbers under
multiplication, it does give rise to an algebra-homomorphism. For y in
X,(K), let F, be defined on M(K) by

Fw = [ xdu.

We assume in this subsection that there exists a left Haar measure m
on K.

It turns out that if K is commutative then the space X,(K) is homeo-
morphic to the structure space of M (K) with the Gel’fand topology.

Recall that a multiplicative linear functional on a complex algebra is a
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complex-valued homomorphism of the algebra which is not identically
Zero.
The first lemma below is apparent.

LEMMA. Let y € X,(K).

(6.3A) The function F, is a multiplicative linear functional on M(K).
(6.3B) F, is not identically zero on M (K).

(6.3C) The functions y~ and ¥ are in ¥,(K).

(63D) x(e) =1 =lixllu-

Levmma 6.3E. Let E be a multiplicative linear functional on M, (K).
Then there exists a unique multiplicative linear functional F on M(K) such
that F = E on M (K).

TueoREM 6.3F. Let F be a multiplicative linear functional on M(K)
which is not identically zero on M (K). Then there exists a unique x € X,(K)
such that F = F, .

THEOREM 6.3G. Let {xs}sep be a net in X,(K). Then the following
two statements are equivalent:

(I) The x5 converge uniformly on compact subsets of K to a function
x on K.
(II) The restrictions of the F, to M,K) converge pointwise to a
function on M (K) which is not identically zero.
Suppose that these nets do so converge. Then x € Xy(K), and the F,,
converge to F, on M(K).

THEOREM 6.3H. The space X,(K) is a locally compact Hausdorff
space. The two mappings x +— x~ and x +— ¥ are topological involutions
of X,(K).

Proof E. Recall that M (K)is an ideal in M(K). Thus F is given by

Flp) = E(';,;Z; 9,

where v is an element of M, (K) such that E(v) 5 0.
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Proof F. Since M(K) is a Banach algebra with unit, || F| = 1.
Choose v € M,(K) such that F(v) # 0. If u, , p, € M(K) then

| % v — py X v
| F(py) — Fp)l < [F()l .

Thus, by 5.6B, F is positive-continuous. By 2.2D, there exists f € Cy(K)
such that F(u) = [ fdu for all pe M(K). Let x = f.

Proof G. It is clear that (I) implies (II). Assume (II). Let the Fxﬁ
converge to E on M (K). So E is a multiplicative linear functional on
M (K). By 6.3E and 6.3F, there exists ¢ € X,(K) such that E = F, on
M,(K). Choose v € M,(K) such that E(v) # 0.

LetacK. If xe K, Be D, H;, =F,_, and Hy(v) # 0, then

xg 7
| xs(%) — ()]
< 1 xe(¥) — x6(@)] + | xe(@) — $(a)] + [ () — $(*)]
| oo X v —ps X v HB(Pa*V)_ E(p, % v) _
TH0)) = a0 70) + | ¢(a) — d()l.

<

This shows, using 5.6B again, that
fim | (%) — (x)| = 0.

And this implies that the x,; converge to iy uniformly on compact subsets
of K. Thus € X,(K). It is clear that the F,, converge to F, pointwise
on M(K).

Proof H. 'This is a consequence of 6.3G and the Tihonov Product
Theorem.

7. SomE SpeciaL. CONVOS

The convos that are most easily analysed are those that are either
discrete, compact, or commutative. A similar statement can be made
about locally compact groups, and for the same reasons.

7.1. Discrete convos

Unlike a topological group, a convo does not have a purely algebraic
structure associated with it. In general, if a convo is given the discrete
topology then the operation is no longer well defined. Another contrast
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is in that, while a topological group is homogeneous, there exists a
convo that has isolated points but is not discrete. An example will be
given elsewhere.

TueOREM 7.1A. Let K be a discrete convo. Then there exists a left
Haar measure on K. If m is the left Haar measure for which m({e}) = 1,
then

1
™) = G X o))

for each x in K.

TreEOREM 7.1B. Let K be a convo. Then the following three statements
are equivalent:
(I) K is discrete.
(II) The identity e is an isolated point of K.
(III) There exists a Haar measure m on K such that m({e}) > 0.
Proof A. For x,y,z€ K define [x %y, 2] = (p, % p,)({z}). Note

that [x X y,e] >0 if and only if x =y~. For xe K let [x] =
1/[x~ % x, e]. If x,y, 2 € K then

(B2 % (py % P)){E}) = (P2 % py) ¥ P)({ED),
Y [eXtelly ¥zt =) [xXyt]t*azel,
tek tek

[x % x—, e][y % 2, 57] = [x Xy, 27][~ % 3, ¢,
[2)[y % 2, &7] = [#][x Xy, x7).

Let the measure m be defined by
xek
If x, y € K then
(py % m)({x}) = ) [21(ps % p)({})

2€K

=) [y % 3 7]

zek

= z [ 1[x % 3, 27]

zek

= [&7] = m({x}).



CONVOLUTION SPACES 39

Proof B. We have just seen that (I) implies (III). Assume (III).
Then iy, is a nonzero element of Ly(m). But i,y % iy = c iy, for some
¢ > 0. Thus ¢y, is continuous. Hence (II).

Assume (II). If x € K then p, % i = c iy, for some ¢ > 0, and thus
1, is continuous. Hence (I).

7.2. Compact Convos

The Theorem 7.2C is based on the theory of H*-algebras. Two
references for this theory are the books of Loomis [11] and Naimark [14].
The proof that the minimal closed ideals are finite-dimensional is
modeled after a proof of Nachbin [13] that an irreducible unitary
representation of a compact group is finite-dimensional. See Levitan
[9, p. 22] for his version of 7.2C.

THEOREM 7.2A. Let K be a compact convo. Then there exists a Haar
measure on K. Moreover, K is unimodular.

THEOREM 7.2B. Let K be a convo. If there exists a finite Haar measure
on K then K is compact.

THEOREM 7.2C. Let K be a compact convo, and let m be the Haar
measure on K such that m(K) = 1. If f, g € Ly(m) then f % g € Ly(m) and

[f%gll <lflleligll-

With convolution as the operation, Ly(m) is a H*-algebra, and is thus the
(Hilbert space) direct sum of its minimal closed ideals. Each minimal closed
tdeal in Ly(m) is finite-dimensional.

Proof A. By 4.3C, there exists a nonzero left-subinvariant measure
m on K. It is clear that m is a Haar measure. And K is unimodular, since
A(K) is a compact subgroup of (0, ©).

Proof B. Let f=1 on K. Then feL, and f % f = ¢f for some
¢ > 0. But f ¥ fe Cy(K). Thus K is compact.

Proof C. 1t is apparent from previous results that Ly(m) is a H*-
algebra. Let | be a minimal closed ideal in Ly(m). It is known that ] is
isomorphic to an algebra of complex matrices, where, for some ¢ > 1,
the norm of each matrix is ¢ times the L,-norm of the matrix. See
Naimark [13, pp. 330-331]. Choose a column and consider the set of
all matrices whose entries off that column are zero; let ], be the cor-
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responding subset of J. In fact, J, is a minimal left ideal of Ly(m). A
simple computation with matrices shows that, for all f, g€ J;,

clf %¥g*le =I15lllgllz-

Let fe J; be such that || f|l, = 1 and let {g,, g5 ,-.., gz} be an ortho-
normal set in J; . The g, form an orthonormal set in Ly(m). By 6.2],

= L U= X1 % e IR
k=1 k=1

Y f ¥
k=1

1

<

Z 1% G- 12

U

<Ilflz=1
Therefore, dim J; < ¢% and dim | < ¢4

7.3. Commutative Convos

Let K be a convo. In this subsection it is assumed that K is commu-
tative, which means that p, % p, = p, ¥ p, for all x,ye K. It is
easily seen that all convolutions of functions and measures commute
whenever defined.

We also assume here that K has a Haar measure m. It is apparent

that K is unimodular.
Let K be the set of all y in ¥,(K) such that

X&) = x(®)

for x € K. Note that K is nonvoid, since it contains the constant function
1, and that if y € K then y~ = g is in K also.
For p € M(K), the Fourier—Stieltjes transform {& of u is defined on Kby

) = | xde-

For f € L,(m), the Fourier transform f of f with respect to m is defined
on K by

foo = [ fxdm.
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The set S is the set of all y € K such that | A(x)| < | Z,| for all
p € M(K). For any function % defined on K, let

Il klls = sup [ R(x)-

We credit 7.31 to Levitan [6], but shall include a proof of this basic
result. The measure 7 is called the Plancherel measure on K associated
with m.

T'HEOREM.

(7.3A) The space K is a nonvoid (locally compact) closed subspace
of ¥,(K).

(7.3B) If ye K and | 9(x)| < || T,|| for all ve M (K), then x € S.

(7.3C) S is a closed nonvoid subset of K.

(73D) If pe M(K) then | T, || = | Al -

(7.3E) The mapping p+> i is a norm-decreasing *-algebra iso-
morphism from M(K) into Cy(K).

(7.3F) If ve My(K) then ? € Cy(K).

(7.3G) IffeL,(m) then f = (fm)" and f € C,(K).

Ié7.3H) The set {f: fe C(K)} is a dense self-adjoint subalgebra of

Co(K)-

TraeoREM 7.31 (Levitan). There exists a unique nonnegative measure
7 on K such that

[1fram =] |frdn
X K
for all f in L(m) N\ Lym). The support of w is equal to S. The set
{f:fe C(K)} is dense in Ly(r).
Proof A. Apparent.
Proof B. This is straightforward, since M, (K) is dense in M*+(K).

Proof C. Letvye M,(K), with vy 5= 0. Then T, 7 0. The algebra
{T, :ve M(K)} is self-adjoint and commutative. Thus there exists a
multiplicative linear functional H on this algebra such that | H(T, )| =
| 7, || Also, H must be a *-homomorphism. But the mapping » > H(7,)
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is a multiplicative linear functional on M, (K). By 6.3E and 6.3F, there
exists ¢ € X,(K) such that

H(T,) = Fy(v) = 9(¢)

for all ve M, (K). Also, s € K, since H preserves adjoints. It follows
that € S, since | H|| = 1. It is clear that S is closed, since the trans-
forms {4 are continuous.

Proof D. In the notation of the previous proof, | T, || = | vy~(¥).
Thus, if ve M, (K) then |#| attains its supremum on S, and the
supremum is || T, ||. For u € M(K), one can approximate by members of
M (K). In this case, though, the supremum may not be attained.

Proof E. 'This is clear, since T, == 0 if p £ 0.

Proofs F, G. This follows from (6.3G), since ¥,(K) is just the
structure space of M,(K).

Proof H. 'This follows from the Stone-Weierstrass Theorem.

Proof 1. Let H be the uniform closure of the set {i : ue M(K)}
in Cy(K). Thus H is a closed self-adjoint subalgebra of C,(K) containing
Cy(K). There exists a unique *-homomorphism k i~ ¥, from H onto
the closure (with respect to norm) of the algebra {T, : p € M(K)} with
the property that

Vo=T., and || Vil =Ikls

for all p € M(K) and ke H.
The remainder of the proof is divided into several lemmas.

Lemma 7.3]. Let ke C(K). Then there exists a unmique function
k' € C(K) such that || k'|, < oo and such that V,g = k' % g for all

& € Ly(m).
Proof. There exists f e C,(K) such that | f| > 0 on spt &, by 7.3H.

There exists j& C(K) such that £ =j-f-f Thus V, = V,;V;V; =
VTt Ty . Let B = (V;f) % f. The rest is straightforward.

LemMma 7.3K. The mapping k> k' from C(K) to Cy(K) is linear,
and k' = 0 if and only if | k| = 0.
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Lemma 7.3L. Ifj ke CC(K) and p € M(K) then
Ry = (&)* (k)Y =5 %k (R =pKE.
Proof. Let g € Ly(m). Then
RXg="Tg= (V)*g = (R)* X g,
(R % g =Vapg =VVig =7 Xk Xg=(XFK)Xg
(k)Y % g =Vug =V,Vig =p Xk *g.

Lemma 7.3M. Let ke C(R). Suppose that k = 0. Then K'(e) > 0.
Also, K'(e) > 0 if and only if || k| > 0.

Proof. There exists je C,(K) such that j > 0 and k = j2 Thus
k' = j' % j'*. Therefore, k(e) = [|j'|* dm. The rest is clear.

LemMa 7.3N.  There exists a unique measure we M*(K) such that
[k dn = K(e) for all ke C(K). The support of m is equal to S.

Proof. This follows from the Riesz Representation Theorem,

Lemma 7.30. If ke C(K) and f € Ly(m) N\ Ly(m) then

|k|2de = | |k |2dm, [f12dn = | |f|2dm.
R K R K

Moreover, the set {k' : ke C,(K)}is dense in Ly(m), and the set {f : fe C{K)}
1s dense in Ly(w).

Proof. If ke C K) then [|k|2dm = (kE)'(e) = (k' ¥ E'*)(e) =
JI & |2dm.

Suppose that #eLy(m) and that [k'hdm = 0 for all ke C(K). If
xe K and ke C(K) thenj = (p,-)" kis in C(K), and

0= [ jhdm = [ (po % K)hdm = (k % Ir)a).
X K

Thus Vi (k™) = 0 for all ke C(K). It follows that f ¥ & = 0 for all
feLy(m). Hence h = 0.

