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1. INTRODUCTION 

In the theory of locally compact groups there arise certain spaces 
which, though not groups, have some of the structure of groups. Often, 
the structure can be expressed in terms of an abstract convolution of 
measures on the space. The purpose of this paper is to study a class of 
spaces that have such convolutions. There is no reference to groups in 
the basic definitions but most of the examples here are related to groups 
in some way. 

The Introduction is devoted to describing one example. The example 
is not simple, however, and involves a decomposition process that may 
not be familiar. This decomposition process has an analog in the theory 
of differential equations: Introduce a symmetry and thereby reduce the 
number of variables. While the rest of the paper does not make use of 
differential equations, it is convenient to consider here two problems: 
a differential equation problem that leads to a simpler differential 
equation and a problem in the theory of locally compact groups that 
leads to a space with an abstract convolution of measures. 

It should be pointed out that there is no intention to find the most 
general approach to convolution. The theory arose out of a study of 
double coset spaces G 11 H = {HgH : g E G}, where H is a compact 
subgroup of the locally compact group G; if H is not normal then G // H 
does not inherit a multiplication from G, but the space of finite measures 
on G /I H does inherit a convolution from the measure algebra of G. 
We have merely abstracted the salient features of these convolution 
algebras. 

We turn now to the two problems. Let E, denote Euclidean 2-space. 
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PROBLEM 1. Solve the Helmholtz equation in E, : 

PROBLEM 2. Determine the continuous unitary representations of 
the group of all orientation-preserving rigid motions of E, . 

These two problems are closely related. One way to see that there is 
likely to be a connection is to note that the Helmholtz equation is 
invariant under each change of coordinates corresponding to a member 
of G, the group in Problem 2. That is, if u is a function on E, , g is an 
element of G, and z, = u 0 g, then 

The relationship between groups and differential equations, including 
the case just described, is studied in the book by Talman [15], based 
on the lectures of Eugene P. Wigner. 

Let H be the rotation subgroup of G. That is, H consists of the 
members of G which leave the origin 0 fixed. There is a natural cor- 
respondence between the elements of Es and the left cosets gH of H: 

xt,{gEG:g(O) =z}. 

Therefore, each function f on Ez determines a function F on G by the 
rule: F(g) = f (g(O)); th e f unction F is constant on each left coset of H. 

There is a simplification which leads to partial solutions of the two 
problems. It involves the introduction of a symmetry based on the action 
of the compact group H. For each number r > 0 let 

C, = {z E E,: 11 z jl = r}. 

These sets are circles (for r > 0) and form a decomposition of Ez . 
Also, they are the orbits of H acting on Es . 

For the first problem, we restrict attention to the functions on E, 
which are rotationally invariant. These are the functions that are 
constant on the circles C,. . The Helmholtz equation can then be 
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expressed more simply in polar coordinates: x = (x, y), r = 11 z 11, 
24 =.f(r), 

l-2 g + Y  f + r2u = 0. 

This is Bessel’s equation of order 0, with solution u = j,,(r). 

For the second problem, we again restrict attention to the rotationally 
invariant functions on E, . The functions correspond to the functions 
on G which are constant on the double cosets HgH of H. This is based 
on the correspondence between the circles and the double cosets: 

C, t) {g E G: g(0) E C,}. 

Thus, we have functions F on G such that F(h,gh,) = F(g) for all g E G 
and h, , h, E H. The functions of this type which are integrable with 
respect to Haar measure on G form a closed subalgebra A of the con- 
volution algebra L,(G). Surprisingly enough, A is commutative, even 
though L,(G) is not commutative. Moreover, the representation theory of 
A leads to some, but not all, of the representations of G. In this way 
the theory of commutative Banach algebras can be used to get a partial 
solution of Problem 2. 

By restricting the scope of the original problems we have produced 
two new problems: Solve Bessel’s equation of order 0 on R+ = [0, 00); 
determine the representations of the subalgebra A of L,(G). 

It would seem that the two new problems are not related. We have a 
differential equation (on a new domain) but no group of symmetries 
which leave it invariant. In simplifying Problem 2 we have not produced 
a new group, but only a new convolution algebra. 

We have not used the fact that the points of R+ are in a natural one- 
to-one correspondence with the double cosets of H: 

r t) {g E G: jl g(O)!1 = r}. 

Thus, each function in A corresponds to a function on R+, and these 
functions on Rf form an algebra A’ with a (nonapparent) convolution 
for its multiplication. Convolutions are usually defined for functions 
and measures on groups, but Rf cannot be given the structure of a 
topological group. It is true that R+ is a semigroup under addition, but 
the convolution corresponding to this operation is not the correct one. 
This brings us to one of the purposes of this paper. 
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PROBLEM 3. Define and analyze the group-like structure of Rf 
which Rf inherits from G. 

While Problems 1 and 2 are widely known, Problem 3 is not. This 
does not mean that it has not been raised before. In fact, there exists 
an elaborate theory designed to deal with just such problems. This 
theory, initiated by Delsarte [l] and developed mostly by Levitan 
[S-S] is based on the idea of a generalized translation operation. The idea 
comes from the translation of functions on groups: 

(~cLf)(Y) = fb-5). 

Brief descriptions of Levitan’s theory are given by Naimark [13, 
pp. 427-4301, Loomis [lo, pp. 182-1831, and Dunford and Schwartz 
[2, pp. 1622-16281. 

The purpose of this paper is to develop another theory of group-like 
structures. Rather than start with the translation property we start with 
the convolution of measures. Since the convolution gives rise to trans- 
lation operators, the objects studied here are special cases in Levitan’s 
theory. But these objects are much more like groups than a typical space 
with a generalized translation operation; this approach seems to be more 
appropriate for structures that originate in the theory of locally compact 
groups. 

Recently, Dunk1 [17] has defined and studied hypergroups, which 
are spaces with a convolution of measures. Dunkl’s theory is therefore 
much closer than Levitan’s to the one developed here, except that the 
convolution of a hypergroup is assumed to be commutative. Dunkl 
also gives various examples for which the underlying space is 
compact. 

In the remainder of the Introduction we merely indicate how the 
convolution of measures on Rf is constructed. As for the algebra A’, 
the convolution of functions depends on a Haar measure on R+ which 
is uniquely determined by the convolution. The details are given in 
Section 9. 

For any locally compact Hausdorff space X, let M(X) denote the space 
of complex-valued regular Bore1 measures on X; for x in X, let p, 
denote the unit point mass at x. 

On the group G the convolution of unit point masses is quite simple: 
P, *.ph =&ha The general convolution p * v of a pair of measures 
in M(G) is the (continuous) linearization of the operation on the unit 
point masses: 
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For Rf also it is enough to specify the basic convolutions p, *p, for all 
r and s in Rf. However, if r and s are positive thenp, *p, is not a point 
mass, but is a probability measure whose support is a compact interval. 
No binary operation on R+ is being used; we can convolve measures 
but not multiply points. 

The convolution on M(R+) is inherited from the convolution on 
M(G). In this case there is a shortcut, which uses the convolution on 
M(E,), based on the structure of E, as an additive group: p, 36 p, = pz+w 
for x, w E E, . The group G is not being ignored; the action of H on E, 
will be used, and G is a semidirect product of H and E2 . 

There is a one-to-one correspondence between the measures on Rf 
and the rotationally invariant measures on E, . The rotationally invariant 
measures on E, form a subalgebra of M(E,) and M(R+) is given the 
structure of this subalgebra. 

Let r be an element of R+. The measure on E, corresponding to p, is 
by definition the unique rotationally invariant probability measure qT 
whose support is equal to the circle C, . It is apparent that this measure 
is a multiple of the length measure on C, . Using appropriate topologies 
the mapping p, ++ q7 is extended to a (continuous) linear mapping of 
M(R+) into M(E,). 

Let Y and s be in R+, with 0 < r < s. Then qT and qs are probability 
measures on C, and C, , respectively. Therefore, qT 3c q9 is a probability 
measure supported by the set C, + C, . It is easily seen that C, + C, 
is an annulus: 

C, + C, = {z + w: II z II = r, II w II = 4 
={zEE2:s-r <jjzII <r+s} 

=U{C,:s-y<t<y++s). 

Since q,, * qs is rotationally invariant, q,. * qs is a combination (using 
integrals) of the measures (q t : s - r < t < r + s}. It turns out then 
that p, * p, , which corresponds to q,, X- qs , is a probability measure on 
R+ with support [s - r, Y + s]. 

With -Y+ as its multiplication, M(R+) is a commutative Banach 
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algebra. The unit point mass at 0 is the unit of M(R+). In a manner 
analogous to that used for locally compact abelian groups, continuous 
irreducible representations of M(R+) are defined. Each such represen- 
tation is one-dimensional and corresponds to a bounded continuous 
function on R+. These functions will be called multiplicative characters, 
as in the theory of LCA groups. This brings us back to Problems 1 and 2. 
One of the multiplicative characters on R+ is the Bessel function Jo . 

2. LOCALLY COMPACT HAUSDORFF SPACIZS 

The results in this section are similar to known facts about functions 
and measures. We include most proofs, however. 

2.1. Notation 

Let X be a locally compact Hausdorff space. The notation below is 
used throughout the paper. 

R The real numbers 

Rf 

C 

C(X) 

The nonnegative real numbers 

The complex numbers 

The continuous complex-valued 
functions on X 

The members of C(X) which are: 
bounded, zero at infinity, with 
compact support 

C+(X), C,+(X), C,,+(X), C,+(X) Those which are nonnegative. 

Bore1 set A member of the smallest u-algebra 
which contains the open sets 

CA The closure of the set A 

B(X) The complex-valued Bore1 functions 
on X 

wm The Bore1 functions on X with values 
in [0, co] 
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Lower-semicontinuous A function with values in [0, 001 such 
that {x :f(x) > c} is open for all 
C>O 

ZA 

Ilf IIU 

M(X) 

The function equal to 1 on A and 
equal to 0 on the complement of A 

sup If (4 
The regular complex-valued Bore1 

measures on X 

M+(X)> M,(X), M,+(X) 

MYX) 

Those which are: non-negative, with 
compact support, both 

The regular Bore1 measures on X with 
values in [0, co] 

PZ 

spt p 

sptf 

POSf 

Sf(4 I-@4 
o-finite function 

The unit point mass at x 

The support of the measure p 

The support of the function f 

For nonnegative f, the set 

ix :f (4 > 01 
SfdP 
With respect to a given measure, a 

function which is 0 off a u-finite 
Bore1 set 

fP The measure, if it exists, such that 

.f g d(fp,) = Jgf dp, for allg in C,(X) 

2.2. The Cone Topology 

Let X be a locally compact Hausdorff space. The cone topology on 
M+(X) is the weakest topology such that, for each f E C,+(X), the 
mapping f~ * Jr f dp is continuous, and such that the mapping p t-t p(X) 
is continuous. This is equal to the weak-* topology if and only if X is 
compact. 