The rest is apparent, since the mapping k +— k£’ extends to an isometry
of Ly(n) onto Ly(m).
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LeMMA 7.3P. Let mye M(K) and suppose that [ | f|2dmy = [ | f|2 dm
for all fe C(K). Then =y = .

Proof. Let ke C(K). Let F be the set of all fe C(K) such that
f>=00nK. Then F = {f: feF}is dense in Cy+(K), by 7.3H. Choose
k,eF such that k, > k on spt k. It is possible to define a sequence
{k,} in F such that

k, <1 on K
k < kyky -k, =h, onsptk
h"<k+rlz on K

forn > 1. Note that each &, € F also. Thus [ k, dmy = [k, drforn > 1.
Hence, [kdny = [kdm, by the Lebesgue Dominated Convergence
Theorem.

8. Convos FROM GROUPS

The main result here is the Theorem 8.2B, which asserts that: If G is
a locally compact group and H is a compact subgroup of G, then the
double coset space Gf/H = {HxH : x € G} is a convo in a natural way.

8.1. Actions

A continuous action of a topological group H on a topological space X
is a continuous mapping (¥, s) > x° from X X H to X such that

=% and  (x°) = x0sV

for xe X and s, t € H. If x € X then the orbit of x under H is denoted
by x# = {x%: s € H}. The set of orbits is denoted by X# = {x¥ : x € X}.

Let G be a group. A mapping A: G — G is called affine if there
exists ¢ € G and an automorphism B of G such that 4A(x) = ¢B(x) for all
x € G. Note that, if a, b € G and B is an automorphism of G, then aBb
is affine, since aBb = (ab)(b—'Bb) and b—'Bb is also an automorphism.

Let G and H be topological groups. A continuous affine action of H on
G is a continuous action (%, s) — x* for which each mapping x > x° is
affine.

Taeorem 8.1A. Let (x, s) > x° be a continuous action of a compact
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group H on a nonvoid locally compact Hausdorff space X. Then X¥ is a
decomposition of X into compact subsets, and X is a closed subset of €(X).
The quotient topology on X¥ and the relative topology on X¥ are equal.
With this topology, X¥ is a locally compact Hausdorff space, and the natural
projection, x +— xH, is a continuous open mapping from X onto XH.

Proof. Let 7 be the natural projection. It is clear that X¥ is a closed
subset of %(X). If U and V are open subsets of X then

W =aYEuV)) ={xeX: 2% CV,x¥ N U nonvoid}

is an open subset of X. Thus the relative topology is contained in the
quotient topology. Now let O be a subset of X# open in the quotient
topology. Then U = #~Y(Q) is open in X. But QO = (U¥) N X4
Thus the topologies are equal. Also, if W is an open subset of X then
(W) = €(WH#) N X¥ is an open subset of X%,

THEOREM 8.1B. Let G be a locally compact group and let H be a
compact group, and suppose that (x, s) +— x° 1s a continuous affine action of
H on G. Let X be a left Haar measure on G and let o be the normalized Haar
measure on H. Let G¥ have the quotient topology. For x, y € G define

() % () = | L Praeyynol(ds) o(dt).

Then this operation is well defined, and, with it, G¥ is a semiconvo. More-
over, the measure

m = L ,u\dx)

is a left-invariant measure on GH.

Proof. 1t is apparent that the operation is well defined. For each
x € G let w, € M, *(G) be the probability measure given by: [;fdw, =
Ju f(%°) o(ds). The mapping x¥ > w, from G# to MH(G) is well defined
and continuous. Thus 2.3H applies, and we have an extended mapping,
p > p', from M(G¥) to M(G). One readily sees that the measures p’ are
precisely the measures on G' which are invariant under the action of H.

For each s € H let a, = (1¥)7, where 1 is the identity of G. It is easy
to verify that (xy)® = x%a,y* for se H and x, y € G. Let the measure
m € M,*(G) be defined by: [¢fdm = [4f(a) o(ds). The computation
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(xyh)* = x%¥q,y* shows that the measure w, ¥ 7 X w, is invariant

under H, and

v

wy %K w, = (P % 1)
Thus the convolution, for u, v € M(G¥), is given by
(b %) = p' ¥ m ¥,
Thus G¥ is a semiconvo. It is apparent, since H is compact and since the

action is affine, that each mapping x 1— x5 of G leaves A invariant. Thus
the measure m is left-invariant.

8.2. Cosets

In this subsection, G is a locally compact group, H is a compact
subgroup of G, A is a left Haar measure on G, and o is the normalized
Haar measure on H. Let the set of left cosets

G/H = {xH: x € G}
and the set of double cosets
G/|H = {HxH: x € G}
have the quotient topologies.

TueoREM 8.2A. The space G/H, with the operation
Pt K Py = J. Patyno(dt),
H
is a semiconvo. A left-invariant measure on G[H is given by
= e \(d%).
m = pur(de)
THeoreM 8.2B. The space G[[/H, with the operation

Pren K Pryn = fH Prntyno(dl),
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is a convo. The identity elementise = H = H1H.If x € G then (HxH)~ =
Hx'H. A left Haar measure on G[|H is given by

m = | prenN(ds).
G

Proof. 'The mapping (x, s) > xs is a continuous affine action of H
on G, with orbit space G/H. The mapping

(x, (s, 2)) & s71xt

is a continuous affine action of H X H on G, with orbit space G//H.
The theorems follow readily from 8.1B.

8.3. Groups of Automorphisms

Let (x, s) > x° be a continuous action of a compact group H on a
locally compact group G. Suppose that each mapping x+> x* is an
automorphism of G. Let ¢ be the normalized Haar measure on H. Let
G# have the quotient topology.

THEOREM 8.3A. The space GH, with the operation

(2) % (2y) = [ Prany10(@) = [ Doyt

is a convo, and has a Haar measure. The identity is 1¥ = {1}. If x€ G
then (x¥)~ = (x~1)7,

TrHeoreM 8.3B. Let G and H be as above. Let G’ be the product space
G X H and let H' = {1} X H. Define a binary operation on G’ by

(x,5) * (3, 8) = (=%, 52).

Then G’ is a locally compact group, H' is a compact subgroup of G’, and
the mapping

H'(x, s)H' > xH
is an isomorphism from the convo G'[[H' onto the convo G*.

607/18/1-4
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Proof A. Since the action is affine, 8.1B applies. The operation
given here is correct, since

wtyt = ()t = (xyt7)°
for x,ye G and s, t € H. Also, (x7')* = (x*) 1 for xe G and s € H.
Proof B. Here, G’ is just a semidirect product of the groups G and
H. 1f (%, 5) € G’ then
H'(x,s)H' = x¥ x H.
Note also that (x, 1) - (1, s) - (3, 1) = («%, s).
8.4. Compact Groups

Let G be a compact group, with normalized Haar measure o.
A function ¢ on G will be called a normalized character if = (1/n)T,
where T is the trace function of an irreducible unitary representation
of G on an n-dimensional Hilbert space. For x € G let

xC = {"t: t € G},
the conjugacy class of x. Let K = {x°:xe G} have the quotient
topology.

THEOREM 8.4A. The space K, with the operation

(pch) * (puG) = fG P(t“a:w)ca(dt)!

is a compact commutative convo. The identity is {1}. If x € G then (x°)~ =
(x~1)¢. A function  on G is a normalized character if and only if there
exists a multiplicative character y € K such that J(x) = x(x°) for all x € G.

TuroreM 8.4B. Let K be as above. Let x, and y, be in K. Then there
exist positive numbers a;, and elements iy, of K such that

n

X1Xe = Z ahy 1= Z ay .

k=1 k=1

This representation is unique. Define

n

le*Pn = Z akp'ﬁ]:'

k=1
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With this operation, K is a commutative discrete convo. The identity of K
is the constant function 1. The Plancherel measure = associated with a Haar
measure on K is a Haar measure on K.

Proof A. The mapping (x, s) —> s~'xs is a continuous action of G
on G, and 8.3A applies. Recall that a function  on G is a normalized
character if and only if ¢ is continuous and

W) 40) = [ pteaty) ol

for all x, y € G. Moreover, a character of G is constant on the conjugacy
classes of G.

Proof B. Let m be the normalized Haar measure on K. The space
K is discrete, since the elements of K are orthogonal functions in Ly(m).
That an operation on K can be defined as stated above follows from
known facts about the characters of a compact group. It is clear that the
resulting convolution in M(K) is associative and commutative. Since
the mapping x +> x—~ is an involution of K, the mapping y > y~ is an
involution of the semiconvo K. Let y, and x, be in K. Suppose that

n
X172=C+ Z by s
k=1

where the ¢, are nonconstant elements of K. Then [ y;x, dm = c. Now
¢ > 0 if and only if x; = x, . Thus K is a convo. ;

Let 7 be the Plancherel measure on K associated with m. Let y € K.
Then [|x|*dm = [|§|2dn. But %) =0 if ¢ £y, and %(x) =
f|x |2 dm. Thus

1
ﬂ:’;?(f[x[zdm)p"'

Let 7' = Y (1/a,) p, be the Haar measure on K specified in (7.1A).
It was noted above that a, = [ |y |?dm. Thus »' = .

9. EXAMPLES

The question of whether or not K is a convo, where K is a given
commutative convo, will be considered elsewhere. For compact K,
the idea is illustrated by 8.4B. It turns out that: In 9.3, K is a convo
isomorphic to K; in 9.5, K is not a convo.
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9.1. Some Small Convos

An element x of a convo K will be called self-adjoint if x~ = x. If
each element of K is self-adjoint, then K will be called a Hermitian
convo. Hermitian convos are not rare. The process used in the Intro-
duction to construct an operation on R* from that on R can be applied
to any locally compact Abelian group. The process used in 8.4B to
construct an operation on K does not work in general, as is shown by
the example 9.1C.

TreoreM 9.1A. If K is a Hermitian convo then K is commutative.
Proof. 1If x,y € K then

Pz*?y = (Px*Py)_ :Py—*pz“ =P1I*pz'
ExampLE 9.1B. Let K = {¢, a} be a discrete space with two elements.

Let 8 be a real number such that 0 < 8 < 1. An operation, depending
on B, is defined on K as follows:

Pe*?s=Pe Pe K Po = Pa
Pa*?e=Pa Pu*?azﬁps'{‘(l_‘ﬁ)pa'

Then K is a Hermitian convo. The identity is e. Note that K is a group
if and only if 8 = 1. A Haar measure on X is

m=p,+ (1/B) pa .

Let K ={1,x}. Then x(¢) =1 and yx(a) = —B. The Plancherel

measure on K associated with m is

B
+8

1
Pl+1+ﬁpx‘

7T=1

Also, K is a convo and K is isomorphic to K, since

xX* =81+ —Bx
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ExampLE 9.1C. Let K = {e, a, b} be a discrete space with three
elements. An operation, with e the identity, is defined on K as follows:

1 1 7
Pa*?a = Zpe +§6Pa +pr ’
X Py = Py ¥ Py = oo + =
Pa Pb _'pb Pa s 20Pa + lopbs
1 3 9
2o X Po =g P +El’a+'261>b-

Then K is a Hermitian convo. A Haar measure on K is

m=Pa+4Pa +4pb-

And K = {1, y, ¢}, where the values at ¢, @, b are

1:1, 1,1
31
by
17
$: L35~ 35

The Plancherel measure on K associated with m is

1 4 100
™ —§P1+ﬁ1>x +T5—3Pw-

But K is not a convo, since

17 3 175
1—'6§x+§0—6'/'-

2 .

X" 36
ExampiE 9.1D. Let S, denote the group of all permutations of the

set {1, 2, 3, 4}. The elements of S, will be written in cyclic notation, and

multiplication is computed from left to right. For example, (12)(13) =
(123). Let A, be the subgroup of even permutations. We apply here the
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results of 8.4 to the group G = 4, . The elements of K = {¢, a, b, ¢}
are given below in columns:

e a b ¢
1 (12)(34) (123) (124)
(13)(24) (134) (132)
(14)(23) (142) (143)
(243) (234

Then K is a commutative convo with identity e. Moreover,

1 2
Pa*?a=§Pe+§Pa pa*?b—_‘PD Pa*pc = pe
1 3
Pb*?b =P Pb*?c = Zpe + Zpa

Pe K P =1y-
Note that a— = a and b~ = ¢, The normalized Haar measure on X is
m = g5t gbat 300+ 300
Let o = e2/3 and B = e#i/3, Then K = {1, x, , £}, where the values
at e, a, b, c are
1:1,1,1,1
x:L, 1,8

l/':l:l’lgao‘

1

5:1,—5,0,0.

The Plancherel measure on K associated with m is

T =Py + P+ Py + e
And K is a convo. We have

1 1 1 2
EZ=§'1+§x+§¢‘+§£-
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The other products are obvious. For example, x> = and x¢ = ¢&.
For more information about the group 4, see Hewitt and Ross [4, p. 48].