Throughout this paper, an unspecified topology on M+ is the cone 
topology. References to the norm are explicit. 
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LEMMA 2.2A. The set of measures in M+(X) with jinite support is 
dense in M+(X). 

LEMMA 2.2B. The mapping x I-+ p, is a homeomorphism of X onto 
a closed subset of M+(X). 

LEMMA 2.2C. Let D be a directed set. Let (pBjBED be a net in M+(X) 
converging to p. Let {fB}BED be a net in C,+(X) converging to f unzyormly 
on compact subsets of X. Suppose that the numbers 11 fB \IU are bounded. Then 

Proof. The first two lemmas are obvious. For the third, let N = 
sup 11 f. IjU and let E > 0. Let A be a compact subset of X such that 
p(X - A) < 42N. Ch ooseg E C,+(X) such that g < 1 on X andg = 1 
on A. Then 

Ifs&, - If& = j&G, - j-gf& - /g(f -fs)Gs 

+ j (1 - g)foh - I(1 - g)f dp. 

Since g has compact support, it follows that 

The rest is straightforward. 

THEOREM 2.2D. Let L: M(X) -+ C be a linear mapping. Then L is 
continuous on M+(X) if and only if there exists a bounded continuous 
function h on X such that 

LW = s, h dP 
for each p E M(X). 

Proof. If h is a bounded continuous function on X and L is defined 
as above, then L is continuous, by Lemma 2.2C. 

Assume that L is continuous. Let h be defined by h(x) = L(p,). By 
Lemma 2.2B, h is continuous. Also, L(p) = J h dp for all measures 
with finite support. If h is bounded then, by Lemmas 2.2A and 2.2C, 
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L(p) = j’h dp for all p E M+(X), and hence for all p E M(X). Assume 
that h is unbounded. For each n > 1 there exists x, E X such that 
1 h(x,)[ > n. Let pm = (l/h(x,)) p,” . Thus, pn -+ 0 and L(p,) = 1 for 
all n. This is a contradiction, since L is continuous. 

2.3. Positive-Continuous Linear Mappings 

Let X and Y be locally compact Hausdorff spaces and let p I-+ p’ be 
a linear mapping from M(X) to M(Y). This mapping will be called 
positive-continuous if: 

(I) $ > 0 when p > 0; 

(II) The restricted mapping, from M+(X) to M+(Y), is continuous. 

We assume in this subsection that these conditions are satisfied. If g 
is a Bore1 function on Y then g’ is defined on X by 

whenever this integral exists. 

LEMMA. Let p E M(X) and g E C,(Y). 

(2.3A) The number N = sup (( p,’ (( is finite. 

(2.3~) II CL! II G N II II II. 
(2.3C) g’ is continuous and 11 g’ IIu < N 11 g IIu . 

(2.3~) Jr g dp’ = J-x g’ dp. 

This lemma follows readily from Theorem 2.2D. In view of the 
lemma we may write 

1”’ = s xPx)P(w 

regarding p’ as the integral of a measure-valued function on X. Some- 
times it is possible to extend the mapping to an infinite nonnegative 
measure. Let m E Mw(X). Suppose that Jg’ dm is finite for all g in 
C,+(Y). By the Riesz Representation Theorem there exists a unique 
measure m’ in M”O( Y) such that 

fygdm' = jxg' dm 
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for all g E C,+(Y). In this case also we use the notation 

m’ = 
s 
xpim(dx). 

THEOREM. Let m be a nonnegative measure on X and suppose that m’ 
is deJined. 

(2.3E) If g is a lower-semicontinuous function on Y then g’ is lower- 
semicontinuous on X and Jg dm’ = Jg’ dm. 

(2.3F) If g E Bm(Y) then g’ E B”O(X). 

(2.3G) If g E Bw(Y) and g is o-finite with respect to m’ then g’ 
is a-Jinite with respect to m and Jg dm’ = $g’ dm. 

Proof. Part E is apparent. We shall prove 2.3F and 2.3G together. 
This imposes no additional restriction on g since m could be a finite 
measure. 

Our proof is essentially the proof by Karl Stromberg [15] of a closely 
related result for groups. See Hewitt and Ross [4, p. 7271. 

By the Monotone Convergence Theorem there is no loss of generality 
in assuming that g = iA , where A is a Bore1 subset of Y and m’(A) is 
finite. We must show that iA’ is a Bore1 function on X and that J iA’ dm = 
m’(A). 

Let U be an open subset of Y such that A C U and m’(U) is finite. 
Let Z be the collection of all Bore1 sets B such that B C U, iB’ is a Bore1 
function, and JiB’ dm = m’(B). Now U is in Z by (2.3E), and iB’ < 
iu’ < N on X for all B in Z, where N is given by (2.3A). Note that Z 
contains each open subset of U. 

Let Z,, be a subcollection of Z which is maximal with respect to the 
properties of containing the open subsets of U and being closed under 
finite intersection. Let E E & and let 

EE ={(BnE)u(CnF):B,CEzo}, 

where F = U - E. Thus Zl, contains Z0 and is closed under finite 
intersection. Moreover, Zl, is contained in Z since 

&-,E)“(CnF) = h-,E + k - &E * 

Thus C, = Z0 and F E & . Hence Z0 is an algebra of subsets of U. Now 
let Zr be the collection of all countable unions of members of ,Z’,, . Then 
Z; = Z,, , by the maximality of Z,, and the Monotone Convergence 
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Theorem. Thus Z0 is a u-algebra. It follows that Z,, = Z and that 
A E.E. 

The following lemma is apparent. 

LEMMA 2.3H. Let x w w, be a continuous mapping from X to M+(Y). 
Suppose that the numbers Ij wz 11 are bounded. Then the mapping p, tt wg 
has a unique extension to a positive-continuous linear mapping from M(X) 
to M(Y). 

2.4. Positive-Continuous Bilinear Mappings 

Let X, Y and 2 be locally compact Hausdorff spaces. Let (CL, V) I-+ 
p +C v be a bilinear mapping from M(X) x M(Y) to M(Z). This 
mapping will be called positive-continuous if: 

(I) p * v > 0 when p > 0 and v > 0; 

(II) The restricted mapping, from M+(X) x M+(Y) to M+(Z), 
is continuous. 

We assume in this subsection that these conditions are satisfied. 
The following statements are easily verified. 

LEMMA 2.4A. There exists a unique positive-continuous linear mapping 
7~ I-+ r’ from M(X x Y) to M(Z) such that p * v = (p x v)’ for 
p E M(X) and v E M(Y). 

We refer to Hewitt and Ross for the properties of product measures 
on locally compact spaces. In view of Lemma 2.4A, the formulation 

p*v= IS y x (Pz *Al> PL(4 +39 

may be used. If TV E M+(X) and m E M”o( Y) then p 36 m is given by 
p * m = (CL x m)‘, if this latter measure is defined. Note that, if p * m 
is defined, then 

P * m = s y (P *AA m(4). 

LEMMA 2.4B. Let (x, y) ~--t w~,~ be a continuous mapping from X x Y 
to M+(Z). Suppose that the numbers 11 w~,~ 11 are bounded. Then 

(P, 9 PI/) * %.Y has a unique extension to a positive-continuous bilinear 
mapping from M(X) x M(Y) to M(Z). 
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2.5. The Space of Compact Subsets 

Let X be a nonvoid locally compact Hausdorff space. Let g(X) 
denote the collection of all nonvoid compact subsets of X. If A and B 
are subsets of X let VA(B) be the collection of all C in U(X) such that 
C r\ A is nonvoid and C C B. We give U(X) the topology generated by 
the subbasis of all ‘S’“(V) f or which U and V are open subsets of X. 
This topology is thoroughly examined by Michael [12]; note pp. 161-162. 
We review briefly. 

(2.5A) %7(X) is a locally compact Hausdorfl space. 

(2.5B) If X is compact then G?(X) is compact. 

(2.5C) If Y is a subspace of X then U(Y) is a subspace of g(X), 
and if Y is closed then %‘(Y) is closed. 

(2.5D) The mapping x tt {x} is a homeomorphism from X onto a 
closed subset of U(X). 

(2.5E) The collection of nonvoidjnite subsets of X is dense in U(X). 

(2.5F) If 52 is a compact subset of g(X) then B = UAER A is a 
compact subset of X. 

A proof of 2.5F is as follows. Let 2 be a collection of open subsets 
of X which covers B. Let Z’ be the collection of all unions of finite 
subcollections of Z. Thus, if A E Q then A C V for some V E Z’. Hence 
(U(V) : V E ,Z’} is an open cover of G. There exists a finite subcover 
(97(V,)). But th en the Vi cover B. 

3. SEMICONVOS 

A pair (K, *) will be called a semiconvo if the following five conditions 
are satisfied: 

(I) K is a nonvoid locally compact Hausdorff space. 

(II) The symbol 93 denotes a binary operation on M(K), and 
with this operation M(K) is a complex (associative) algebra. 

(III) The bilinear mapping (p, v) ++ p * v is positive-continuous. 

(IV) If x, y E K then p, ++p, is a probability measure with 
compact support. 

(V) The mapping (x, y) t-t spt(p, *p,) from K X K to v(K) 
is continuous. 
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In view of 2.4B, a semiconvo is determined by the measures p, -% p, , 
and when considering examples we need only specify these measures. 
As for associativity, this can be checked by verifying that 

P~*c(P,*PP,)=(Px*PP,)*PP,~ 

which is the same as 

The connection between semiconvos and semigroups is illustrated by 
the following two propositions. They need no proof. 

PROPOSITION 1. Let (K, SC> be a semiconvo. Suppose that for each 
pair of points x, y in K there exists a point x * y in K such that p, S p, = 

P x.2/. Then (K, -) is a locally compact topological semigroup. 

PROPOSITION 2. Let (S, -) be a locally compact semigroup. Let * 
denote the standard convolution on M(S), defined by: Jf d(p * v) = 
JJf(xy) p(dx) v(dy). Then (S, Xc) is a semiconvo. 

In the remainder of Section 3 it is assumed that (K, *) is a semiconvo. 