9.2. A Finite Noncommutative Convo

Here we apply the results of (8.3) to the group G = 4,, acted on by
the group H = {1, (12)} by inner automorphisms in S,. Let the
resulting convo be K = {e, a4, b, ¢, d, u, v}. It is easily seen that S, can
play the role of G' and that H corresponds to H', where G’ and H' are
defined in (8.3B). The elements of K are given below in columns:

e a b ¢ d u L7}
1 (12)(34) (13)(24) (123) (124) (134) (143)
(14)(23) (132) (142) (234) (243)
12) 34) (1329) (13) 14) (1234) (1243)
(1423) 23) (24) (1342) (1423)

Note that the top half of each column is an orbit under H, and that the
entire column is a double coset of H. Note also that v~ = v, and that
the other five elements of K are self-adjoint. The convo X is not commu-
tative, since p, % p, # p, ¥ p, . In the adjoining convolution table,
we have put x in place of p, . The normalized Haar measure on X is

1 1 1 1 1 1 1
m:ﬁpe+l_'2pa+gpb+'6’?c+8Pd+gpu+gp'v

There are four minimal ideals in Ly(m). Three are one-dimensional,
giving rise to X(K) = {1, x, ¢}. The values of y and ¢ are, in order,

YL Ll —5,—5,—

[N T

1 1
27Ty
_1
2)

11
'7[’-1,""1’0) :Eyi-

ST

The other ideal has dimension 4 and corresponds to a two-dimensional
irreducible representation. This gives rise to the normalized character
£, with values

£€:1,0,—

FNE

rr_1
74,4! 4)

N =
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Even though ¢ is a central function on K, the function f = ¥ is not
central, since f(a % u) 5~ f(u % a).

e a b c d u v
e e a b ¢ d u v
a a e b u v ¢ d
b b b ket3a YAl detiu dt+Io e+ lu
c ¢ v 1d+ tu 3e + % 36+ du 16+ 1d ta+ v
d d u %c+%v %b+%v %e -+ %d %a-}-%—u %b—}-%c
v u d de+dw 3at+lu 4+ P+ Lledid
v v ¢ H+i I+id lat+iv et Fb+4du

9.3. Rotations of the Plane

Let G be the group R X R, and let H be the circle group. There is a
natural continuous action of H on G, each mapping being a rotation.
These rotations are automorphisms, as in 8.3. The orbits are concentric
circles, with center (0, 0). If x, y > 0 then

lI(x, 0) -+ (¥ cos ¢, y sin ¢)|| = (¥ + % + 2xy cos £)1/2,

We use Rt as a model, the positive number x representing the circle
of radius x. The convolution operation is specified by the identity

J%3) =5 f:”f«xz + 9% + 2xy cos £)1%) dt.

This can be rewritten as

x4y ( 23/71-
(& +y+)x+y—s)x—y+)—*+y -+

for positive ¥ and y. The identity element is 0. The Haar measure
inherited from G = R X R is given by

m(dx) = 2nx dx,

¥y = ) 8. s,

l—yl

where dx denotes Lebesgue measure on R+, Also, this convo is Hermitian.
Let J, be the Bessel function of order zero. Let | be defined on R+
by J(x) = Jo(2x). Thus,

](x) — i (_;1'12)7‘ x2m,

n=0



CONVOLUTION SPACES 55

So J is a bounded continuous function on R+, If x, y e R+ then

Jo %) = 3 CP L[ 6 43t 4 22y cos i a

2
n=>0 n‘

- (—=1)" n 1
=y ( nl2) y (u . w) x2“y2”(2xy)“’§7—r J;) cos® ¢ dt

n=0 * U v+ w=n

v (=D

2
i

L oo ) reor ()4

U4 v+2k=n

_ i (=0~ Y apwihiyrens n!

12 1ol Bl &l
n=0 n: Ut o-+2k=n ul ol R R

( _— 1)u+v+2k

T A .,+.,§k=,. (« + v + 2B)(u + k(v + R)!

X g2kl 20+ (“ -}i;k) (11 2— k)

Ms

_—_22 y (=1 iyt (I:)(I]e)

({ k<] (z +])| l']’

c 1J 22.+.
=2 L ()

= J(x) J(9)-

Thus ] is an element of K, where K = R+.

For each ¢ > 0 define y, on K by x(x) = J(cx). Thus x, = 1, and
each y, is bounded and continuous. Moreover, if x, y € K then

27
x{x X y) = 2%1—[ (V22 + 3 + 2xy cos t) dt
)

1 27
=2—ﬂf Jle V& 55 ¥ 2wy cos 1) dt
= J(ex % cy) = J(ex) J(cy) = xo(x) xo()-

Thus each y, is in K also.
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9.4. Rotations of the Sphere
Let 2 be the unit sphere,

Z={xyz2):xr+y2+22=1},

in R3. Let G be the group of all orientation-preserving isometries of X,
Thus G is isomorphic to the special orthogonal group SO(3). Let
NP = (0,0, 1) and let SP = (0, 0, —1). Finally, let

H = {g e G: g(NP) = NP}.

Thus H is a closed subgroup of G, and H is isomorphic to the circle
group. We now examine three structures associated with G and H.

ExampLE 9.4A. We apply the results of 8.4 to G. Two elements of
G are conjugate if they rotate 2 through the same angle, which we
represent by a number in the compact interval [0, #]. A convolution
operation 1s thereby defined on K, = [0, ], and K, is a compact
commutative convo. It is clear that K, is Hermitian, that 0 is the identity
element, and the support of a convolution p, X p, is either an interval
or a singleton. In fact, p, % p, has support equal to K, .

ExampLE 9.4B. Consider the semiconvo G/H. For each xeX
the set

C.={geG:g(NP) = x}

is a left coset of H. Thus it may be assumed that K, = X is a semiconvo,
and that the mapping x +— ¢, is an isomorphism from K, onto G/H.

Let x,ye X and let d, = ||y — NP}, the distance measured in R®
Then

Spt(py % py) = Sy = {222 — x| =d,}.

If y s« NP, SP then S, , is a circle, and p, % p, is a multiple of the
length measure. In the other two cases,

2 *PNP = Pu and Pz K Psp =P

Note that NP is not an identity, but just a right identity.
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ExampLE 9.4C. Now we consider G//H. For each number x in the
interval [—1, 1] let

D, = {ge G: g(NP) = (s, 1, x) for some s, t}.

Each set D, is a double coset of H. We thereby have a convo K; =
[—1, 1]. The identity element is 1. The convo K, is Hermitian, since
the only topological involution of [—1, 1] which leaves 1 fixed is the
identity mapping. Thus K, is commutative. But K, is not isomorphic
to K, since p_; ¥ p_, =p;.

9.5. An Example of Naimark

The convo studied here is essentially the same as a structure given by
Naimark [14, p. 274]. However, due to the difference in notation, a
certain amount of verification is required.

Let x, y e R*. If b is a nonzero complex number, then

e R

f"“"” sin bt sin bx sin by
| .

When b = ¢ this becomes
a4y
L sinh £ dt = 2(sinh x)sinh 3).
-y

Now we define the convo. Let K = R*. Let 0 be the identity element.
Ifx,yeK, x>0,y >0, let

% py = e [ (sinh £) py d
P2 Py = 3nh #)(inh 9) flx_u, (sinh £) py dt.

It is clear that these measures are probability measures, that the operation
is commutative, and that the mappings (x, y) > p, % p, and (%, y) —
spt( p, % p,) are continuous. Associativity will be verified later.

For a € C let x, be defined on K by

Xa(x) — [Z a® (2( _*1_)1)! Zn]/[i (—Z;—j—_-lu)_!-x%].

=0 n=0
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Note that, for each a € C, the function y, is continuous, and y,(0) = 1.
Also, x_, = 1, and yy(x) = x/sinh x for x > 0.
Let x, y € K and a, b € C, with a = b2 If x and a are non-zero then

Xa(x) = sin bx/b sinh x.

If, in addition, y 7= 0 then

1 z+y sm bt
Xa(® X y) = 2(sinh x)(sinh y) Jjzy| .
= Xa(x) Xa(y)'

Now let z€ K, with 2 > 0. It is apparent from the definition of the
convolution that there exist finite nonnegative measures p and v on K
such that

Px * (Pal * Pz) = (Sinh)f’*
(P % Py) K by = (sinh)w.

It follows from previous computations that

[ S0P ) = [ o sinh dis = 3u(6) 003) 1)

J~K sin bt w(dt) = J. ¥a Sinh dv = yu(%) xa(¥) xa(2).

Thus p = v, by the faithfulness of the Fourier transform on the real
line.

It has just been proved that K is a semiconvo. It is apparent that K is
actually a Hermitian convo and that each yx, is an element of ¥(K).
Naimark proves that the x, are the only multiplicative functions on K
and that y, is bounded if and only | Im b | < 1, where a = b2. Thus,

Xy(K) = {Xostat ¢ = d?4 — 1}
={X0:— <C< oo}.

Recall that for a commutative group G it must be that G = %,(G).
A Haar measure m on K is given by

m(dx) = (sinh x)? dx.
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To verify this, let fe C,4(K) and x > 0. Then
© 1 x4+
fk Flx % 3) m(dy) = fo W[ 1o sinh ¢ dt] m(dy)
@ x+y
= —2—5-1@7 f f  J(o)(sinh t)sinhy) dz dy

f j £ (e)sinh 1)(sinh 3) dy dt

=7 smh x

m f f(t) 2(sinh x)(sinh #)? dt

- f f(t) m(ar).
K

Note that y, is positive on K. Let my = xym. Then p, % my = yo(x) m,
for all x € K. Thus m, is a subinvariant measure on K, but m, is not
a Haar measure.

Finally, we shall show that the Plancherel measure on K associated
with m is given by

ffh dn = 717 f: h(x) V7 dt.

The topology on K is the obvious one. The formula for = given above
shows that

spta = {x: 0 <t < o0} # K.

For each number ¢ > 1 let f, be defined on (0, ) by

—00}

folx) =

sinh x °

These functions, while not defined at 0, are in L,(m) N Ly(m). Let
¢,d > 1. Then

e 7 pterirn gy
focfddm J; e—letdle Jy Pl

If s > 0 and t = 52 then

sin sx 1 1

ch(Xt):‘J‘o e s dx = %+ 52 = 6‘2+t :
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And if ¢ % d then
apaqg g2 1 1 —
fkﬂfd d”‘wfo &+t d2+t‘/tdt

1 1 1

J— w___~_____ 2
—w.[, 2 - s2d2 s 2% ds
) © P 42

2#(52—d2)f0 (c2+s2 ~d2+s2)ds
- (-

me? —d?H)\2 2

1

:C—{—d:J‘Kfcfddm.

By continuity, this is true even if ¢ = d.

It only remains to show that the linear span of the functions f, is dense
in Ly(m). Let fe Ly(m) and let g = fsinh. Then g is square-integrable
with respect to Lebesgue measure. By the properties of the Laplace
transform, there exists a number ¢ > 1 such that

[“e@)ew=ax 0.
0

Thus [ ff, dm 5 0. This completes the proof.

10. Surconvos

The notions of subgroup and coset extend naturally to the larger class
of convos. One could also generalize the notions of normal subgroup and
homomorphism, but this will not be done here. For one thing, there are
certain difficulties in the case of noncompact subconvos. The main
reason, though, is that the morphisms which are most useful in the
theory of convos are not usually homomorphisms, even when the domain
is a group.

In this section, K is a convo.

10.1. Subconvos

A subset H of K will be called a subconvo of K if the following three
conditions are satisfied:
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(i) H is a closed nonvoid set,
(i) H- = H,
(i) H ¥ HCH.
It follows readily from (II) and (III) that
(iv) eeH.

If u, ve M(H), then these measures may be regarded as members of
M(K), and then p % v may be regarded as a member of M(H). This
defines a convolution on H. Recall that the topology on €(H) is equal to
its relative topology as a subset of €(K), by 2.5C. Also, a function f is
in C,*(H) if and only if f = g | H, where g € C;¥(K). Thus, with the
operation defined above, H is a convo and has the same identity and
adjoint mapping as K.

The condition that a subconvo be closed cannot easily be relaxed, as
is shown by 10.1A.

Lemma 10.1A. Let H be a nonvoid subset of K, with H % HCH
and H- = H. Suppose that H is locally compact in the relative topology.
Then H is a (closed) subconvo of K.

Proof. 1t is clear that e is in H. Let x € cH, the closure of H, and let
{%s}sep be a net in H converging to x. Let U be an open subset of K such
that ee U and such that 4 = ¢(U N H) is a compact subset of H.
There exists 8, € D, such that {x,7} % {xs} meets U for all o, B > 8,.
Thus, {x,7} % {xs} meets A for all o, B > f,. Let B = {x,} % A.
This is a compact subset of H. Also, ;€ B for § > 8,, by 4.1B.
Hence, xc BC H.

Lemma 10.1B. Let A be a subset of K. Then there exists a smallest
subconvo H of K which contains A.

Proof. 'The intersection of all subconvos of K which contain H is a
subconvo of K.

LemMA 10.1C.  Let A be a o-compact subset of K. Then there exists a
subconvo of K which contains A and is both open and o-compact.

Proof. Let{U,}be an increasing sequence of open subsets of K whose
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union contains A and which has the property that cU, is compact and
ec U, = U, foreachn > 1. Then

Uyt = (cU,) 2% U, D (cU,)1D (Upy)™

by 4.1D. Thus the union H of the sets U,™ is an open o-compact sub-
convo of K containing 4, by 10.1A.
10.2. Special Subconvos

The following results are well known for groups. It is not true that the
convolution of connected subsets of a convo is a connected set; consider
any finite convo that is not a group.

LemMa 10.2A. Let H be a subconvo of K. If the interior of H is
nonvoid then H is open.

Proof. Let U be the nonvoid interior of H. Then e U % U~. By
4.1D, the set H == (U % U~) % H = U % (U~ % H) is open in K.

LemmMma 10.2B. Let A and B be connected subsets of K. Suppose that
there exist a€ A, b € B, and a connected set C such that

{a} % {6} C CC A% B.

Then A % B is connected.

Proof. Suppose that 4 ¥ BC VU W, where ¥V and W are open
subsets of K, and where (4 % B) N V and (4 % B) N W are disjoint.
Then C is contained in one of these sets, say (4 % B) N V. The two sets

P = {(x,y): {x} * {3} e €(V)},
Q = {(x ): {x} * {} e Ew(K)}
are open in K X K. Moreover, PUQ contains 4 X B, and

(A X Byn P and (4 X B)NQ are disjoint. Thus 4 X B C P, since
(a,b)e P and A X B is connected. Hence, 4 X BC V.,

Lemma 10.2C. Let H be the component of e in K. Then H is a
subconvo of K.

Proof. Since H— is connected, H- = H. And H ¥ H is connected,
since {¢} % {e} C{e} C H % H. Thus H % HC H.
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Lemma 10.2D. Let A be a compact subset of K and let a € A. Suppose
that A % A C A. Then there exists a probability measure p € MH(K) such
that sptuC A, p, ¥ p = p, and p % p = p.

Proof. For each n =1 let

3

Bn = = [Pa + (Pa % pa) + = + (Pa)"]-

X[

Thus,

2
<Z.
n

150 % p — bl = | 2 [0 — (07

Since 4 is compact and contains the supports of all these measures, there
exists a limit-point pu of the sequence {u,} in M*+(K). It is clear that
p(K) =1 and p, % p = p. But this implies that p, % u = p for all
n>=1.Thusp % p = p.

THEOREM. Suppose that there exists a Haar measure on K.

(10.2E) If pe MH(K), p # 0, and p % p = p, then p= = p, the
set H = spt p is a compact subconvo of K, and p is the normalized Haar
measure on I,

(10.2F) If H is a compact nonvoid subset of K and H % H C H,
then H- = H and H is a subconvo of K.

Proof E. Let m be aleft Haar measure on K. It is clear that u(K) = 1.
Thus 0 < || 7T,l|<1land 7,2 = T,,, = T.. It follows that T, is an
orthogonal projection on Ly(m). This implies that T7,* = T, . Hence,
p~ = p*¥ =pand H- = H.

We have shown that H is a subconvo of K. The following computa-
tions take place on H.

Let fe C,H(H). Let g = p % f, which is in Cy*(H). Thus there exists
b € H such that g(b) = | g||, . Since p % g = g, we have that

80) = [ gy~ % b u(dy) = [ g% &) (e,

It follows that g(b) = g(x % b) for all x € H. This implies that g is con-
stant on H. Therefore, H is compact. Moreover, if x € H then

[ F0)utdy) = gle) = 5) = [ 73 % ) i),
This implies that p is a right Haar measure on H.

607/18/1-5
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Proof F. Let a e H. It follows readily from the two previous results
that a— € H also.

10.3. Cosets

In this subsection, H is a subconvo of K. For x € K, let xH = {x} % H.
These sets will be called left cosets of H. The collection K/H =
{xH : x € K} will be given the quotient topology.

Lemma 10.3A. Let x, y€ K. Then xH and tH are either equal or
disjoint.
Proof. Suppose that z€xH N yH. Then {x} % {z} meets H, by

4.1B. Thus x € sH— = zH. It follows that xH = zH. By symmetry,
yH = zH.

THEOREM 10.3B. The space K|H is a locally compact Hausdorff
space. The natural projection, x — xH, is an open continuous mapping
Jrom K onto K/H.

Proof. Let m be the natural projection. If U is an open subset of K
then =Y(n(U)) = U % H is also open, and thus #(U) is open. So = is
an open continuous mapping, and this implies that K/H is locally
compact.

Let xH and yH be distinct elements of K/H. Then {x7} % {y} is
disjoint from H. By 3.2D, there exist open neighborhoods U and V of
% and y such that (U~ % V)N H = (U~ % V)n (H % H") is void.
Using 4.1B again we see that U % H and V % H are disjoint. This
implies that =(U) and =(V) are disjoint open neighborhoods of xH
and yH.

Lemma 10.3C.  The space K is the union of a collection of disjoint open
and closed o-compact subsets.

Proof. This is a consequence of 10.1C.
10.4. Subgroups

If x, y, € K then the formula x % y = z will be used to say that
bz ¥ p, =P, . Let the set G be defined by

G={xecK:ixXx =x %x=c¢el.

We shall call G the maximum subgroup of K.
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LevMA 10.4A.  The domain of the mapping (x, y) > x % y s a closed
subset of K X K, and the mapping is continuous on this set.

LemmMa 10.4B. Let x € G. Then x % y is defined for all y € K, and the
mapping y > x % y 1s a homeomorphism from K onto K.

THaEOREM 10.4C. The set G is a closed subconvo of K. If x, y € G then
x %y is defined and in G. With the operation (x,y)+>x ¥y, G is a
locally compact group.

Lemma 10.4D. Let x € G. Then the mapping y ‘> x~ Xy X x is an
automorphism of K.

Proof A. This is apparent.

Proof B. 'To simplify the notation, let ab stand for {a} * {b}.
Let y € K and choose s € xy. Then xs Cx~xy = ey = y. Thusx—s = y.
Also, xy = xx7s = 5.

Thus the mapping yt+>xy is well-defined and continuous. The
inverse is y > x7y.

Proof. C. Let x, yeG. Then & ¥y = z is defined, and 2z~ =
xyy~x~ = xx~ = e. The rest is clear.

Proof D. If y, ze K then (x~ Xy % x)~ = ¥~ Xy~ X x and

P yysxs —X'Px‘*z*x =Py £y (Py *Pz) *Px .

10.5. Products and Joins
Let J be a convo.

Product. The set | X K can be made into a convo in the following
way. The topology is the product topology. If (s, t) and (x, y) are in
J X K then

Pis.ny *p(av.y) = (ps K p,) X (2 *Py)'

The details are not difficult.

Join. Suppose that | is compact and that K is discrete. Suppose also
that JN K = {¢}, where e is the identity of both convos. Let
JV K = JU K have that unique topology for which | and K are
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closed subspaces of J V K. Let o be the normalized Haar measure on J.
The operation e is defined as follows:

(i) Ifx,ye Jthenp, ep, =p, % p,.
(i) Ifx,yeKandx #y thenp,ep, =p, Xp,.

(i) Ifxe Jande ##yeKthenp,ep, = p, =p, e p,.
(iv) Ifxe Kand x 7% eand p- % p, = X,k ¢; p, then

P ® Pr=co + 2 CiPs -
teK
t#e

We omit further detail,

Note that [ is a compact subconvo of | V K. But K is not a subconvo
unless either [ or K is equal to {e}. Hence, if J and K are both finite but
nontrivial, then JV K and K V [ are not equal as convos.

11. REPRESENTATIONS OF CONVOS

In this section the theory of representations of convos on Hilbert spaces
is developed. The results and their proofs are practically identical with
those for groups. Certain proofs are therefore omitted.

Though the fact plays no role here, there exist unbounded positive-
definite (continuous) functions on certain convos. The unbounded real-
valued multiplicative functions on the convo of Subsection 9.5 are
examples.

In this section, K is a convo.

11.1. Positive-definite Functions

A complex-valued function f on K will be called positive-definite if f
is continuous and

3

0<

i

a.a; f (x; % x;7)
=1

% J

for each choice of complex numbers a; and points x; in K. A positive-
definite function need not be bounded.

LeEMMA. Let f be a bounded positive-definite function on K.
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(11.1A) f is positive-definite.
(11.1B) If p e M(K) then [y f d(u % p*) = 0.
(11.1C)  If pe M(K) then p % f % p* is positive-definite.
(11.1D) If x € K then f(x~) = f(x).
(1LIE) f(e) = I fl-
Proof A. 'This follows directly from the definition.

Proof B. The statement is true if p has finite support. One can use

2.2A.
Proof C. If u,ve M(K)and w = p~ X v, then

fK (1 f % p¥) d(p % v¥) = fod(w * %) > 0.

Proofs D, E. Recall the following fact: If 4, B, C, D are complex
numbers, and 0 < 4 + Bz + C% + Dz% for all complex numbers z,
then 4 >0,B=C,D>0,|B]2<AD,and 2| B| < 4+ D.

Let x € K. If 3 eC then

0 < f(e) + 2f (%) + &f (x7) + 28f(x X a7).

Thus, f(e) = 0, f(x7) = f(x), f(x % x7) >0, | f(x)[* < f(e)f (x % x7),
and 2| f(x)] <f(e) + f(x ¥ x~). The last inequality implies that

21f(x) <f(e) + 11 fll- Thus, 2[ fll, < f(&) + I fll-
11.2. The Pseudo-Inner Product

In this subsection, f is a bounded positive-definite function on K.
If p, ve M(K) let

(91, = [ 6 % ).
If p € M(K) let
lelle = (s ploP2
LemMaA. Let p, v, m€ M(K).

(11.2A) The form [, ], is a pseudo-inner product on M(K).
(11.2B) [m % p,v]; = [p, 7* ¥ v]; = [x (u % f % v*) da—.
(11.2C) el < (fEP2 1wl

(11.2D) [l7 ¥ plly <fl =il - plly-

Proof. This is straightforward.
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LemMA. Let H = {xe K : f(x) = f(e)}.

(11.2E) Ifx e H then| p, — p.ll; = 0.
(11.2F) H is a subconvo of K.

Proof. If x, y € H then

(62— pes 2y — bl = F(= % %) — F(@) — () + ()
= fla= %) — () — () + f(e)
= flx= %) — f(e).
Thus, if x e H then 0 < || p, — 2, |5 = f(x~ % 2) — [|fll, <0, and so0
| 2. — pell; = 0. Usmg this, if x, y € H then 0 = f(x~ % y) — f(e),
which implies that {x—} % { y} C H. Thus, ee Hand H- % H C H.
11.3. Representations

Let o be a Hilbert space, possible with dimension zero. Let B(s¢)
be the Banach *-algebra of all bounded linear operators on 5%, and let 1
be the identity operator.

We shall say that U is a representation of K on 5# if the following four
conditions are satisfied:

(i) The mapping p > U, is a *-homomorphism from M(K)
into B(s#).

() If pe M(K) then | U, || < el

(i) U, =1

(iv) If a, b e then the mapping ut—> (U,g, b) is continuous
on M*(K) with respect to the cone topology.

Let U be as above. We shall write U, for U,_for x € K. By condition
(iv), if @, b € 5 then the mapping x (Uxa, b> is bounded and con-
tinuous, and

(U,a,b> = fK<Uza, b u(dx)

for all p € M(K).
The only notion of equivalence between representations that will be
used is that of unitary equivalence.

Lemma. Let U be a representation of K on the Hilbert space H#.
Let ac .
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(11.3A) If f is defined on K by f(x) = (U,a, a) then f is positive-
definite.

(11.3B)  If {us}sen 25 a net in M*(K) converging to u then
lim|U,a— Ual =0.
8 3

(11.3C) If we M(K) then U,a is in the closed linear span of the set
{Ua:xeK}

Proof. The first part is obvious. For the second, using the same
function f, we have that

| U — Ul = fod(us‘ Kopg — pg” K g — pm K g+ pm K p)
Recall that convolution is continuous on M+(K). The rest is clear.

11.4. Irreductble Positive-Definite Functions

In this subsection, fis a bounded positive-definite function.
We shall say that f generates a function g on K if there exists a sequence
{pn} in M(K) such that

mligw | o % f % ™ — gl = 0.

Of course, if f generates g then g is bounded and positive-definite.

We shall say that f is srreducible if f = 0 and whenever f = g + h,
where g and % are bounded positive-definite functions, then g = ¢f and
h = (1 — ¢)f for some number ¢ in [0, 1].

LemMa 11.4A. Let {u,} be a sequence in M(K). Then the following
three conditions are equivalent:

() {un} &5 a Cauchy sequence with respect to the pseudo-norm || |; .
(it) The lim,, ,, o (tm % f % 1, *)(e) exists.
(iii) There exists a function g on K such that
ml’i’glw | o % f % pn* — g1l = 0.
Proof. It is clear that (iii) implies (ii). And (ii) implies (i), since
[ > paly = (% f % u,*)(e), by 11.2B. It is also true, by 11.2B, that

(m K X p1n*)x7) = [P K o s pny -
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So (i) implies (iii), since
[22 % iy iy — [Pe X thm s pals | U s — ol s Ny 1t Nl [ 105 — g2 lly -

THEOREM.

(11.4B)  There exists a Hilbert space # and a cyclic representation
U of K on #, with cyclic vector a, such that f (x) = (U,a, a) for all x € K.,

(11.4C) If p, ve M(K) then {U,a, U,a) = [u, v];.

(11.4D) This representation is unique up to unitary equivalence.

(11.4E) A function g is generated by f if and only if there exists b € H#

such that g(x) = (Uub, b) for all x € K.

(114F) If f = g -+ h, where g and h are bounded positive-definite
functions, then f generates g and h.

(11.4G) U is irreducible if and only if f is irreducible.

Proof. The first three parts are standard results.
For 11.4E, let {u,} be a sequence in M(K), let b, = U, g, and let
Emm = M ¥ f % u,*. Then

gm.n(x) = Uy » bp)-

The result follows from the previous lemma, since a is a cyclic vector.
For 11.4F, recall that the mapping u — [ f du is a positive functional

on M(K). This part follows from 11.4E. See Hewitt and Ross [3, p. 325].
The same considerations apply to 11.4G.