3.1. Translation of Functions 

If f is a Bore1 function on K and x, y E K then we define 

f@ *Y) = f&J) = f”(x) = s,I 4Pr *P,>, 

if this integral exists, though it need not be finite. Note that f (x -X y) = 
f (x - y) if K is a semigroup. The following results are readily proved 
using (2.3) and (2.4). In the notation of those subsections, f (x * y) = 

f ‘(x9 Y>* 

LEMMA. Let f be a continuous function on K and let x E K. 

(3.1A) The mapping (s, t) tt f (s * t) is a continuous function on 
K x K. 

(3.1 B) f, and f x are continuous functions on K. 

LEMMA. Let f E B”(K), let p, v E M+(K), and let x, y, z E K. 
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(3.1 C) The mapping (s, t) ~+f(s 96 t) is a Borelfuwtion on K x K. 

(3.1D) fz and f x are Bore1 functions on K. 

(3.1E) .fKf d(p * v) = .k .kf (s * t) 14d-4 4dt). 

(3.IF) SKfz+ = S~fd(p, *PI- 
(3.1G) fz(r *4 =f"@ *A- 

3.2. Convolution of Sets 

If A and B are subsets of K then the set A X B is defined by 

A * B = u SP% *At>* 
XEA 
WB 

Note that A -% B = A - B if K is a semigroup. 

LEMMA. Let A, B and C be subsets of K. 

(3.2A) (CA) X (cB) C c(A -X B). 

(3.2B) If A and B are compact then A * B is compact. 

(3.2C) Convolution is a continuous operation on g(K). 

(3.2D) If A and B are compact and U is an open set containing A * B 

then there exist open sets V and W such that A C V, B C W, and 
v*wcu. 

(3.2E) (A*B)-?+C=AA(B++C). 

Proof. Recall that CA is the closure of A. Also, 3.2B follows from 
2.5F. The only thing needing proof in this subsection is 3.2C. 

It is enough to consider subbasic open sets. Let V and W be open 
subsets of K and let 

2’ = {(A, I?): A X B E %#Q}. 

We must show that Z is open in %9(K) x V(K). Let 

p = ix, r>: SPtb *l-G> E ~“Y(K)l 

Q = {(x, Y): SP~(A *A) E ~VV>. 

So P and Q are open subsets of K x K. And Z is the union of all 
V,(S) x UT(U) f or which R, S, T, U are open in K and R x T C P, 
S x UCQ. 
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LEMMA. Let ,u, v E M+(K). 

(3.2F) spt(p * V) = c((spt /L) * (spt v)). 

(3.2G) If p and v have compact support then p * v has compact 
support and spt(p 3c v) = (spt p) -X (spt v). 

3.3. Subinvariant and Invariant Measures 

A measure m in Mm(K) will be called left-subinvariant if p, * m is 
defined and p, X m < m for each x in K. A measure m in Ma)(K) will 
be called left-invariant if p, * m is defined and p, +? m = m for each x 
in K. Thus, by definition, 3.3A and 3.3F are valid for all f in C,+(K). 
Note that the natural analog of 3.3B for left-invariant measures 
(= replacing <) is not valid. This is so because the measures p, 4% p, 
are not point masses in general. For example, in 9.1D the function f = 5 
is not identically zero, but fb = 0, since f*(x) = f  (b * x) = f  (b) f  (x) = 0 
for all x E K. This does not contradict 3.3F since Jf dm = 0. 

LEMMA. Let m be a left-subinvariant measure on K. Let f  E B”O(K), 
x E K, and CL, v E M+(K). 

(3.34 JKfz dm < JKf dm. 

(3.3B) I f  1 <P < ~0 then If, I& < Ilf I& . 

(3.3C) If A is a compact subset of K then m(A) ,< m({x> *A). 

(3.3D) The measure ~1 * m is defined and p * m < p(K)m. 

(3.3E) I f  v is absolutely continuous with respect to m then ~1 Xv 
is absolutely continuous with respect to m. 

Proof A. This follows from 2.3G if f  is integrable. 

Proof B. Suppose that p < CO. If y E K then I~(x X y)]” < 
f  “(x * y), by Holder’s Inequality. Hence (f,)” < (f P)% on K. Thus 

Ilf, Ilp =G Ilf Ilp * 
Suppose that p = co and that /If ]lrn < CO. Then f  = g + h, where h 

is locally null and g < (1 f  [la on K. It is enough to see that h, is locally 
null. Let A be a compact subset of K and let B = {x} * A, which is also 
compact. Then h, = (iBh)Z on A and 

I A 
h, dm < jK (iBh)r dm < jK i,h dm = jB h dm = 0. 

Proof C. Let B = (x) * A and let E > 0. Choose f  E C,+(K) 

607/18/1-z 
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such that f = 1 on B and Jf dm < m(B) + E. Then f, = 1 on A and 
m(A) < Jfz dm < Jf dm < m(B) + E. 

Proof D. If f E C,+(K) then 

= P(K) jf dm. 

Proof E. There exist measures v, E IM+(K) and positive numbers c, 
suchthateachv,<c,mandv=v,+v,+~*~.Thus~*v=~~*~~ 
and this sum converges in norm. Moreover, each TV * v, is absolutely 
continuous with respect to m since p * V~ < c,p(K)m. 

THEOREM. Let m be a left-invariant measure on K. Let f E B”O(K), 
x E K, and p E M+(K). 

(3.3F) If f is a-Jinite with respect to m then f, is a-Jinite with 
respect to m, and 

(3.3G) p X m = p(K)m. 

Proof. These are similar to 3.3A and 3.3D. 

3.4. Involutions 

Let X be a nonvoid locally compact Hausdorff space. A mapping 
x tt x- will be called a topological involution of X if it is a homeo- 
morphism of X and (K)- = x for all x in X. Let such a mapping be 
given. If f is a function on X, A is a subset of X, and E.L is a Bore1 measure 
on X then f -, A- and p- are defined by 

f-(x> = f(4 A- = (x-: x E A} P.-(B) = tL(B-). 

Note that if f E Bw(X) and p E &P(X) then 

s xf-dp = 1 f+-. 
X 
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A mapping x t-+ x’ will be called an involution of the semiconvo K if 
it is a topological involution of K and 

(p * v)- = v- * p- 

for all p and v in M(K). Note that it is enough to check that ( p, * p,)- = 
p,- *pp,- for all x, y E K. The following results are apparent. 

LEMMA. Let x I+ x- be an involution of K. 

(3.4A) The mapping ,u t, p-, from M(K) to M(K), is linear and 
positive-continuous. 

(3.4B) If f E Bm(K) and x, y E K then f-(x * y) = f ( y- X x-). 

(3.4C) If A and B are subsets of K then (A * B)- = B- * A-. 

(3.4D) If m is a left-invariant measure on K then m- is right- 
invariant. 

4. CONVOS 

A pair (K, X) will be called a convo if the following three conditions 
are satisfied: 

(1) (K *-> is a semiconvo. 

(II) There exists a (necessarily unique) element e of K such that 
p,*p,=p,=pzjCp,forallxinK. 

(III) There exists a (necessarily unique) involution x tt x- of K 
such that (for x, y E K) the element e is in the support of p, X p, if and 
only if x = y-. 

The connection between convos and groups is illustrated by the 
following two propositions. 

PROPOSITION 1. Let (K, SC) be a convo. Suppose that, for each pair 
of points x, y in K, there exists a point x * y in K such that p, * p, = pz,l/ . 
Then (K, *) is a locally compact group. 

PROPOSITION 2. Let (G, *) be a locally compact group. If * denotes 
the standard convolution on G then (G, 36) is a convo. 

In the remainder of Section 4 it is assumed that (K, *) is a convo. 
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The element e will be called the ides&y of K. For x in K, the element X- 
will be called the adjoint of x. 

4.1. Convolution of Sets 

If h3bED is a net in K then the expression X, + KJ means that 
x, E K-A eventually, for each compact subset A of K. If {A,},,, is a net 
in V(K) then the expression A, + {co} means that A, C K-A eventually, 
for each compact subset A of K. Note that AB + co and A, -+ {CO) 
have different meanings. 

LEMMA. Let A, B and C be subsets of K. 

(4.1A) A- X B contains e if and only if A n B is nonvoid. 

(4.1B) (A 36 B) n C is nonvoid if and only if B n (A- -X C) is 
nonvoid. 

(4.lC) Let {ABIBED and {B,},,, be nets in V(K). If A, -+ A and 
B, + {a> then A, -Y+ B, + {co}. 

(4.1 D) If B is open then A X B is open, and (CA) * B = A -X B. 

(4.lE) If A is compact and B is closed then A X B a’s closed. 

Proof. We shall prove only 4.lB and 4.1D. For 4.1B, assume that 
(A * B) n C is nonvoid. By 4.lA, C- * (A * B) contains e. By 3.2E 
and 3.4C, C- * (A * B) = (A- * C)- * B. The rest is clear. 

For 4.1D, let a E A. Then x E {a} -X B if and only if {a-} * {x} is an 
element of VB(K). Thus {a} * B is an open subset of K. Hence A 3+ B 
is open. Now, let x E (CA) Jt B. Then (CA)- * {x} meets B. Thus 
A- * {x} meets B, by (3.2A). Hence, x E A * B. 

4.2. Convolution of Functions and Measures 

Let p E M+(K) and f E B”O(K). Then the convolutions p *f and f * ,u 
are defined on K by 

LEMMA. Let ~1 E M+(K) and f E C,+(K). 

(4.2A) p ++ f is continuous. 

(4.2~) II P *f IIu G II P II - Itf IIu . 
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LEMMA. Let p E M+(K) and let f be lower-semicontinuo on K. 

(4.2C) p X f is lower-semicontinuous. 

(4.2~) ~os(~ *f) = (spt P) * (~osf). 

LEMMA. Let p E M+(K) and f E C,+(K). 

(4.2E) /.L *cf~ C,,+(K). 

(4.2F) 1’ p@ + p in M+(K) then lim 11 ps *cf - p *cf[I, = 0. 

Proof. See 2.3C and 2.3E. For 4.2F, note that if ~1 and f have 
compact support then p X f has compact support. 

LEMMA. Let p, v E M+(K) and f E B”O(K). 

(4.2G) p *f is a Bore1 function. 

(4.2w J-K (p- *f) dv = .Lf d(p * v). 

(4.21) ,U X (v ++ f) = (p 4% v) -x-f. 

(4.2~) CL * (f * v) = (P *f 1 * v. 
(4.2K) (t” *f)- =f- *p-. 

Proof. By 2.3F, p *f is a Bore1 function. Also, 

s (CL- *A dv = f S f(r- * 4,449 VW4 

Now,letx~Kandletrr=p,. 
For 4.21, 

L/J * (v *fll(d = j kt * (v * 01 dr = .j” (v *tf) 4Et * 4 

= j-fd(v-+-X?r) = /[(pXv)Xf]dr. 

For 4.25, 

[P *u* 4x4 = J r/J * u* 41 dT 

= j-(+)d(p-*a) = j.fd(/.-W&J-). 
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For 4.2K, 

(P *ff)-w = (P *f&3 = jf(r- * x-1 PMY) 

= j f-b * r> P(4) = j f-b * 4 Kkw. 

LEMMA 4.2L. Let p E M+(K) and m E M*(K). If p has compact 
support then TV * m is de$ned, and spt(p * m) = (spt p) * (spt m). 

Proof. This is straightforward. Note 4.1E. 

4.3. Existence of a Subinvariant Measure 

The proof of the following theorem is adapted from Weil’s proof, as 
given by Loomis [l I], of the existence of an invariant measure on a 
locally compact group. However, the conclusion here is weaker. On a 
group, subinvariant implies invariant. On a convo, it does not. See 
Section 9.5. 

LEMMA 4.3A. Let f and k be in C,+(K). Suppose that k # 0. Then 
there exists t.~ E Me+(K) such that f < TV * k. 

Proof. Choose a E K such that k(a) > 0. One readily sees that, if 
x E K, then ( p, *pp,- * k)(x) > 0. Thus, TV can be chosen to be a 
finite linear combination of measures of the form p, * p,- . 

LEMMA 4.3B. Let f E C,+(K) and let E > 0. Then there exists an 
open neighborhood W of e with the following property: If x, y E K and 

(PC *P,)(w) > 0 then If(x) -f(Y)1 < E. 

Proof. This follows from 4.1C. 

THEOREM 4.3C. There exists a measure m in Mm(K) such that m is 
left-subinvariant and the support of m a’s equal to K. 

Proof. We make the following definition. If f, k E C,+(K) and k # 0 
let 

[f, 4 = inf&(K): p E M,+(K) and f Q ,U * k}. 

We now prove several lemmas. 
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LEMMA 4.3D. Let ~1 E M,+(K), c > 0, and f, g, k E C,+(K). Suppose 
that k # 0. Then 

[f + 87 4 G [h 4 + k 4 
[CL 4 = 4f, 4 

[f, 4 d [is Al if f < g, 

If, 4 G [f2glk, 4 if gzo, 

[f, kl > 0 ;f f#O. 

Proof. For the first, if f <v*k then p*f <p*vXk, and 
jj~ X f, k] < (p ++ v)(K) = p(K) v(K). For the last, if f < p -X k then 

Ilf Ilu G I/ CL II - II k Ilu = i-W II k Ilu . The others are clear. The next 
lemma follows readily. 

DEFINITION. Let F be a fixed nonzero element of C,+(K). If 
f, k E C,+(K) and k # 0 then set 

Ikf = #$. 

LEMMA 4.3E. Let p E M,+(K), c > 0, and f, g, k E C,+(K). Suppose 
that k # 0. Then 

44 * f > G CL(K) Ikf7 
Uf + g) G &f + I7cg* 

Ucf) = c&f, 

&f G Ilcg if f <g. 

Moreover, if f # 0 then 

LEMMA 4.3F. Let fi , f2 E C’,+(K) and let E > 0. Then there exists an 
open neighborhood W of e with the following property: If k E C,+(K), 
k # 0, and k = 0 ofl W, then 
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Proof. Let S = spt(f, + fi). Let V be an open set containing S 
such that cV is compact. Choose g E C,+(K) such that g = 1 on V. Let 
a > 0 and let b = 3a + 2a2. 

Let h = fi + f2 + ug. Thus, h > a on V. Define g, and g, by letting 
g, equal fi/h on V, and 0 elsewhere. Thus each g$ is continuous and is 
zero off S. Also, g, + g, < 1 on K. 

By 4.3B, there exist open neighborhoods IFi of e such that 

I g&4 - gz( Y)I < a when (p,-*j+,)(Wi) >O. Let IV= WlnW2. 
Suppose that K E C,+(K), k # 0, and that K = 0 off IV. Choose 
p E M,+(K) such that h < p * K and such that p(K) < (1 + a)[h, A]. 

If X, y E K and k(x- ‘/c y) > 0 then gi( y) < a + gi(x). Thus, if 
y E K then 

h(r) = dY) h(Y) G .&(Y)(P * WY) 

= s gi(Y) k(r *Y> Adx) 

= s e- * Y>E(U + &l/4@4 

= (Ku +h-4 *k)(Y)* 

It follows that [fi , 121 < J (u + g$) dp. Combining we have 

Lfl94+v2~~1 +2~+gI+g2wP 

< (2~ + 1) p(K) 

S (2~ + l>(u + l)[hh, kl 
= (1 + Q[h, 4. 

After dividing by [F, k] we have 

if a is sufficiently small. 
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Completion of Proof. Choose an appropriate net of functions (kB}BED 
such that each kB # 0, such that spt k, -+ {e}, and such that the functions 
Iks converge pointwise on the set C,+(K). Let J = lim, lks . Then J is 
nonnegative and semilinear. Moreover, if f # 0 then Jf > l/[F, f] > 0. 
Also, if p E M,+(K) and f E C,+(K) then J(p S-f) < p(K) Jf. By the 
Riesz Representation Theorem, there exists a unique m in k?(K) such 
that Jf =jfd m f or all f E C,+(K). Also, the support of m is equal to K. 
Finally, if f E C,+(K) then 

j-Kfd(P,*m) = j)P.-*f)dm G jKfdm. 

5. HAAR MEASURE 

A nonzero left-invariant measure on a convo will be called a left 
Haar measure. 

Conjeckre. Every convo has a left Haar measure. 
We shall see later that discrete convos, compact convos, and double 

coset convos have Haar measures. 
In this section it is assumed that K is a convo and that m is a left 

Haar measure on K. 

5.1. The Adjoint Property 

In most computations it is the equation in 5.1D rather than the left- 
invariance of m that is used. On a group, of course, the equivalence of 
the two is obvious. 

It follows from 5.1D that the mapping f t+ f,- is the adjoint of the 

mapping f bfi 9 both mappings being bounded linear operators on 

L,(m). 

LEMMA 5.1A. The support of m is equal to K. 

LEMMA. Let (kBjBED be a net in C,+(K) such that each S kB dm = 1, 
and such that spt k, --+ {e}. 

(5.1B) If f E C,+(K) then lim, II * kB- -f IIU = 0. 

(5.1C) If ,u E M+(K) then lim, (CL X k,)m = CL. 

Proof. The first is clear. For 5.lB, let E > 0. By (4.3B), there exists 
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/3,, E D with the following property: If x, y E K, /3 > /3,, , and 

kdx- *Y> > 0, then If(x) - f( r)l < E. Let x E K and let k = k, , 
where jl 3 &, . Then 

I(fm * w4 -ml = 1 j WY- * 4f(Y) 4dY) - f(x) 1 h(x- *Y) @Y) 1 

B s w * Y> I f(Y) - .ml NdY) 

GE I w- *Y) 4dY) 

= E. 

For 5.lC, let g E C,+(K). Using 4.2H, jg(p * KB) dm = J (p * k,) 
d(gm) = J k, d(p- X gm) = J k,- d[(gm)- * ~1 = J (gm * kB-) dp, and 
this last integral converges to Jg dp. Also, 

j (CL * 4 dm = 1s UY- * 4 P@Y) 4% = 14 = P(K). 

THEOREM 5.1D. Let f, g E F(K) and let x E K. If either f OY g is 
a-jinite with respect to m, then 

j-p * Y> i!(Y) NdY) = SRf(Y) dx- * Y> 4dY). 

Proof. By symmetry and the Monotone Convergence Theorem, 
we may assume that Jg dm is finite. Let (kBjBED be as in 5.1B. Let 
h E C,+(K). If j E C,+(K) then 

ji 4hp) = 1 hlE 4jm) = / (P,- * h) d( jm) 

= 
s 

h d(ps X jm) 

= lip 1 (hm * k,-) d(pr * jm) 

= li, I (p,- 4% hm 36 k,-) d( jm) 

= lism I j d[(p,- * hm * kB-)m] 

= 
s 

j d(p=- 36 hm). 
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Thus h,m = p,- S hm. By 3.1E, we have 

Hence, 

= j- g,- Wm) = j h d(g,-4. 

Finally, 

P, * gm = k,-)m. 

If@ * 9 g(y) m(dy) = lfd(& * gm) = ~fd(gp) = f -fg,- dm 

= s f(y) &- * Y> m(dN. 

5.2. The Uniqueness of Haar Measure 

The proof here is a copy of the proof by Loomis [ 1 I] of the uniqueness 
of Haar measure on locally compact groups. 

THEOREM 5.2. If n is a left-invariant measure on K then there exists 
a nonnegative real number c such that n = cm. 

Proof. Let n be a left-invariant measure on K. Let E > 0 and let 
f, g E C,+(K). Suppose that f # 0 and g # 0. Then 

iy~~IIPv*f-f*PyIlu = 09 

by 4.2F. Since f has compact support, we have 

Thus there exists an open neighborhood U of e such that 

IK I g, - P I dn < (43 lKg dm, 
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for all y E 17. Choose h E C,+(K) such that J h dm > 0, h = h-, and 
h = 0 off U. Then 

= SI f(Y) w- * 4 +w 44) 

= SI f(r) h-(x- * Y) m(dy) W4 

But h = 0 off 17. Therefore, 

Dividing both sides of the inequality, we have 

---- 

The same argument applies to g, and thus 

This implies that n = cm for some c > 0. 
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5.3. The Modular Function 

The modular function A is defined on K by the identity 

m *pp,- = A(x)m. 

By 5.3A, this definition makes sense. The mapping x w A(x) is a 
homomorphism from the convo K to the multiplicative group of positive 
real numbers. Note that the constancy of A on the sets {x} ++ { JJ} is 
essential. The multiplicative functions studied in Sections 6.3 and 7.3 
are not usually homomorphisms from the convo to the multiplicative 
semigroup of complex numbers. 

LEMMA 5.3A. If x E K then there exists a unique positive real number 
c such that m * p, = cm. 

THEOREM 5.3B. The function A is continuous, and 

AA- = 1 m = Am-. 

THEOREM 5.3C. Let x, y E K. Then A is constant on (x> * (yj, and 
the value of A on this set is equal to 

4% *Y) = 44 A(Y). 

Proof A. The measure m -?+pp, is defined, by (4.2L). It is clearly 
left-invariant. 