11.5. Absolutely Continuous Measures

In this subsection it is assumed that there exists a left Haar measure
m on K. The algebra M (K) of all measures which are absolutely con-
tinuous with respect to m is discussed in subsections (5.6) and (6.2).

THEOREM 11.5A. Let S be a Hilbert space and let v +— V., be a bounded
*-homomorphism from the Banach *-algebra M (K) into B(3). Suppose
that, if ac # and V,a = 0 for all ve M (K), then a = 0. Then there
exists a unique representation U of K on # such that U, = V, for each
v e M (K).

Proof. Let S be the linear span of the set {V,a : v e M (K), ae #}.
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Then S is dense in . Let p € M*(K) and let {vg}sep be a net in M, H(K)
converging to p. Let v, € M, (K) and a;, € 5 for 1 < k < n. Then

17 (2 V) = 3 Viwnte]| < S v m— ¥l -
k=1 k=1 k=1

It follows that the operators V, converge pointwise on S. Each || V, || <
lvs]l = vs(K), and vg(K) — u(K) = || n||. Since S is dense, there exists
U, € B(5#) such that Vi— U pointwise on S and such that || U, || <
Il #|l- The rest is clear.

Treorem 11.5B  Let h be a bounded Borel function on K. Suppose that
fxhd( % v*) =0 for all ve M(K). Then there exists a (continuous)
bounded positive-definite function f on K such that h = f locally almost
everywhere.

Proof. The mapping v+> [hdv is a bounded positive linear
functional on M, (K). Thus there exists a cyclic representation
v >V, of M, (K) which satisfies the conditions of the previous theorem.
That is, there exists a € 5 such that (V,a, a) = [ h dvfor allv € M (K).
Let U be as described in the theorem, and let f be defined on K by
f(x) = (U,a, a). Then [fdv = [hdv for all v e M (K).

Lemma 11.5C. Let feLym). Then f % f— is a bounded positive-
definite function on K.

Proof. If pe M(K) then [ (f %f~) d(u % u*) = [ = % fI§.

THEOREM. Let P be the set of all bounded positive-definite functions f
on K such that 0 < f(e) < 1. Let P have the topology determined by the
mappings > [ f dv, for allv e M(K). If p € M(K) let N(u) =sup;c, || |y -

(11.5D) P is a compact space, and P is closed under convex combina-
tion.

(11.5E) A nonzero fe P is an extreme point of P if and only if f
ts trreducible and f(e) = 1.

(11.5F) If peM(K) and U is a representation of K then
I Uall < N(w).

(11.5G) If pe M(K), fe P, and U is the representation determined
by f as in 11.4B, then | p|; < || U,|.
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(11.5H) If ve M(K) then there exists an trreducible fe P such
that||v|; = N(v) and f(e) = 1.

Proof. The first two parts are standard results.
For 11.5F, let U be a representation of K on & and let a € # be such
that || a|] < 1. Define fon K by f(x) = (U,a, a). Then fe P and

| Ul = (Usguty @ = [ Fd % ) = [l

Thus || p |, < || U,]] < N(u). This proves 11.5G also.

For 11.5H, let v € M (K). It may be assumed that v = 0. The mapping
g [gd(v* %¥v) = | v|2 is linear and continuous. Therefore, the
supremum N(v)? is achieved at an extreme point k of P. Let f = A.

12. CoMMUTATIVE CONVOS

The main results here are the Inversion Theorem and Bochner’s
Theorem. We also consider the question of when the dual of a commuta-
tive convo is a convo and prove a (rather weak) Duality Theorem.

In this section, K is a commutative convo, m is a Haar measure on K,
and = is the Plancherel measure on K associated with m. The notation is
as in Section 7.3.

12.1. The Inverse Fourier Transform

Note that the mapping (x, x) — x(x) is continuous on K X K. If
ae M(K) and ke L,() then ¢ = a” and k" are defined on K by

@) = | x() ald),
B ) = [ ) ko) m(d0)-

LemMma. Let f, ge Ly(m) N\ Ly(m) and let h = f % g.
(12.14) ke Cy(K) N Ly(m).
(12.1B) ke CyR) N Ly(m).
(12.1C) If pe M(K) then [y h du— = [¢ hii d.
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Proof. Recall that £ = f# and that f and £ are both in Cy(K) N Ly(w).
If € M(K) then
hdy~ = X gm) du= = * f)g*dm = | pfé dm.
[ hdwm =] Gxemdu = [ (w*f)gdm = | pfedn

Lemma. Let pe M(K) and a € M(K).

(12.1D) d is continuous and || d |, < | a].

(121E) (@) =@ @ =@* @) =i
(121F) (@) =@ @ =@* (@ =&
(12.1G) [xddu~ = [gf da.

(12.1H) p % & = (fa)".

Proof. This is straightforward.
TreoreM 12.11.  Let ke Li(w) N Ly(w). Then
f lkvlzdm::f | & |2 dn.
K Kk

Proof. Let feL,(m) N Ly(m). By (12.1G),

fK K fdm = kaVd( frm)- = fK (f*m)k dr = fK kf do.

In view of 7.3L || BV s = || kll2 -

12.2 The Inversion Formula

Note that the functions f which satisfy the conditions of (12.2C) form a
dense subspace of L,(m).

THEOREM 12.2A. Let ac M(K). If & = O then a = 0.

LemMa 12.2B. Let pe M(K) and ac M(K). Then u = dm if and
only if @ = jm.

TreorReM 12.2C. Let fe C(K). Suppose that f is integrable and that
f is also integrable. Then f = (f)~. That is, if x € K then

£@) = [ x() f0) mle)
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Proof A. Suppose that a 5 0. Since the set {#i : u € M (K)} is dense
in Cy(K), there exists p € M (K) such that 0 # [¢Ada = [x & du-.

Proof B. Let h be as in the previous subsection. Then, by 12.1C
and 12.1G,

[ hde = | b,

th d(imy- = fle h da.

Note that the 4 are dense in Cy(K) and that the /4 are dense in Cy(K).

Proof C. This follows from the previous result, with u = fm and
a= fﬂ' = fim.

12.3. Bochner’s Theorem
TuroreM 12.3A.  Let a € MH(K). Then & is a bounded positive-definite

Sunction on K.

THEOREM 12.3B. Let f be a bounded positive-definite function on K.
Then there exists a unique a € M+(K) such that f = 4.

Proof A. Let pe M(K). Then
[ ddwrpny = [ (xpwyda =] |4 da.

Proof B. Assume that 0 < f(e) << 1. Let ve M,(K). By 11.5H,
there exists an irreducible bounded positive-definite function y on K
such that x(¢) = 1 and || v|; <[ v|. Since K is commutative, x € K.
Thus | [fdv=| = [fdv| = |y, pll <IvIslIpel; <Uvly <llvly =
[ Fxdv] = 15001 <19lh-

The mapping ¢ - [ f dv— is therefore bounded and linear on a dense
subspace of Cy(K). Thus there exists a € M(K) such that [, fdv— =
[et da for all ve M(K). By (12.1G), f = 4. One can see from the
previous proof that a > 0.

12.4 The Dual Convo

In general, the product of characters is not positive-definite. See the
Example 9.1C. However, if y, s € K and x3 is positive-definite then, by
Bochner’s Theorem, there exists a measure a € M+(K) such that & = yi).
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It is clear that 4 is a probability measure, and we might set p, % p, = a.
The statement K is a convo means that the formula

(@%b =db  for abeM(K)

determines a convolution on K, that with this convolution K is a convo,
and that the adjoint of y is y~ for each y € K. Note that the identity of
K must be the constant function 1.

THEOREM. Suppose that K is a convo. For each x € K let & be defined
on K by #(y) = x(x). Let K = {& : xe K}and let L = K.

(12.4A) The measure w is a Haar measure on L, and sptm = L.

(12.4B) The mapping x \> & is a homeomorphism from K onto the
closed subset K of L.

(12.4C) The measure w = [ pym(dx) is the Plancherel measure on
L associated with =.

(12.4D) IfL is a convo then it is isomorphic to K.

Proof A. Let keL(n) and x €L. Suppose that f = k~ eL,(m). If
WL then k(y~ % y) = [ kd(p,- % p) — [ x-bf~dm = [ xJf dm, by
(12.1G). Thus ( p, * k)” = xk".

Let j € C,4(L). As in the proof of 7.3P, j can be approximated simul-
taneously in L,(w) and L,(n) by functions such as %k above. Thus,
(py *%j) = xj~ for x € L. Recall the definition of = in 7.3N and note
}h?‘;j’ = j*. Thus [(p, %) dr = (p, % j)"(€) = (xj)e) = j"(e) =

7 dm.

Proof B. It is obvious that K CL and that the mapping is both
continuous and one-to-one. Let {x5};.p be a net in K such that x; — 0.
All we must show is that it is not possible for #; — ¢, where ¢ € L. If
#; — ¢ then there exists k£ € C,(L) such that k(¢) # 0, and this implies
that the £(#) do not converge to 0. But it follows from previous results
that &~ € Co(K). This is a contradiction, since each &(%;) = k™(x,).

Proofs C, D. 'These are apparent.

13. OrBITAL MORPHISMS

Most of the examples of convos considered previously have been (or
have been isomorphic to) decompositions of locally compact groups. Here
we shall study the mappings, ¢ : G — K, associated with these decom-
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positions; that is: G 1s a locally compact group, K is a convo, and ¢ is a
continuous mapping from G onto K which (somehow) takes the operation
on G to the convolution on K.

Actually, we consider mappings ¢ : ] — K, where [ is a convo also.
The mappings will be called orbital morphisms. The concept of an
orbital morphism is not really a generalization of the concept of a group
homomorphism. The observations below should illustrate the distinc-
tion.

The following proposition is well known. If G is a group, S is a set with
a binary operation, and ¢ : G — S is an operation-preserving mapping
from G onto S, then S is a group. This can be restated in terms of
decompositions. If .27 is a decomposition of a group G, and each product
AB of a pair of members of .27 is a subset of a member of &7, then
& = G[H for some normal subgroup H of G.

Recall the convo K = R+ of Section 9.3. Let ¢ : R X R— K be
given by é(x, y) = (x% + y*)!/2. This is the sort of mapping to be studied
here. The sets C, = ¢~Y(7) form a decomposition of the group G =
R X R. Rather than use the fact that these circles are the orbits asso-
ciated with the action of a compact group on G, we wish to define the
convolution on K solely in terms of the structure of G and the decom-
position & = {C,:r e R*}. This can be done as follows. Let A be
Lebesgue measure on G. This is a Haar measure. The idea is to decom-
pose A with respect to &7. That is, to put a probability measure ¢, on each
set C, in such a way that g, depends continuously on 7, and A can be
expressed (as an integral) in terms of the ¢, . There is exactly one way to
do this. For » > 0, ¢, must be a multiple of the length measure on C,.
The mapping 7 +— g, is called the recomposition of ¢ consistent with A.
To convolute two point masses p, and p, on K, we carry the measure
g, % g, on G to the corresponding measure ¢,(g, % ¢;) on K. This
mapping, ¢, : M(G) — M(K), depends only on ¢, and has nothing to
do with the fact that G is a group.

The previous paragraph was meant to show how the mapping
¢ : G — K and the structure of G impose a convolution on K. Let G,
denote the group G with the discrete topology. The identity mapping
1: G;— G is a continuous homomorphism. But it is clear that the
composition ¢ O ¢ : G, — K does not in any way respect the convolutions
on G, and K, since each nontrivial convolution on K is a continuous
measure. This illustrates one contrast between homomorphisms and

orbital morphisms. For another contrast, consider the closed subgroup
H =R X {0} of G. Even though ¢(H) = K, the convolution on K
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imposed by H and ¢ | H is not the given one. Rather, it is specified by
the rule: by K Py = %Plr—sl + %Pr+s .

In the first two subsections here topological and measure-theoretic
questions are considered. It is assumed that X, Y and Z are nonvoid
locally compact Hausdorff spaces.

The definition and certain properties of orbital morphisms are given
in Subsection 13.3. In the examples studied in Section 8, Haar measure
played an indirect role; that is, it was not used to define the convolution.
Here, however, Haar measure is used in the definition of orbital
morphism.

There are two main classes of orbital morphisms: the unary morphisms
and the double coset morphisms. Section 14 is devoted to double coset
morphisms and includes the basic factorization theorem, 14.3B.

Suppose that [ is a convo with a Haar measure and that ./ is a decom-
position of [ into compact subsets. The statement that o/ #s a convo
means that ./ can be given the structure of a convo in such a way that
the natural projection, 7 : | — &7, is an orbital morphism. This structure
is unique, as will be seen. Referring to the examples above, we may say
that {C, : r € Rt} and {{x, —x} : ¥ € R*} are convos.

The main results in this section are Theorems 13.5A and 13.7B. The
first theorem gives sufficient conditions for a decomposition &/ of a
convo J to be a convo. These conditions are satisfied by the two decom-
positions of the previous paragraph. The second theorem gives sufficient
conditions, if &7 is a commutative convo, for a character of &7 to deter-
mine a representation of J.

13.1. Continuous Decompositions

Let &/ be a decomposition of X into compact subsets, and let
7 : X — o be the natural projection. Thus &/ C €(X) and = is a mapping
from X into €(X). We shall say that o7 is a continuous decomposition and
that = is a continuous decomposition projection if = is continuous with

respect to the topologies on X and %(X).