Proof B. Let f E C,+(K), with f # 0. If x E K then 

A(x)/fdm = /fd(m*p,-) = j”(f*p,)dm. 

Thus A is continuous, by 4.2F. If g E C,+(K) then 

f f dm 1 g dm- = j f dm 1 g- dm = /j f (x) g-(x- 96 y) m(dy) m(dx) 

= 1s f (4 Ay- * 4 m(d4 m(4) 

= ss f (y -X 4 A4 NW mk@) 

= J&4 (/f=dm) m(dx) 

= (If dm) I g(x) 4-4 m(W 

= f dm g d(A-m). 
s s 
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Thus m- = A-m. Therefore, m = (m-)- = (A-m)- = Am- = AA-m. 

Proof C. If x, y E K then 

44 4r)m = t-m * P,-1 *P,- = m * (P, *pJ. 

Thus A(x) A(y) = A(x * y). It follows that 

j- A d(p ++ v) = j A dp j A dv 

for all ,u, Y E M,(K). 

v =p%-#lx- =p2*p**ppy-*pPZ-. 

Thus Y- = v and v(K) = 1. Moreover, 

s A dv = A(x) A(y) A(y) A(r) = I 

I 
;dv = j+dv- = JA-dv-j- Adv = 1 

j (A ++) dv = 2. 

Since v(K) = 1, it must be that A = 1 on the support of v. Thus, if 
s, t E S then A = 1 on (s] * {t-l, and so 1 = A(s * t-) = A(s)/A(t). 
It follows that A is constant on S, and its value there must be equal to 

44 4 Y)* 

5.4. Convolution of Functions and Measures 

Hereinafter the expressions a-Jinite and almost everywhere refer to the 
measure m. By 5.2 and 5.3B, their meanings do not actually depend on 
which Haar measure is used. 

LEMMA. Let {fn> b e a nondecreasing sequence in BOO(K). Suppose that 

f, --+f. 

(5.4A) If x, y E K then f,(x * y) -+ f (x * y). 

(5.4B) If p E M+(K) then p * fn ---t ~1 *f. 
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Proof. By a straightupward use of the Monotone Convergence 
Theorem. 

THEOREM. Let peM+(K) and let f,gEP(K). 
(5.4C) If f is o-Jinite then p *f is o-jkite. 

(5.4D) If Jf dm < co then (p *f )m = p * (fm). 
(5.4E) If Jf dm < co then JK (p ++ f) dm = p(K) Jxf dm. 

(5.4F) If either f or g is a-Jinite then 

jK (P * f) g dm = jKfb- * g) dm- 

Proof. For 5.4D, we have by previous results that 

s g(p * f) dm = s (CL *f) 4& 
= s f W *ml 
= IS f@ * YWWY) ,44 
= ss fk- * Y) g(y) 449 &W 
= ss f(r) Ax S- Y> m(dy) dd4 
Z.Z 

ss & * r)(fm>(dr) 44 

= gdb *.W s 
The other parts follow readily. 

LEMMA. Let p E M+(K), f E @(IQ, and 1 < p < co. 

(5.4G) If Ilfll, < 00 then II CL *fll, < II CL II - Ilfll, . 
(5.4H) If p < CO, II f &, < co, and bg}BED is a net in M+(K) 

converging to p, then 

lip II pu, *f - p *fll, = 0. 
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Proof G. Recall the proof of 3.3B. Assume that p(K) = 1. First, 
suppose that p < 00. Then 

G I f?y- * 4 AdY) 

= (P *f”)(4 

for each x E K. It follows that 

1 (p X-f)” dm < / (p *f”) dm = p(K) 1 f p dm = 1 f p dm. 

The case where p = 03 is similar to 3.3B. 
Proof H. Since p < co and the numbers )I pfi 11 = p&C) converge 

to p(K), it is enough to consider only f E C,+(K). By (4.2F), 

‘p II Ps *f - p *f Ill4 = 0. 

And by 5.4E, the J (Pi *f) dm converge to J (,u *f) dm. Thus 
pD *f -+ ~1 ++ f in both L,(m) and L,(m). This implies convergence 
in L,(m). 

5.5. Convolution of Functions 

Let f and g be in W(K). If (and only if) at least one of these functions 
is a-finite, the convolution f * g off with g is defined on K by 

(f * g&4 = JKf @ *A g(y-) m(dN. 

Note that the choice of m does introduce a scalar factor into the definition 
off Xg. However, by Lemma 5.5A, below, the corresponding formula 
with the right Haar measure m- yields the same function. 

In the remainder of this subsection it is assumed that p, q E [l, CO] 
and l/p + l/q = 1. 

LEMMA. Let f and g be in B”(K). 
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(5.5A) If x E K and if either f or g is a-jinite, then 

(f * g)(x) = lKfzg- dm = IKf -xx dm-. 

(5.5B) If either f OY g is a-Jinite, and zf (fJ and {g,} are non- 
decreasing sequences in B*(K) converging to f and g, respectively, then 

fn *&L *f */c* 
(5.5C) Iffl = f I t a mos everywhere, g, = g locally almost everywhere, 

and f is o-Jinite, then fi 3-g, = f -36 g at all points of K. 

Proof. These results are apparent. 

THEOREM. Letg, h E B”o(K). Suppose that I/ g Ijp < CO and11 h jlQ < CO. 

(5.5D) g * h- is continuous. 

(5.5E) II g * h- Ilu G II g Ilp II h llq - 

Proof. These follow from 5.4G and 5.4H, since (f *g-)(x) = 

Sfz g dm = $f g,- dm. 

LEMMA. Letf,g E BW(K) d pp an su ose that either f or g is a-Jinite. 

(5.5F) f 3-g is lower-semicontinuous. 

(5.5G) (f *g)- = g- *f -. 

(5.5H) If both f and g are lower-semicontinuous, then 

Pos(f*d = (posf) * (POSd. 

Proof. The first part follows from 5.5B and 5.5D. For the third, 
see 4.1B. 

THEOREM. Let p E M+(K) and let f, g, h E Bm(K). 

(5.51) If Jf dm < CO then f Xg = (fm) *g. 

(5.5J) If either f or g is o-jnite then p +? (f -X g) = (p X f) 36 g. 

(5.5K) If Jf dm < CO and fg dm < co then 

(f *g)m = (fm) * km>. 

(5.5L) if Jf dm < CO and Jgdm < oo then JK(f *g)dm = 

JKf dm SKg dm. 

607/S/1-3 
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(5.5M) If f and g are both u-jkite then f *g is a-jinite. 

(5.5N) If g is o-Jinite, and if either f or h is a-Jinite, then 

f * (g * h) = (f *g) * h. 
(5.50) In 5.5N, also JK (f *g) h dm = JKf (h *g-) dm. 

Proof. For 5.5J, if Jf dm < co, thenp *(f X-g) = p * (fm *g) = 
(p -X--m) *g = (CL *f)m Xx-g = (p %-f) *g. And if Jgdm- < co, 
thenI*%-((f-Kg) =p*(f*gm-) =(pLf)*gm-=(p*f)*g. 

For 5.5N, if Jf dm < co and Sg dm < co, then f X (g Sh) = 
fm%(gm-Xh)=(fm*gm)~h==(f~g)mXh=(f~g)~h. 

For 5.50, J(f *g) h dm = [(f *g) *h-](e) = [f * (g *h-)](e) = 
[f * (h *g-)-l@) = Sf (h *g-) dm. 

THEOREM. Let f, g, h E @(K). 

(5.5P) If 1 <p < 00, I/g Ilp < co and 11 h [lq < 00 then g *h-E 
G+(K). 

(5.5Q) J.f Ilf IL < 00 and II g lip < CQ then Ilf *g Ilp G Ilf II1 II g Ilp . 
Proof. For 5.5P, g and h can be approximated by functions with 

compact support. 

5.6. Absolutely Continuous Measures 

The set of measures in M(K) which are absolutely continuous with 
respect to m (or, equivalently, to any other Haar measure, left or right) 
will be denoted by M,(K). 

THEOREM. Let v E M,+(K). 

(5.6A) If p E M+(K) then both p 3- v and v X p ure in M,+(K). 

(5.6B) -If &&MJ is a net in M+(K) converging to p, then 

Proof. The first part follows from 3.3E. For the second part, let 
f E C,+(K). Then, using 6.1D in advance, 

~IjpB*~-pB*fmII +IIpB*fm-p*fmII +lltL*.fm--*VII 

< II pB II * II v -fm II + II pLs *f - p *f II1 + II CL II * llfm - y IL 
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Thus, by 5.4H, 
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lim;up II pB * v - c” * v II d WQ II v -.fm Il. 

But 11 v - fm jj can be made arbitrarily small. 

LEMMA 5.6C. Let v E M+(K). Suppose that limz+e 11 p, * v - v j/ = 0. 
Then v E M,+(K). 

Proof. Let E > 0. Let U be an open neighborhood of e such that 
IIPZ *v - v 11 < E for all x E U. Choose K E C,+(K) such that JK dm- = 1 
and such that spt K is contained in U. It is easily verified that 
IlAm--Xv-v/I) GE. ButKm-* v = (k -X- v) m-, which is in Ma+(K). 
Also, M,+(K) is norm-closed. Hence, v E M,+(K). 

6. CONVOLUTION ALGEBRAS 

In preceding sections, the functions and measures considered were 
usually nonnegative, and the operations were semilinear or semibilinear. 
As a result the functions were defined everywhere on the convo. We 
shall assume here that the obvious extensions to complex-valued 
functions and measures have been made, insofar as the appropriate 
integrals exist, and state the results without proof in Sections 6.1 and 6.2. 
In this section it is assumed that K is a convo. Recall that if p E M(K) 

and f E B(K) then there exist measures pk E M+(K) and functions 
fk E B+(K) such that each pk < j p 1, each fk < / f 1, and 

II = CL~ - pz + ih - it4 , f=fi-fi+if3-jf4. 

6.1. Complex- Valued Functions and Measures 

For p E M(K), the adjoint p* of p is defined by p* = (,E)- = jT. 

LEMMA. Let p, v E M+(K) and f E B(K). 
(6.lA) If x, y E K and If 1(x 4%~) isJinite, then f (x +?xy) is dejined, 

and If@ *Y)I < If@ *Y>. 

(6.1B) At the points of K where 1 p j * 1 f I isfinite, p X f is dejined, 
andIv*fl Gl~l*lfL 

(6.1C) IP*vI < IPI *IvIe 
(6.1D) II CL *v II G II P II - II v Il. 
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WEI (P -x 4(K) = AK) v(K). 
(6.1F) If f is bounded then 

THEOREM 6.1G. The space M(K) is a Banach *-algebra with unit. 

6.2. The Lr, Spaces 

In this subsection it is assumed that m is a left Haar measure on K. 
For a function f in B(K), the aa!joint f * off is defined by f * = &If)-. 
Note that if f E L,(m) then f * E L,(m) also. 

For each p in M(K), a mapping T,, : L,(m) --+ L,(m) can be defined by 
TUf = p *f. Each such T, is a bounded linear operator on L,(m). 
The mapping p I+- T, from M(K) to the Banach *-algebra of bounded 
linear operators on L,(m) will be called the left-regular representation 
of K. 

LEMMA 6.2A. Let f, g E B(K). At those points where 1 f 1 * 1 g 1 is 
jinite, f *g is defined, andlf*gl < Ifl *lgl. 

THEOREM. Let p E M(K) and f EL,(m). Let p, q E [l, crz] with 

l/P + l/q = 1, and let g E L,(m) and h E L,(m). 

(6.W P *cg +&4 and II P *cg Ilp G II CL II * II g Ilp . 
(6.W f *g CL,(m) and Ilf *cg Ilp G Ilf II1 II g Ilp - 
(6.2D) JK (p * g) h dm = Jrg(p- * h) dm. 

(6.2E) g X h- is continuous, and 11 g X h- (Iv f II g II?, II h iI4 . 

(6.2F) If p and q are $nite then g X h is in C,(K). 

THEOREM 6.2G. The space L,(m) is a Banach *-algebra. 

THEOREM 6.2H. The space M,(K) is a closed self-adjoint ideal in 

M(K)- 

THEOREM 6.21. The left-regular representation is a faithful norm- 
decreasing *-representation of M(K). 

Proof. Let p E M(K) and suppose that p # 0. Then there exists 
f E C’,(K) such that J f dp f 0. Let h = f -. Then (TUh)(e) = 
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(p Jc h)(e) = Jf dp # 0. And p *h is continuous, by (4.2A). Thus 
T, # 0. 

LEMMA 6.2J. Let f E L,(m) and let {g, , g, ,..., g,} be an orthonormal 
set in L,(m). Then 

Proof. Note that the gk also form an orthonormal 
By Bessel’s Inequality, 

set. Let x EK. 

gl I(f*h’gX-)(X)12 = i j 1 figk dnz I2 
k=l 

6.3. Multiplicative Functions 

A complex-valued function x on K will be called a multiplicative 
function if x is continuous and not identically zero, and has the property 
that 

x(x *Y) = x(x> X(Y) 

for all x and y in K. We denote the set of all such functions by X(K), 
and give X(K) the topology of uniform convergence on compact subsets 
of K. The set of all x in X(K) which are bounded will be denoted by 
Z&(K). Note that the constant function 1 is in X&K). 

While a bounded multiplicative function is not in general a homo- 
morphism from the convo to the semigroup of complex numbers under 
multiplication, it does give rise to an algebra-homomorphism. For x in 
3$(K), let F, be defined on M(K) by 

We assume in this subsection that there exists a left Haar measure m 
on K. 

It turns out that if K is commutative then the space X*(K) is homeo- 
morphic to the structure space of M,(K) with the Gel’fand topology. 

Recall that a multiplicative linear functional on a complex algebra is a 
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complex-valued homomorphism of the algebra which is not identically 
zero. 

The first lemma below is apparent. 

LEMMA. Let x EX,(K). 

(6.3A) ThefunctionF, is a multiplicative linear functional on M(K). 

(6.3B) F, is not identically zero on M,(K). 

(6.3C) The functions x- and 2 are in X,(K). 

(6.3D) x(4 = 1 = II x IL . 

LEMMA 6.3E. Let E be a multiplicative linear functional on Ma(K). 
Then there exists a unique multiplicative linear functional F on M(K) such 
that F = E on Ma(K). 

THEOREM 6.3F. Let F be a multiplicative linear functional on M(K) 
which is not identically zero on M,(K). Then there exists a unique x E J,(K) 
such that F = F, . 

THEOREM 6.3G. Let {x&, be a net in X,,(K). Then the following 
two statements are equivalent: 

(I) The xs converge untformly on compact subsets of K to a function 
x on K. 

(II) The restrictions of the FXe to M,(K) converge pointwise to a 
function on M,(K) which is not identically zero. 

Suppose that these nets do so converge. Then x E X,(K), and the FXs 
converge to F, on M(K). 

THEOREM 6.3H. The space S,(K) is a locally compact Hausdorfl 
space. The two mappings x I--+ x- and x t-t R are topological involutions 
of w9 

Proof E. Recall that M,(K) is an ideal in M(K). Thus F is given by 

&) = E(F * 4 
E(4 ’ 

where v is an element of M,(K) such that E(v) # 0. 
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Proof F. Since M(K) is a Banach algebra with unit, 11 F 11 = 1. 
Choose v E M,(K) such that F(V) # 0. If pL1 , pz E M(K) then 

Thus, by 5.6B, F is positive-continuous. By 2.2D, there exists f E C,(K) 
such that F(p) = SK f dp for all p E M(K). Let x = J’ 

Proof G. It is clear that (I) implies (II). Assume (II). Let the FxB 
converge to E on M,(K). So E is a multiplicative linear functional on 
M,(K). By 6.3E and 6.3F, there exists # EX~(K) such that E = F$ on 
M,(K). Choose v E Ma(K) such that E(v) # 0. 

Let a E K. If x E K, /3 E D, H, = Fxp , and H,(v) # 0, then 

I x&) - 9wl 

G I x&4 - XsWl + I xsw - VW + I VW - 3641 

This shows, using 5.6B again, that 

lip I xs(4 - #(x)l = 0. 
z-x3 

And this implies that the xs converge to + uniformly on compact subsets 
of K. Thus ~+4 Ed&. It is clear that the Fxp converge to F* pointwise 
on M(K). 

Proof H. This is a consequence of 6.3G and the Tihonov Product 
Theorem. 

7. SOME SPECIAL CONVOS 

The convos that are most easily analysed are those that are either 
discrete, compact, or commutative. A similar statement can be made 
about locally compact groups, and for the same reasons. 

7.1. Discrete convos 

Unlike a topological group, a convo does not have a purely algebraic 
structure associated with it. In general, if a convo is given the discrete 
topology then the operation is no longer well defined. Another contrast 
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is in that, while a topological group is homogeneous, there exists a 
convo that has isolated points but is not discrete. An example will be 
given elsewhere. 

THEOREM 7.1A. Let K be a discrete convo. Then there exists a left 
Haar measure on K. If m is the left Haar measure for which m((e)) = 1, 
then 

for each x in K. 

THEOREM 7.lB. Let K be a convo. Then the following three statements 
are equivalent: 

(I) K is discrete. 

(II) The identity e is an isolated point of K. 

(III) There exists a Haar measure m on K such that m({e)) > 0. 

Proof A. For x, y, x E K define [X % y, x] = ( p, Xpp,)({z}). Note 
that [X W y, e] > 0 if and only if x = y-. For x E K let [x] = 
l/[x- * X, e]. If X, y, x E K then 

(P. * (P, * Pd W) = ((A * PA *PAM 

1 [x * t, el[r * z, tl = 1 [x *iv, tl[t * 2, 4, 
tEK tcK 

[x * x-, e][y * x, x-1 = [x *y, z-][r * x, e], 

[Xl[Y * z, rl = [x-lb */cy, 4. 

Let the measure m be defined by 

m = C PdPz. 
XEK 

Ifx,yEKthen 

(A * mw-1) = c [m, *PAW) 
.5EK 

= .zK MY * z,d 

= ZK Lx-IF * Y7 21 

= [x-l = m(@-}). 
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Proof B. We have just seen that (I) implies (III). Assume (III). 
Then if,) is a nonzero element of L,(m). But itel % itej = c &I for some 
c > 0. Thus ite} is continuous. Hence (II). 

Assume (II). If x E K then p, %- it,) = c i~~j for some c > 0, and thus 
i&l is continuous. Hence (I). 

7.2. Compact Convos 

The Theorem 7.2C is based on the theory of H*-algebras. Two 
references for this theory are the books of Loomis [1 l] and Naimark 1141. 
The proof that the minimal closed ideals are finite-dimensional is 
modeled after a proof of Nachbin [13] that an irreducible unitary 
representation of a compact group is finite-dimensional. See Levitan 
[9, p. 221 for his version of 7.2C. 

THEOREM 7.2A. Let K be a compact convo. Then there exists a Haar 
measure on K. Moreover, K is unimodular. 

THEOREM 7.2B. Let K be a convo. If there exists a$nite Haar measure 
on K then K is compact. 

THEOREM 7.2C. Let K be a compact convo, and let m be the Haar 
measure on K such that m(K) = 1. If f, g E L,(m) then f X g E L,(m) and 

With convolution as the operation, L,(m) is a H*-algebra, and is thus the 
(Hilbert space) direct sum of its minimal closed ideals. Each minimal closed 
ideal in Lz(m) is @site-dimensional. 

Proof A. By 4.3C, there exists a nonzero left-subinvariant measure 
m on K. It is clear that m is a Haar measure. And K is unimodular, since 
d(K) is a compact subgroup of (0, oo). 

Proof B. Let f = 1 on K. Then f E L, and f X f = cf for some 
c > 0. But f X f E C,(K). Thus K is compact. 

Proof C. It is apparent from previous results that L,(m) is a H*- 
algebra. Let J be a minimal closed ideal in L,(m). It is known that J is 
isomorphic to an algebra of complex matrices, where, for some c > 1, 
the norm of each matrix is c times the L,-norm of the matrix. See 
Naimark [13, pp. 330-3311. Choose a column and consider the set of 
all matrices whose entries off that column are zero; let Jr be the cor- 
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responding subset of J. In fact, J1 is a minimal left ideal of L,(m). A 
simple computation with matrices shows that, for all f, g E J1 , 

c llf*g* 112 = llfllo Ilgll, * 
Let f~ J1 be such that llflla = 1 and let {g, ,g, ,...,g,} be an ortho- 

normal set in J1 . The & form an orthonormal set in L,(m). By 6.2J, 

Therefore, dim J1 < c2 and dim J < c4. 

1.3. Commutative Convos 

Let K be a convo. In this subsection it is assumed that K is commu- 
tative, which means that p, +C p, = p, *p, for all x, y E K. It is 
easily seen that all convolutions of functions and measures commute 
whenever defined. 

We also assume here that K has a Haar measure m. It is apparent 
that K is unimodular. 