LevmMA. Let o/ and = be as above, with w continuous.
(13.1A) The quotient topology on o/ and the relative topology on
are equal.
(13.1B) = is an open mapping from X onto <.

(13.1C) If X is a compact subset of o then n~\(X) is a compact
subset of X.
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(13.1D)  If {xg}sep 15 a net in X such that x; — o0 then m(xg) — {o}.
(13.1E) 7 is a closed subset of €(X).

(13.1F) o is a locally compact Hausdorff space.

(13.1G) = is a closed mapping.

(13.1H) If g is a function on o with values in some space, and if
g O = is continuous, then g is continuous.

Proof. For 13.1A, let 2 be a subset of &7 and let S = »~1(2). If 2
is open in the quotient topology then (by definition) S is open in X, and
this implies that 2 = & N €(X) is relatively open. If X is relatively
open then 7=1(2) is open (by the continuity of 7) and this implies that 2
is open in the quotient topology.

For 13.1B, let U be an open subset of X. Then m(U) = &/ N € ,(X).

For 13.1C, let Z be a compact nonvoid subset of /. Then »~1(2) =
U 2 is compact, by 2.5F.

For 13.1D, suppose that x; — oo but that the =(x;) do not converge
to {co}. Then there exists a compact subset C of X and a subnet { y,}ycx
such that each #( y,) meets C. Thus y, — oo and each =( y,) is contained
in 7=Y(=(C)). This contradicts 13.1C.

The other parts are apparent.

13.2. Orbital Mappings

An open continuous mapping ¢ from X onto Y will be called orbital
if it satisfies the four equivalent conditions of the following lemma. The
compact sets ¢~( y) will be called the ¢-orbits.

Consider the following example. The projection (x, y) > x from the
solid square [0, 1] X [0, 1] onto the interval [0, 1] is orbital. But the
restriction of this mapping to the boundary is not orbital.

Lemma 13.2D is going to be used in the following way. Suppose that
we have two continuous decompositions, &/ and %, of X into compact
subsets. Suppose that o7 is finer than &, which means that each member
of &/ is contained in a member of #. Then # induces a continuous
decomposition of .7 into compact subsets.

Let ¢ : X — Y be continuous. There is a natural positive-continuous
linear mapping ¢, : M(X)— M(Y) associated with ¢. It can be defined
by the formula ¢,(1) = [y ps(dx). Another way is by the formula

[Lgd6:) = [ (g O#)dn,
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for all g € C(Y). Note that || ¢, (p)ll < |l gl for all p € M(X). In view of
13.2E, it is correct to write ¢, (u) = u O 7L

Let ¢ be an orbital mapping from X onto Y, and let /€ M*®(X) have
support equal to X. A recomposition of ¢ consistent with £is a continuous
mapping y +> g, from Y to M*(X) such that each ¢, is a probability
measure on X with support equal to ¢~ ¥), and such that

¢ = quwt(an)
X

LEmMA 13.2A. Let ¢: X — Y be an open continuous mapping from X
onto Y. Then the following four conditions are equivalent:

(1) The set & = {¢p~(y):y €Y} is a continuous decomposition of
X into compact subsets, and the mapping y > ¢~ y) is @ homeomorphism
from Y onto o .

(i) If C is a compact subset of Y then ¢~Y(C) is a compact subset
of X.

(ii1) If {xs}gep s a net in X such that xg — o0 then ¢(xg) — co.

(iv) ¢ s a closed mapping, and $=( y) is compact for eachy € Y.

Proof. By 13.1C, (i) implies (i1). It is apparent that (ii) implies (iii)
and (iii) implies (iv).

Assume (iv). Let 7: X — o be the patural projection. Then n(x) =
$Yd(x)) for x € X. Let : ¥ — o be given by §)( y) = ¢~(y). Thus
m = 3 O ¢. To see that ¢ is continuous, let U and V be open subsets of
X. Then 2 = &/ N %,(V) is a subbasic open subset of »/. Note that
Y U2) = H(U) — (X — V). This is an open subset of Y, since ¢ is
an open and closed mapping. Thus ¢ is continuous. This implies that
m = O¢ is continuous. And =1 is continuous, by 13.1H, since
$1 O = = ¢ is continuous.

LEMMA. Let ¢ be an orbital mapping from X onto Y.

(13.2B) The mapping A > $(A) from C(X) to €(Y) is continuous.
(13.2C) The mapping B +— ¢=Y(B) from €(Y) to €(X) is continuous.
Proof. For the first, let U and V' be open subsets of Y. Then

{Ae€(X):p(A)eCu(V)} = Es(T),
where S = ¢U) and T = ¢~(V).

607/18/1-6
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For the second, let S and T be open subsets of X. Then
{Be€(Y): 47 (B)e€s(T)} = €u(V),
where U = ¢(S) and V =Y — (X — T).

LEmMa 13.2D. Let the mappings ¢ : X —>Y, ¢y: Y~ Z, and
¢s 1 X — Z be surjective. Suppose that ¢, = ¢y O ¢, . If any two of these
mappings are orbital then so is the third.

Proof. One need only use the fact that a mapping ¢ is orbital if and
only if both ¢ and ¢~ preserve openness and compactness.

LEMMA. Let ¢ be an orbital mapping from X onto Y, and let £ € M®(X)
have support equal to X. Suppose that the mapping y > q, is a recomposi-
tion of ¢ consistent with ¢.

(13.2E) The measure m = ¢ (£) = [x Pof(dx) is defined.
(13.2F) ¢ = [v qm(dy).

(13.2G) A function g is in BX(Y) if and only if g O ¢ € B¥(X).
(13.2H) If g€ B™(Y) then [y gdm = [x (g O ) d?.

(13.21)  The mapping y > q,, is the unique recomposition of ¢ con-
sistent with ¢.

Proof. The measure m is defined, since ¢~ preserves compactness.
The equation £ = [ g,m(dy) is just a restatement of the definition of
recomposition.

For 13.2G, use 2.3F. Note that there are two positive-continuous
linear mappings, determined by p, > p4(,) and p, +—>g,, .

For 13.2H, use 2.3G. The condition of o-compactness is not needed
here, since ¢ is an open mapping.

For 13.21, let ye Y. Let V' be an open subset of Y containing y and
having compact closure. Let

py = mTle fy gym(dy)-

This is a probability measure on X. If 7 is a small neighborhood of y
then p, is close to g, in the cone topology. That is, py — g, as ¢V — {y}.
But the p;, do not depend on the recomposition, since, with U = ¢=Y(V),

1

Ry = T(U—) lU{'



CONVOLUTION SPACES 81

13.3. Orbital Morphisms

Let [ and K be convos, and let £ be a left Haar measure on J. An
orbital morphism from ] onto K is a mapping ¢ which satisfies the
following four conditions:

(1) ¢ is an orbital mapping from J onto K.

(ii) There exists a (necessarily unique) recomposition y +> g, of ¢
consistent with 7.

(i) Ifye K then g, = (¢,)".
(iv) Ify, ze Kthenp, X p, = ¢,(q, ¥ ¢,). Recall that the recom-

position gives rise to a positive-continuous linear mapping from M(K)
to M(J). This mapping will be denoted by ¢*. That is, ¢*( p,) = ¢, and

#40) = | g(dx)

for ye K and v € M(K). It is clear that the g, do not depend on the
choice of the left Haar measure 4. By 13.3F, below, a right Haar measure
could be used also.

THEOREM. Let ¢ be an orbital morphism from | onto K. Let £, the g, ,

and ¢* be as above. Set m = ¢ (7).

(13.3A) m is a left Haar measure on K.

(13.3B) ¢4 O ¢* is the identity mapping on M(K).

(133C) If ve M(K) then $%(-) = $*()~ and [ $*6)] = |1 »].

(13.3D) If xe ] and ye K then ¢(x~) = d(x)~ and ¢~Y(y") =
()

(13.3E) If we M(J) then $,(u~) = balis)"

(13.3F) The mapping y > q, is a recomposition of ¢ consistent
with £~

(13.3G) If A is the modular function of K then A O ¢ is the modular
function of J.

(13.3H) Ifp,ve M(K)then p % v = ¢ (d*(u) % $*()).

THEOREM 13.31. Let |, K and L be convos and let the mappings
¢ J—>K, ¢: K—L, and ¢3: ] —L be surjective. Suppose that
s = ¢y O ¢, . If any two of these mappings are orbital morphisms then so
is the third.
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Proof. For 13.3A, let y € K. Then

pom=[ (0% pImdz) = [ $ulg, % ¢ midz)
=40, % 0) = $u(0) = m.

For 13.3B, ¢, O¢* is positive-continuous on M(K), and

(@ O $*)pw) = ¢4(aw) = Py

forallyeY.

For 13.3C, let ve M(K). By condition (iii), ¢*(v-) = ¢*(v)~. By
13.3B, ¢* must be an isometry, since || ¢, || < 1and | *|| < 1.

For 13.3D and 13.3E, note that ¢~%(y~) = sptg,- = spt(g,”) =
(sptg,)” = ¢7(»)~.

For 13.3F, we have that /= = [(gu))~ £(dx) = [ gyw)- £(dx) =
J o0y (dx) = [ goi £(dt).

For 13.3G, recall that m = Am~. Thus ¢ = ¢¥(m) = ¢$¥(dm~) =
(4 Od)p*(m™) = (4 O ¢) /.

And 13.3H follows directly from condition (iv).

For 13.31, one can use 13.2D and 13.3H.

13.4. Consistent Measures

In the next subsection a certain class of orbital morphisms will be
constructed. The idea is illustrated by the following result.

LeMMA 13.4A. Let A be an algebra, L a linear space, and h: A — L a
linear mapping. Let B be the set of all x € A such that h(xy) = 0 = h(yx)
whenever h(y) = 0. Suppose that h(B) = L. Then B is a subalgebra of A,
and there exists a unique multiplication on L such that L is an algebra with
this multiplication, and such that h| B is an algebra homomorphism.
Moreover, h(xy) = h(x) h(y) if either x or y is in B.

Proof. LetI = h7Y(0). It is apparent that B is a subalgebra of 4 and
that I N B is an ideal of B. Thus the multiplication on L exists. Now let
x€ A and ye B. There exists x' € B such that h(x') = h(x). Thus
hxy) = W(x — #)y) + hx'y) = h(x'y) = h') h(y) = h(x) K(3).

The context of interest here is when 4 = M(J), L = M(Y), and
h = ¢, , where Jis a convo, Y is a locally compact space, and ¢ is an
orbital mapping from J onto Y. Under these circumstances, a measure
u € M(J) will be said to be left ¢-consistent if $,(u % v) = 0 whenever
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¢4«(v) = 0, and p will be said to be ¢-consistent if ¢ (u ¥v) = 0 =
$«(v % p) whenever ¢, (v) = 0.

LemMA 13.4B. Let ¢ be an orbital mapping from Jonto Y. Let p € M(]).
Then the following three conditions are equivalent:

(1) p is left p-consistent.
(ii) Ifs, te Jand §(s) = §(t) then §,(u X p) = uln ¥ p1).
(i) If fe C(]) and f is constant on each ¢$-orbit then u~ X f is

constant on each $-orbit.

Proof. Tt is apparent that (i) implies (ii).

Assume (ii). Let f = g O ¢, where ge C(Y). If ¢(s) = ¢(¢) then
(5= % F)6) = [fd(u % p) = [ £ d(aln % 1) = (u= % f)(2). Thus fis
constant on each ¢-orbit. Hence (iii).

Assume (iii). Suppose that ¢,(v) = 0. If geC(Y) and f = g O ¢ then
[gd@uln %) = [fd(u %) = [ (u % f)dv = [ (h O¢) dv =
[hd($.(v)) =0, for some ke C(Y). Hence (i).

13.5. Unary Morphisms

A unary morphism is an orbital morphism ¢ such that ¢—(e) = {e}. The
decomposition projection determined by the action of a compact group
of automorphisms of a locally compact group is a unary morphism. Not
every unary morphism satisfies the hypotheses of the following theorem.
See (15.1C).

THEOREM 13.5A. Let | be a convo with left Haar measure £, and let
Y be a locally compact Hausdorff space. Let ¢ be an orbital mapping from
Jonto Y, and set & = ¢(e). Suppose that the following three conditions are
satisfied:

(i) ¢7e) ={e)
(i1) If A is a ¢-orbit then so 1s A-.

(iii) For each y € Y there exists a probability measure q, on | such
that spt q, C ¢~ y) and such that q,, is g-consistent.

Then there exists a unique convolution % on Y such that (Y, %) is a
convo and ¢ is a unary morphism.

LemMaA 13.5B. Let p be a left $-consistent measure on | and suppose
that () = 0. Then p = 0.
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Proof. Let fe C[(]) and suppose that f is constant on the ¢-orbits.
If xe Jand y = ¢(x) then

(%)) = [ (=% 1) dgy = [ (% g7)dp =0,

Thus p= % f = 0. Hence p~ % (ff) = 0. But p, can be approximated
in M*(J) by measures of the form fZ, since $=1(&) = {e}. Therefore p = 0.

LemMa 13.5C.  There exists a topological involution y >y~ of ¥
such that ¢(x~) = p(x)~ for all x e J.

Proof. In view of condition (ii), the involution can be defined. By
13.2D, it is continuous.