Let R be the set of all x in X,(K) such that 

for x E K. Note that &? is nonvoid, since it contains the constant function 
1, and that if x E & then x- = f is in l? also. 

For p E M(K), the Fourier-Stieltjes transform $ of p is defined on R by 

EZZ II k=l 

For f E L,(m), the Fourier transform 3 off with respect to m is defined 
on I? by 

f(x) = s,fz dm. 
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The set S is the set of all x E R such that 1 p(x)/ < 11 T, 11 for all 
p E M(K). For any function K defined on k?, let 

We credit 7.31 to Levitan [6], but shall include a proof of this basic 
result. The measure rr is called the Plancherel measure on R associated 
with m. 

THEOREM. 

(7.3A) The space R is a nonvoid (locally compact) closed subspace 

of %m. 
(7.3B) If x E k and 1 P(x)] < II TV /I for all Y E M,(K), then x E S. 

(7.3C) S is a closed nonvoid subset of l?. 

(7.3D) If P E M(K) then II T, II = II lil IIs - 
(7.3E) The mapping p I-+ $ is a norm-decreasing *-algebra iso- 

morphism from M(K) into Ca(l?). 

(7.3F) If v E M,(K) then P E C,(R). 

(7.3G) Iff EL,(m) thenf = (fm)* andjE C&l?). 

(7.3H) The set (3: f E C,(K)} is a dense self-adjoint subalgebra of 

G(Q. 

THEOREM 7.31 (Levitan). 
r on l? such that 

There exists a unique nonnegative measure 

for all f in L,(m) n L,(m). The support of 7~ is equal to S. The set 
(3 : f E C,(K)} is dense in L2(~). 

Proof A. Apparent. 

Proof B. This is straightforward, since M,+(K) is dense in M+(K). 

Proof C. Let v,, E M,(K), 
(Tv : v E M,(K)} 

with v0 # 0. Then TV0 # 0. The algebra 
is self-adjoint and commutative. Thus there exists a 

multiplicative linear functional H on this algebra such that I H(TVO)I = 
11 T,.O 11. Also, H must be a *-homomorphism. But the mapping v t-t H( TV) 
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is a multiplicative linear functional on M,(K). By 6.3E and 6.3F, there 
exists # EX,(K) such that 

for all Y E M,(K). Also, # E R, since H preserves adjoints. It follows 
that # E S, since (1 H 11 = 1. It is clear that S is closed, since the trans- 
forms fl are continuous. 

Proof D. In the notation of the previous proof, (1 Tv, (1 = 1 voA(#)l. 
Thus, if v E M,(K) then I P I attains its supremum on S, and the 
supremum is )/ T, 11. For p E M(K), one can approximate by members of 
M,(K). In this case, though, the supremum may not be attained. 

Proof E. This is clear, since T, # 0 if p # 0. 

Proofs F, G. This follows from (6.3G), since X,(K) is just the 
structure space of M,(K). 

Proof H. This follows from the Stone-Weierstrass Theorem. 

Proof I. Let H be the uniform closure of the set {$ : p E M(K)} 
in C,(R). Thus H is a closed self-adjoint subalgebra of C&R) containing 
C,(R). There exists a unique *-homomorphism k I-+ V, from H onto 
the closure (with respect to norm) of the algebra {T,, : ,u E M(K)} with 
the property that 

V, = T, and II Vkll = Il~lls 

for all p E M(K) and k E H. 
The remainder of the proof is divided into several lemmas. 

LEMMA 7.3J. Let k E C,(K). Th en there exists a unique function 
k’ E C,(K) such that )/ k’ II2 < co and such that V,g = k’ 36 g for all 
g ELdm)- 

Proof. There exists f E C,(K) such that 13 1 > 0 on spt K, by 7.3H. 
There exists j E C,(R) such that k = j ~3 * 3. Thus V, = VjVtVi = 
VjTfnJfnI - Let K’ = (V,f) Xf. The rest is straightforward. 

LEMMA 7.3K. The mapping k F+ k’ from C,(l?) to C,,(K) is linear, 
and k’ = 0 if and only if 11 k IIs = 0. 
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LEMMA 7.3L. Ifj, k E C,(R) and p E M(K) then 

(k)’ = (k’)” (jk)’ = j’ * k’ (/Ilk)’ = /A * k’. 

Proof. Let g E L,(m). Then 

K’ *g = vkg = (v,)*g = (K’)* *g, 

(jk)’ *g = Vj& = VjV& = j’ * II’ * g = (j’ * A’) *g, 

(fik)’ * g = v,,g = v,v,g = /.L * k’ -x g. 

LEMMA 7.3M. Let k E C,(R). Suppose that k > 0. Then k’(e) 2 0. 
Also, k’(e) > 0 if and only if 11 k IIs > 0. 

Proof. There exists j E C,(R) such that j > 0 and K = jz. Thus 
K’ = j’ *j’*. Therefore, k(e) = J 1 j’ I2 dm. The rest is clear. 

LEMMA 7.3N. There exists a unique measure r E Mm(R) such that 
J k d?r = k’(e) for all k E C,(R). The support of 7 is equal to S. 

Proof. This follows from the Riesz Representation Theorem. 

LEMMA 7.30. If k E C,(Z?) and f E L,(m) r\ L,(m) then 

Moreover, the set {k’ : k E C,(Z’?)} ’ d zs ense in L,(m), and the set cf? : f E C,.(K)) 
is dense in L2(r). 

Proof. If k E C,(R) then J 1 K I2 drr = (k@‘(e) = (k’ -X k’*)(e) = 
J 1 k’ I2 dm. 

Suppose that h E L2(m) and that J k’h dm = 0 for all k E C,(R). If 
x E K and k E C,(R) then j = ( p,-)^ k is in C,(R), and 

0 = S,j’h dm = lK (p,- * k’)h dm = (k’ X k-)(x). 

Thus V,(h-) = 0 for all k E C,(K). It follows that f * h = 0 for all 
f EL,(~). Hence h = 0. 

The rest is apparent, since the mapping k w k’ extends to an isometry 
of L2(7r) onto L,(m). 
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LEMMA 7.3P. Let 7~~ E M”O(R) and suppose that J ) f I2 drO = J 1 f 12 dm 
for all f  E C,(K). Then rO = rr. 

Proof. Let k E c,(R). Let F be the set of all f  E C,(K) such that 
p > 0 on R. Then F = {f : f  E F} is dense in C,,+(R), by 7.3H. Choose 
k, EP such that k, > k on spt k. It is possible to define a sequence 
(k,) in P such that 

k, < 1 onl? 

k < k&l +**k,,=h, onsptk 

h,<k++ on R 

for n 3 1. Note that each h, E p also. Thus J h, dr,, = J h, dvr for n >, 1. 
Hence, J k drO = J k dr, by the Lebesgue Dominated Convergence 
Theorem. 

8. CONVOS FROM GROUPS 

The main result here is the Theorem 8.2B, which asserts that: If G is 
a locally compact group and H is a compact subgroup of G, then the 
double coset space G//H = (HxH : x E G} is a convo in a natural way. 

8.1. Actions 

A continuous action of a topological group H on a topological space X 
is a continuous mapping (x, s) E+ xs from X x H to X such that 

xl = x and (xs)~ = x@t) 

for x E X and s, t E H. If x E X then the orbit of x under H is denoted 
by xH = {x8 : s E H}. The set of orbits is denoted by XH = (x” : x E X>. 

Let G be a group. A mapping A: G + G is called ajine if there 
exists c E G and an automorphism B of G such that A(x) = cB(x) for all 
x E G. Note that, if a, b E G and B is an automorphism of G, then aBb 
is affine, since aBb = (ab)(b-lBb) and b-lBb is also an automorphism. 

Let G and H be topological groups. A continuous afine action of H on 
G is a continuous action (x, s) F+ xs for which each mapping x w x8 is 
affine. 

THEOREM 8.1A. Let (x, s) tt x8 be a continuous action of a compact 
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group H on a nonvoid locally compact Hausdorfl space X. Then XH is a 
decomposition of X into compact subsets, and XH is a closed subset of U(X). 
The quotient topology on XH and the relative topology on XH are equal. 
With this topology, XH is a locally compact Hausdorff space, and the natural 
projection, x ++ xH, is a continuous open mapping from X onto XH. 

Proof. Let VT be the natural projection. It is clear that XH is a closed 
subset of S’(X). If U and V are open subsets of X then 

W = ~-r(%‘~( V)) = {x E X : xH C V, xH n U nonvoid} 

is an open subset of X. Thus the relative topology is contained in the 
quotient topology. Now let Q be a subset of XH open in the quotient 
topology. Then U = n-l(Q) is open in X. But Q = %?( UH) n XH. 
Thus the topologies are equal. Also, if W is an open subset of X then 
77(W) = %(WH) n XH is an open subset of XH. 

THEOREM 8.1B. Let G be a locally compact group and let H be a 
compact group, and suppose that (x, s) f--t xs is a continuous ajine action of 
H on G. Let A be a left Haar measure on G and let (T be the normalized Haar 
measure on H. Let GH have the quotient topology. For x, y E G define 

Then this operation is well dejned, and, with it, GH is a semiconvo. More- 
over, the measure 

is a left-invariant measure on GH. 

Proof. It is apparent that the operation is well defined. For each 
x E G let wz E M,+(G) be the probability measure given by: JG f dw, = 
j-Hf @“) 44. Th e mapping xH f-t wz from G* to M+(G) is well defined 
and continuous. Thus 2.3H applies, and we have an extended mapping, 
p ct p’, from M(GH) to M(G). One readily sees that the measures p’ are 
precisely the measures on G which are invariant under the action of H. 

For each s E H let a, = (1”)l, where 1 is the identity of G. It is easy 
to verify that (xy)s = pa, y8 for s E H and x, y E G. Let the measure 
r E M,+(G) be defined by: JG f d7r = JHf (a,) a(ds). The computation 
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(tiyt)u = x=‘a,ytU h s ows that the measure wZ ++ 72 * wy is invariant 
under H, and 

WY * 7r * wy = (P,H *&H)‘. 

Thus the convolution, for p, Y E M(GH), is given by 

(p * v)’ = p’ * 7T * v’. 

Thus GH is a semiconvo. It is apparent, since H is compact and since the 
action is affine, that each mapping x t-t xs of G leaves h invariant. Thus 
the measure 71t is left-invariant. 

8.2. Cosets 

In this subsection, G is a locally compact group, H is a compact 
subgroup of G, h is a left Haar measure on G, and u is the normalized 
Haar measure on H. Let the set of left cosets 

G/H = {xH:xEG} 

and the set of double cosets 

G//H = {HxH:xeG) 

have the quotient topologies. 