LemMA 13.5D. Let yeY. Then gq, is the unique left $-consistent
probability measure on | whose support is contained in ¢~(y). Moreover,
Q- = (Qy)_ and spt g, = ().

Proof. Suppose that p is a left ¢-consistent probability measure
supported by ¢~(y). Thend,(p — ¢,) =p, — py =0. Thus p — ¢, =0,
by the first lemma.

It is easy to see that (¢,)~ is also ¢-consistent. Since it is supported by
¢~Y(y~) it must equal g, .

Now let x € $~Y( ). The following three conditions on x are equivalent:
(i) x e spt g, , (ii) e e spt (p,- * g,), (iii) & € spt b ( p,- ¥ ¢,). Since g,
is left ¢-consistent, condition (iii) is either satisfied by all x € $~1(y) or by
none. In view of condition (i), $~1 = spt g, .

Proof of Theorem. 1If {yglsep is a net in Y converging to y, then the
sets spt g, converge to $~(y), and each limit point of {g, }scp in M*(])
is a left ¢-consistent probability measure, which must then be equal
to ¢, . Thus the mapping y > g, from Y to M+*(]) is continuous, and
there exists a unique positive-continuous linear mapping ¢*: M(Y) —
M(J) such that ¢*( p,) = g, for each y € Y. This is by 2.3H.

It is not hard to see that $*(M(Y)) is just the set of left ¢-consistent
measures on J. In fact, it is just the set of ¢-consistent measures, also.
It follows from the definition that these measures form an algebra. Since
¢4 O ¢* is the identity mapping on M(Y), ¢* is an isometry. Also, ¢*
preserves adjoints.

The restriction of ¢, to the range of ¢* is a linear isomorphism, and
thus carries the convolution on ¢*(M(Y)) to an operation on M(Y).
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It is straightforward to verify that ¥V is a convo with this operation. In
particular, if y, 2 € ¥ then

Dy *pz = ‘?5*(97 * gz)'

The adjoint mapping is specified in 13.5C and the identity of Y is &.
Continuity of supports can by proved using 13.2B and 13.2C.

All that remains to be proved is that / = ¢*(m), where m is defined
by m = ¢,(£). Let A = ¢*(m), and note that [, fdA = [, fd/if fis con-
stant on each ¢-orbit.

If xe |, y = é(x), fe C(]), and f is constant on each ¢-orbit, then

[[pexryah =] [ (2% 1) dgm(ds)
= [ [ % 0.0 dp, miaz)
= fy f, (f % g,-) dg,-m(dz)
= | [ @ %) dg.midz)
= [ @7 a
= [@xna
:wa
=[x pya

Thus, if pe M(]), fe C(]), and f is constant on each ¢-orbit, then
f(e*f)drh = [ (u%f)df. But ¢—4(&) = {e}, and each function in
C,(J) can be approximated by these u % f. The precise statement is in
5.1B. Therefore, A = ¢, and the proof is complete.

13.6. Consistent Orbital Morphisms

In this subsection, | and K are convos and ¢ is an orbital morphism
from [ onto K. Let Z be a left Haar measure on [ and let m = ¢$*(£) be the
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corresponding left Haar measure on K. For 13.6D the measures must be
related in this way.

We shall say that ¢ is consistent if the mapping ¢*: M(K)— M(])
is an algebra homomorphism. By 13.6C, if ¢ is consistent then ¢* is a
Banach *-algebra isomorphism.

LemMA 13.6A. Suppose that each measure g, = ¢*(p,) s left
¢~consistent. Then ¢ is consistent.
THEOREM.  Suppose that ¢ is consistent. Let v e M(K) and g, h € C(K).

(13.6B) ¢*(v) is a p-consistent measure on J.
(13.6C) (v *g) O¢ =¢*() * (g O4).
(13.6D) (g% h) O¢ = (g O¢) *(h O¢).
Proof A. Let ye K and ge C(K). It is enough to show that

$*(py X gm) = $*(py) % $*(gm),

since ¢* is continuous on M+*(K). We have:

¥y % gm) = $*(py % g)m) = [(p, % g) O ¢) = ff,
$*(py) X *(gm) = ¢, % (g O $) = [9, ¥ (g OV = ff.

Since ¢, = (g,~)~ 1s left ¢-consistent, f, is constant on each ¢-orbit.
Moreover, ¢4(fif) = p, % gm = $4(fef). Thus f; = f,.

Proofs B, C, D. Note that 13.6C implies that ¢*(v)~ is left ¢-con-
sistent. By symmetry, this implies 13.6B. And 13.6D implies 13.6C,
since v can be suitably approximated by measures of the form gm. Finally,
13.6D merely says that ¢*( gm % hm) = ¢*( gm) % ¢*(hm), which is
true by assumption.

13.7. Positive-Definite Functions

In this subsection ¢ is an orbital morphism from ] onto K.

LemMa 13.7A. Let g C(K) and let f = g O ¢. If f is a positive-
definite function on [ then g is a positive-definite function on K.

THEOREM 13.7B.  Suppose that ¢ is a consistent orbital morphism from
J onto K and that K is a commutative convo. Let x be a (bounded self-
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adjoint multiplicative) character of K. If x is an element of the support of
the Plancherel measure on K then y O ¢ is a positive-definite function on J.

Proof A. Letve M(K)and let u = ¢*(v). By 13.3H,
[ gde%v0) = [ gdigu(d70) % 446
= [ d1$*0) % 47611
= [ fd w).

Proof B. Let m be a Haar measure on K and suppose that y is in the
support of the Plancherel measure on K. Using the inverse Fourier
transform, we can construct a net of (continuous) functions of the form
g % g* which converge to y uniformly on compact sets, where each g
is in Ly(m). Since C(K) is dense in L,(m), we may assume that each
g€ Cy(K). By 13.6D, y O ¢ is the limit (uniformly on compact sets)
of a net of functions of the form f % f*, where each f e C,(]). But such
functions are positive-definite, by 11.5C. Note that J is unimodular,

by 13.3G.

14. DouBLE Coser CoNvOs

We have already seen that the collection of double cosets of a compact
subgroup of a group is a convo in a natural way. The corresponding
statement for convos is valid. That is, if H is a compact subconvo of the
convo K, then the sets H % {x} % H = HxH form a decomposition
of K, and K//H = {HxH : x € K} has a natural convolution. The
existence of a Haar measure on K is not needed for this.

One question (especially interesting in the case where K is a group)
that is considered here is as follows: What can be said about the repre-
sentations of K, given the representations of X // H? An answer is given
in 14.4D. This answer is expressed in terms of positive-definite functions.
There are two reasons for this. First, the notation is simpler. Second, in
the examples of particular interest, K [/ H is commutative (though K is
not) and it is natural to work with characters, rather than one-dimen-
sional representations, of K [/ H. One can see from 13.7B that there
are many characters of K /[ H which determine irreducible representa-
tions of K if K /[ H is commutative.
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To work directly with the representations, one need only note that
M(K) contains a subalgebra M(K || H) isomorphic to M(K [/ H). Each
representation of K on a Hilbert space J# gives rise, in a canonical way,
to a representation of K // H on a (possibly trivial) subspace #” of #.
A representation of K /[ H can sometimes be raised to a representation
of K on a larger Hilbert space; if it exists the raised representation of K
is essentially unique. We omit the detailed statements and proofs.

In this section, K is a convo, H is a compact subconvo of K, and o
is the normalized Haar measure on H.

14.1. Double Cosets

For xe K, let HxH = H % {x} % H. These sets will be called
double cosets of H. Clearly, each double coset is compact. In view of
14.1A, the collection K [/ H = {HxH : x € K} is a decomposition of K
into compact subsets. The natural projection, x+> HxH, will be
denoted by =. In view of 14.1C, the quotient topology and the relative
topology on K /] H are equal. We give K /| H this common topology.

THEOREM. Let x, ye K.

(14.1A) Either HxH and HyH are equal or they are disjoint.
(14.1B) o ¥ p, X0 = o X p, ¥ ocif and only if HxH = HyH.
(14.1C) The mapping w is a continuous decomposition projection.

(14.1D) The mapping HtH \—> o % p, % o is a homeomorphism
from K || H onto a closed subset of M*(K).

Proof. For 14.1A, let e HxH. Then HzH C HxH. Using 4.1B,
we have that 3 € HxH, H 2 meets xH, and H-zH~ contains x. Since
H- = H, it must be that HgH = HxH. The result follows from this.

For 14.1B, if HxH  HyH then the measures are unequal because
they have disjoint supports. Suppose that HxH = HyH. Let f € C,7(K)
and let & = o X% f % 0. Since h e C,7(K) also, there exists z € HxH
such that 2(2) = sup {h(¢) : t € HxH}.Ifs,t € H thenp, % h % p, =h
and k(s % z ¥ t) = (p ¥ b X p,)(2) = h(2), which implies that 4
is constant on the set {s} X {2z} % {¢}. It follows that % is constant on HzH,
which contains x and y. Thus

[£d(o% po% 0) = h(x) = h(y) = [ fd(o % p, % o).

This implies that the measures are equal.
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Parts 14.1C and 14.1D are apparent, since convolution is continuous
on #(K) and M+(K).

14.2. The Operation
In view of 14.1B and 14.1D, there exists a (unique) positive-continuous

linear mapping =*: M(K /| H)— M(K) such that #o*(py.y) =
6 % p, % o for each x € K. The convolution on K /| H is defined by:
B ¥y = my(wH() % 740)
for u, ve M(K || H). Let
M(K(| H) = {pe MK): o % % o = p}.
THEOREM. Let M(K || H) have the operation specified above.

(14.2A) K /| H is a convo.

(14.2B) The identity of K || H is H.

(14.2C) If x € K then (HxH)~ = Hx H.

(14.2D) M(K|| H) s a closed self-adjoint subalgebra of M(K).

(14.2E) =* is an isomorphism from the Banach *-algebra M(K || H)
onto M(K || H).
(14.2F) Ifx,y € K then

Pres % paus = milDa K 0% 1) = | pra(ps % o % p,)(dr).
(14.2G) Ifx,yeK,geBYK [/ H), and f = g O = then
g(HxH % HyH) = L F(x % t % 9) o(d¥).
(14.2H) If there exists a left Haar measure £ on K then = is an

orbital morphism from K onto K || H, the mapping HxH > o % p, % g is
the recomposition of w consistent with £, and

m = [ prent(d)
X

1s a left Haar measure on K || H.

Proof. Everything follows readily from 14.2D and the fact that #*
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is a norm-preserving adjoint-preserving positive-continuous linear
mapping from M(K [/ H) onto M(K || H). The operation on M(X /| H)
is, by definition, the operation inherited from M(K | H) through =*
and its inverse 7, | M(K || H).

14.3. Factorization Theorems

The first result here is an analog of the First Isomorphism Theorem for
groups. For convos with Haar measure it is a special case of 13.31.

The second result has no analog in the theory of groups. The existence
and uniqueness of Haar measure is crucial in this case, since all we
prove is that the decomposition {Ix] : x € J} of ] is finer than the decom-

position {¢~Yy) : y € K}.

THroREM 14.3A. Let | be a compact subconvo of K and suppose that
HC J. Then ] || H ts a compact subconvo of K || H, and

K||J = K|[H || J|/H.

THEOREM 14.3B. Let ] be a convo and let ¢ be an orbital morphism from
Jonto K. Let I = ¢=e). Then I is a compact subconvo of |, and the

diagram
J——JilI

RN

K

commutes, where m is the natural projection and J is a unary morphism.

Proof A. We omit the details. The isomorphism is given by:
Jx] — (JI/H) HxH(]|/H).

Proof B. Lety > g, be the recomposition of . Then ¢,~ = ¢,- =g,
and p, = p, ¥ p, = bx(q, % ¢.)- Since I =sptg,, we have that
I =T and I ¥ ICI. Thus I is a compact subconvo of J. Let y € K.
Then ¢4(q, % ¢,) = p. ¥ p, = p,. Thus I ¥ ¢=(y) Cdy). Simi-
larly, ¢—Y(y) % I C¢Y(y). This implies that ¢—(y) is a union of double
cosets of I. The rest follows from 13.31.
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14.4. Posttive-Definite Functions

These results do not generalize to arbitrary orbital morphisms.
Referring to the example in Subsection 9.3, the function f(x,y) =
Jo((x? 4 y¥)1/2) is positive-definite on R X R, but is not irreducible.
In fact, fis a combination of functions of the form (x, y) — £¥@=+%) none
of which is constant on the circles.

THEOREM. Let f be a bounded positive-definite function on K and
suppose that f is constant on H.
(14.4A) fis constant on each double coset of H.

(14.4B) f =g O m, where g is a bounded positive-definite function
on K[| H.

(144C) Iff = f; + f , where f, and f, are bounded positive-definite
Sfunctions on K, then f, and f, are constant on each double coset of H.

(14.4D) f is an irreducible positive-definite function on K if and only
if g is an irreducible positive-definite function on K || H.

Proof A. By 11.2E,||p, — p, |y =0forallxe H. Thus| ¢ — pJl, = 0.
If x € K then

[ Jae % p.% o) = [ Jd(o* % p, %)

= (Px * a, c)f
= [Pz X P ’pe]f

= f(x).
By 14.1B, f is constant on each double coset.

Proof B. This follows from 13.7A.

Proof C. It is enough to show that f; and f, are constant on H.
If x € H then

0 =f(e) — f(x) = [/i(e) — H(#)] + [faole) — fol®)].
The two expressions on the right are nonnegative. Hence, they are zero.

Proof D. If f is reducible then so is g, by the preceding results,
Suppose now that g = g, -+ g, , where g, and g, are bounded positive-
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definite functions on K [/ H. It is enough to show that each f;, = g, O =
is positive-definite. By 11.4F, g generates g, and g, . That is, there exist
two sequences {v,'} and {v,2} in M(K /| H) such that

Al ] X g K () — gells =0
fork = 1, 2. Let p.* = =¥y, *). By 13.6C,

ml,igw | n® R f % () — frllu = 0
for k =1, 2. By 11.1C, f; and f, are positive-definite.

15. ExaMPLES

Except in the first subsection, the object of study here is the group
SL(2, C) of all two-by-two complex matrices with determinant 1. The
convos, mappings and functions constructed should illustrate our results
on orbital morphisms. Recall that a convo K is Hermitian if x~ = x for
each x in K.

15.1. Several Convos

ExampLE 15.1A. Let Zg = {0, 1, 2, 3, 4, 5} be the additive group of
order 6. The decomposition {0}, {3}, {1, 5}, {2, 4} of Zg is a convo,
determined by the group of automorphisms x > x, x > —x.

ExamprE 15.1B. The decomposition {0}, {3}, {1, 4}, {2, 5} of Zz is a
convo, and the natural projection is consistent.

ExampLE 15.1C. The decomposition {0}, {3}, {1, 2}, {4,5} of Zs is a
convo, but the natural projection is not consistent.

ExampLE 15.1D. For each positive integer n let b, be a number such
that 0 < b, << 1. Let ¢, = 1 and define numbers ¢, inductively by the
rule:

Cn = (l/b'n)(co +e 4+ cn—-l)'

For each n > 1 the two-point set K, = {0, n} can be made into a
convo by letting O be the identity and setting

Pn*?n = bnpo + (1 - bn) Pn-
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We consider here the infinite discrete join (X, ), where
K=K vK,v:- ={01,2.}
The operation on K is defined by

Pm @ Pn = Pn @ P, = Dy

[

- Pn—l + (1 - bn)Pn

[4

Pr @b =20+ 20+ +

for 0 << m < n. Thus K is a Hermitian convo with identity 0. A Haar
measure m on K is given by

«©

m = chpk‘

k=0

An interesting fact about this convo is that each set H,, = {0, 1, 2,..., n}
is a subconvo of K.

ExampLE 15.1E. Let G, be the circle group and let G, be a two-
element group, with G; N G, = {1}. Then G, v G, is a nondiscrete
convo with an isolated point.

15.2. The Group SL(2, C)

In the remaining subsections several related convos will be constructed.
They depend on the structure of the group G = SL(2, C) of all two-by-
two complex matrices with determinant equal to 1, and the subgroup
H = SU(2) of unitary matrices in G. The idea is illustrated by the
diagram:

G——>GH

NN

GJ/H — GH|I.

The expression G¥ refers to the convo of H-conjugacy classes of G.
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We write G#[I because G¥ is commutative. Of course, it is more con-
venient to use models for these convos. The notation is:

G oy ]
dbe
dbe
L——K

iso

The convo K is the one defined and studied in Section 9.5. Here, uny =
unary morphism, dbc = double coset morphism, and iso = iso-
morphism. The mappings studied explicitly are as follows, where the
convos are replaced by spaces of which they are subsets:

G c xR
\ lproj
R <z R

The two functions = and ¢ are defined on G by
a b N
(e ) =tera
b
$[(¢ )] =ttar+iop+icp+idp.

In his thesis Andrew Bao-Hwa Wang [16] constructs the spherical
functions on SL(2, C) associated with the various irreducible represen-
tations of SU(2). The main object of study in this thesis is the convolu-
tion algebra I (G) of all functions f on G = SL(2, C) which are infinitely
differentiable, have compact support, and have the property that
f(t7txt) = f(x) for all xe G and te H. It is easily seen that I(G) is
isomorphic to a dense subalgebra of L,(J). Some of Wang’s results can
thereby be expressed in terms of J and J, but this will not be done here.
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15.3. Double Cosets in SU(2)

The group H = SU(2) is compact. The elements of H are of the
form

where a, beC and |a |2+ | b |2 = 1. We define:

az[cosﬁ sinﬂ]

—sinf cosf
dy = [e: e?“]
D={d,;tcR}
le:8) = [ % 2]

h(la:8])) = |a>— b~

The purpose here is to study the convo H /| D, which is isomorphic to E
since the diagram below commutes:

H -~ H|/D

AW

E

PROPOSITION.

(15.3A) Each double coset of D in H is equal to Dr,D for a unique
6 [0, /2]

(15.3B) The function h is an orbital mapping from H onto E =
[—1,1]. Each h-orbit is a double coset of D. If 6 € R then
kY(cos 260) = Dr;D.
(15.3C) E is a Hermitian convo with identity 1.

607/18/1-7
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(15.3D) The convolution on E is specified by the formulas:

n
f(cos s % cost) = %f f(cos s cos ¢ — sin s sin £ cos #) du,
0

1 pAtB 1

f(x*y) 2; A—B(l +2xyz_x2__y2_zz)1/2f(z)dz’

where A = xy and B = (1 — x2)/2(1 — y2)1/2,
(15.3E) Lebesgue measure is a Haar measure on E.

(15.3F) The normalized Haar measure o on H is given by the
formula:

f,,f do = z},i fﬂ fﬂ/z f% f(d;rodss) sin 20 ds do dt.
-0 0

=0 ¥ s=
Proof. Note that h(r;) = cos 20 and
d;a : b] d;y = [eils+9q : ¢its=0)p],

The first four parts now follow readily. For the convolution, the defini-
tion says that

SUhG) % W) = 5 [ F(hr ) .

This gives the first formula, though with 2s, 2¢, 2u instead of s, #, u. The
second formula can be deduced from the first by an obvious change of
variable.

For Haar measure on E, it must be shown that

[ 1exnd = 10)a.

This can be checked directly, using the second formula in 15.3D and the
fact that (for C < D)

1,2 dy

=2l @=»p—op="

For 15.3F, we know that o is of this form, though the correctness of the
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expression sin 28 d6 is not obvious. In view of 15.3A and 15.3B we need
only verify that

[ fcos 26y sin26.d6 = 3 [ f(e) .

15.4. The Conjugacy Classes of SU(2)

It was proved in Subsection 8.4 that the conjugacy classes of a compact
group form a convo. Here, we use F = [—1, 1] as a model for the convo
of conjugacy classes of H. The dual F is also a convo. Note that each
character y, of F is a polynomial of degree n. For example: y(x) = 1,

x1(x) = x, xo(x) = $x® — }.

PROPOSITION.

(15.4A) The function 7 | H is an orbital mapping from H onto F =
[—1, 1]. Each orbit is a conjugacy class of H.

(15.4B) F is a Hermitian convo with identity 1.
(15.4C) The convolution on F is specified by the formulas:

m
flcoss X cost) =} f f(cos s cos t — sin s sin £ cos #) sin u du,
0
1 s+t .
Jlcoss X cost) = S emssng L_t f(cos u) sin u du,

%) =55 [ fw)as,

where A = xy and B = (1 — x?)1/2(1 — y?)1/2,
(15.4D) The normalized Haar measure p on F is given by the formulas:

2 1
[ fa, =] fox1 ey,
F -1
_2 [ f(cos 6) sint 6 o
m 0 )
(15.4E) The members of the dual F = {y, , x1 ,...} of F are given by

the formula:

sin nf
nsinf -’

Xa-a(cos 6) =
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Proof. 1t is well known and easily shown that two matrices in H are
conjugate if and only if they have the same trace. Since 7(d;;) = cos ¢
and 7(H) = [—1, 1], each conjugacy class of H contains d;, for some
t € R. Note that

T((diu? o) i (diut o) die) = T(d_soT—odis? o0ivd;1)
= T(’—Odisrodivditd—iv)
= 7(r_gd;sedys)

== cos § cOs ¢ — sin s sin £ cos 26.

The first formula in 15.4C now follows from 15.3F, with # = 26. The
others are easily deduced from this.

For 15.4D, one can use the Haar measure o on H, since p = 74(0).
But it is easier to use the formula for f(x % y) to verify directly that

J._ll flEX (1 —ytdy = f_ll @)1 — 22)12 da.

Hewitt and Ross [4, p. 134] compute the characters of H = SU(2).
The relationship between the characters of H and F is noted in 8.4A.
One can check directly using the second formula in 15.4C. Since each
X, is a polynomial of degree n, the linear span of the y,, is just the set of
polynomials on F. This set is dense in C(F), which implies that there are
no characters other than the y,, .

15.5. The Double Cosets of SU(2) in SL(2, C)

Here, we take L = [1, o0) as a model for G [/ H. Recall that K is the
convo of Section 9.5. In view of 15.5E, which is obvious from 15.5D, the
dual of L can be constructed using K. The characters of L then determine
the zonal spherical functions on G relative to H. By 14.4D, those which
are positive-definite on G are irreducible. Of course, formulas for these
functions are well known.

ForzeC(C,let

PROPOSITION,
(15.5A) Each double coset of H in G contains d, for a unique t > 0.
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(15.5B) The function ¢ is an orbital mapping from G onto L = [1, c0).
Each ¢-orbit is a double coset of H. If t € R then ¢~ (cosh 2¢) = Hd,H.

(15.5C) L is a Hermitian convo with identity 1.

(15.5D) The convolution on L is spectfied by the formulas:

f(cosh s % cosht) =} J. " f(cosh s cosh ¢ — sinh s sinh ¢ cos ) sin u du,
0

1

f(cosh s % cosh t) = 2sinhssinht

8+t
f f(cosh ) sinh u du,
s—t

%N =55 [ s

where A = xy and B = (x* — 1)4/3(y% — 1)'/2
(15.5E) The mapping x — cosh x is an isomorphism from K onto L.

Proof. Here we regard the elements of G as linear operators on the
two-dimensional Hilbert space C X C by the rule:

[: 3] (5, t) = (as + bt, cs + dt).

Let ge G and set ¢! = || g|. Since detg = 1, it must be that ¢ > 0.
There exists x€C X C such that | x|| = 1 and || g(x)]| = e'. There
exist A, ,hy€ H such that h(1,0) = x and hy( g(x)) = (¢!, 0). Let
g =hy, Og Ohy. Thus g'(1,0) = (¢!, 0). Since || g’ || =l gll = €, it
is necessary that g’ = d,.

One can prove by direct computation that ¢ is constant on double
cosets. The rest of the proof is similar to that of the previous subsection.

15.6. The SU(2)-Conjugacy Classes of SL(2, C)

The group H acts on G by inner automorphisms: (g, &) > h~gh.
Each orbit {A~'gh : h € H} will be called a H-conjugacy class of G. The
space of orbits is a convo, which was denoted by G¥ in Subsection 8.3.
As a model for G the set

J={(zreCxRi|z—1|+|z+1]|<Qr+1)V%

will be used. This set is something like a solid cone, but has a line-seg-
ment I = [—1, 1] X {1} at its base instead of a point. In fact, I is the
image of H under the mapping (r, ¢) and is isomorphic to the convo F
of 15.4. The projection (z,7)+>7 from J onto L is a2 double coset



100 ROBERT I.-JEWETT

morphism with kernel I. Thus each horizontal cross-section of [ is a
coset of 1. These cosets are solid planar ellipses.

PROPOSITION.

(15.6A) Each H-conjugacy class of G contains a matrix of the form
red;d, , where 6 € [0, w/2], s€ R, and t € [0, o).

(15.6B) The mapping (v, $) is an orbital mapping from G onto ].
Each (v, )-orbit is a H-conjugacy class of G. If 0, s, t € R then

T(red;sd;) = [cos s cosh ¢ + 7 sin s sinh #] cos 6,

(ﬁ(redisdt) == cosh 2t.

(15.6C) J is a Hermitian convo with identity (1, 1).

Proof. Let ge G and let g# denote the H-conjugacy class of G
containing g. By 15.5B, there exists ¢ € [0, c0) such that g = h,dph,
for some h, , hy € H. Let h = h3*h, . Then g¥ = (hd)". By 15.3A, there
exist # e (0, 7/2] and u, v € R such that A = d,rd;, . Let s = u 4 o.
Then g# = (rod,d,)".

By 15.5B, ¢ is constant on g¥. Certainly 7 is also. Thus g# is contained
in a (7, $)-orbit. We can see from the second of the two formulas in
15.6B, which are easily checked, that ¢ is uniquely determined by g.
If t = O then g¥ is a (7, ¢)-orbit, by 15.4A. Assume that £ > 0. Then 0
is uniquely determined by g. If cos 8 # 0 then e’ is determined by g,
and this would imply that g# is a (7, #)-orbit. Assume that cos § = 0.
That is, # = /2. The equation

A7 njody) diyy = Trjadandy

shows that g# is a (7, ¢)-orbit.
The convo is Hermitian, since 7( g~*) =(=( g) and ¢( g71) = ¢( 2).
Now we verify that the range of (7, ¢) is equal to J. Let g = r,d;, d,
and set x - &y = 7(g), 7 = ¢( g£). Suppose that ¢ == 0. Then x and y
can be any real numbers such that
x2 y2

—

cosh?¢ ° sinh%¢ <1
by 15.6B. Thus 2 = x + iy can be any complex number such that
|2 —1]+|&+1]<2cosht=2(r + 1))/
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