THEOREM 8.2A. The space G/H, with the operation 

Pzn * PVH = J-, PstvHUW, 

is a semiconvo. A left-invariant measure on G/H is given by 

m = s oPz~W4- 
THEOREM 8.2B. The space G//H, with the operation 

PH~H *PHVH = JHP~ZltY~d@l 
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is a convo. The identity element is e = H = Hl H. If x E G then (HxH)- = 
Hx-lH. A left Haar measure on G//H is given by 

Proof. The mapping (x, s) I-P xs is a continuous affine action of H 
on G, with orbit space G/H. The mapping 

(x, (s, t)) 4-l s-lxt 

is a continuous affine action of H x H on G, with orbit space G//H. 
The theorems follow readily from 8.1B. 

8.3. Groups of Automorphisms 

Let (x, s) I+ Xs be a continuous action of a compact group H on a 
locally compact group G. Suppose that each mapping x ct Xs is an 
automorphism of G. Let u be the normalized Haar measure on H. Let 
GH have the quotient topology. 

THEOREM 8.3A. The space GH, with the operation 

is a convo, and has a Haar measure. The identity is lH = {l>. If x E G 
then (x”)- = (x-l)“. 

THEOREM 8.3B. Let G and H be as above. Let G’ be the product space 
G x H and let H’ = (1) x H. De&e a binary operation on G’ by 

(x, s) * (Y, 4 = WY, 4. 

Then G’ is a locally compact group, H’ is a compact subgroup of G’, and 
the mapping 

H’(x, s)H’ c-t x* 

is an isomorphism from the convo G’IIH’ onto the convo GH. 

607/18/I-4 
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Proof A. Since the action is affine, 8.lB applies. The operation 
given here is correct, since 

for x, y E G and S, t E H. Also, (x-l)s = (x5)-l for x E G and s E H. 

Proof B. Here, G’ is just a semidirect product of the groups G and 
H. If (x, S) E G’ then 

H’(x, s)H’ = XH x H. 

Note also that (x, 1) * (1, S) * ( y, 1) = (Py, s). 

8.4. Compact Groups 

Let G be a compact group, with normalized Haar measure u. 
A function # on G will be called a normalized character if # = (l/n)T, 
where T is the trace function of an irreducible unitary representation 
of G on an n-dimensional Hilbert space. For x E G let 

xc = {t-lxt: t E G}, 

the conjugacy class of x. Let K = {xc : x E G} have the quotient 
topology. 

THEOREM 8.4A. The space K, with the operation 

t&d * t&G) = s, +ztv,Gu(dt), 
is a compact commutative convo. The identity is (1). If x E G then (xc)- = 
(x-l)“. A function # on G is a normalized character sf and only I.. there 
exists a multiplicative character x E K such that t,b(x) = x(x”) for all x E G. 

THEOREM 8.4B. Let K be as above. Let x1 and x2 be in K. Then there 
exist positive numbers ak and elements z,bk of I? such that 

x1x2 = i ak*k 
k-l k-1 

This representation is unique. Define 

A, *A, = i akhb,. 
k-l 
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With this operation, R is a commutative discrete convo. The identity of R 
is the constant function 1. The Plancherel measure rr associated with a Haar 
measure on K is a Haar measure on l?. 

Proof A. The mapping (x, s) t+ s-ixs is a continuous action of G 
on G, and 8.3A applies. Recall that a function # on G is a normalized 
character if and only if $ is continuous and 

for all x, y E G. Moreover, a character of G is constant on the conjugacy 
classes of G. 

Proof B. Let m be the normalized Haar measure on K. The space 
Z? is discrete, since the elements of Z? are orthogonal functions in L,(m). 
That an operation on R can be defined as stated above follows from 
known facts about the characters of a compact group. It is clear that the 
resulting convolution in &Z(R) is associative and commutative. Since 
the mapping x ct x- is an involution of K, the mapping x t+ x- is an 
involution of the semiconvo R. Let x1 and x2 be in R. Suppose that 

n 
x1x2 = c + c ck*k 9 

k=l 

where the & are nonconstant elements of l?. Then J x1x2 dm = c. Now 
c > 0 if and only if x1 = x2 . Thus R is a convo. . 

Let 7r be the Plancherel measure on k associated with m. Let x E &?. 
Then J ( x I2 dm = J ) 2 la drr. But f(4) = 0 if $ # x, and f(x) = 
J 1 x I2 dm. Thus 

Let r’ = C (l/ax) p, be the Haar measure on R specified in (7.1A). 
It was noted above that a, = J ) x I2 dm. Thus 7r’ = z-. 

9. EXAMPLES 

The question of whether or not g is a convo, where K is a given 
commutative convo, will be considered elsewhere. For compact K, 
the idea is illustrated by 8.4B. It turns out that: In 9.3, R is a convo 
isomorphic to K; in 9.5, l? is not a convo. 
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9.1. Some Small Convos 

An element x of a convo K will be called self-adjoint if x- = x. If 
each element of K is self-adjoint, then K will be called a Hermitian 
convo. Hermitian convos are not rare. The process used in the Intro- 
duction to construct an operation on Rf from that on R can be applied 
to any locally compact Abelian group. The process used in 8.4B to 
construct an operation on R does not work in general, as is shown by 
the example 9.1 C. 

THEOREM 9.1A. IfK is a Hermitian convo then K is commutative. 

Proof. If x, y E K then 

EXAMPLE 9.1 B. Let K = {e, a} be a discrete space with two elements. 
Let fi be a real number such that 0 < /3 < 1. An operation, depending 
on /3, is defined on K as follows: 

p,*cP, = Pe Pe*P, =Pa 

pa*cP, =Pa Pa*PP, =Ispe+(l -B)pa. 

Then K is a Hermitian convo. The identity is e. Note that K is a group 
if and only if /3 = 1. A Haar measure on K is 

Let J? = (1, x}. Th en x(e) = 1 and x(a) = -fi. The Plancherel 
measure on R associated with m is 

Also, J? is a convo and l? is isomorphic to K, since 

x2 = B - 1 + (1 - Is)x. 
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EXAMPLE 9.1C. Let K = {e, a, b) be a discrete space with three 
elements. An operation, with e the identity, is defined on K as follows: 

1 1 7 
pa*PQ =qPe+@z+lOpb, 

7 3 
p,*/tb =pb*PPa =@,+~pb, 

1 3 9 
pb*.b =@+i$b++. 

Then K is a Hermitian convo. A Haar measure on K is 

m =p, -k4p, d-4&,. 

And & = (1, x, #}, where the values at e, a, b are 

1 : 1, 1, 1 

3 1 
x:1,-,,j 

1 7 
$:lqpy(j. 

The Plancherel measure on R associated with m is 

1 4 loo 
7r=gP,+~Px+~P”. 

But I? is not a convo, since 

EXAMPLE 9.1 D. Let S, denote the group of all permutations of the 
set (1, 2, 3, 4). The elements of S, will be written in cyclic notation, and 
multiplication is computed from left to right. For example, (12)(13) = 
(123). Let A, be the subgroup of even permutations. We apply here the 
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results of 8.4 to the group G = A,. The elements of K = {e, a, b, c) 
are given below in columns: 

e a b C 

1 UUW (123) (124 

UWW (134) (132) 

(14W) (142) (143) 

(243) (234 

Then K is a commutative convo with identity e. Moreover, 

pa*cPa =P, Pa*PP, =Pc 

Pb*Pb = PC PbXPC = ;P, + $Pa 

Pe*Pc =Pb- 

Note that a- = a and b- = c. The normalized Haar measure on K is 

1 1 1 1 
m=~P~+~P,+~P,++ 

Let 01 = e2ni/3 and fl = e4nij3. Then I? = (1, x, #, t}, where the values 
at e, a, b, c are 

1 : 1, 1, 1,l 

x : 1,L %B 

# : 1, hi% a 

6 : 1, - ;,o, 0. 

The Plancherel measure on l? associated with m is 

~=P,+Px+P*+gP,* 

And k? is a convo. We have 
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The other products are obvious. For example, x2 = $ and xk = 5. 
For more information about the group A, see Hewitt and Ross [4, p. 481. 

9.2. A Finite Noncommutative Convo 

Here we apply the results of (8.3) to the group G = A,, acted on by 
the group H = (1, (12)) by inner automorphisms in S, . Let the 
resulting convo be K = (e, a, b, c, d, U, v}. It is easily seen that S, can 
play the role of G’ and that H corresponds to H’, where G’ and H’ are 
defined in (8.3B). The elements of K are given below in columns: 

e a b c d u v 

1 WXW WW) (123) (124) (134) (143) 

(14X23) (132) (142) WV (243 

(12) (34) (1324) (13) (14) (1234) (1243) 

(1423) (23) (24) (1342) (1423) 

Note that the top half of each column is an orbit under H, and that the 
entire column is a double coset of H. Note also that U- = v, and that 
the other five elements of K are self-adjoint. The convo K is not commu- 
tative, since p, * p, # p, * p, . In the adjoining convolution table, 
we have put x in place of p, . The normalized Haar measure on K is 

There are four minimal ideals in L,(m). Three are one-dimensional, 
giving rise to X(K) = (1, x, #}. The values of x and # are, in order, 

The other ideal has dimension 4 and corresponds to a two-dimensional 
irreducible representation. This gives rise to the normalized character 
& with values 
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Even though # is a central function on K, the function f = $2 is not 
central, since f(a * U) # f(u * a). 

e a b 

e e a b 

a a e b 

b b b ie + $a 

c C v ad + $ 

d d u & + iv 

u u d +c + &v 

V V c &d++ 

9.3. Rotations of the Plane 

Let G be the group R x R, and let H be the circle group. There is a 
natural continuous action of H on G, each mapping being a rotation. 
These rotations are automorphisms, as in 8.3. The orbits are concentric 
circles, with center (0,O). If x, y >, 0 then 

l/(x, 0) + (y cos t, y sin t)ll = (9 + y2 + 2xy cos t)li2. 

We use R+ as a model, the positive number x representing the circle 
of radius x. The convolution operation is specified by the identity 

f(x * y) = ; /02nf((x2 + y2 + 2.xy cos ty) dt. 

This can be rewritten as XfY 
px*cP, = s ( 2s/rr 

ls..~l [(x + y + s)(x + y - s)(x - Y + 4(---x + Y + w2 1 ps dsp 

for positive x and y. The identity element is 0. The Haar measure 
inherited from G = R x R is given by 

m(dx) = 27rx dx, 

where dx denotes Lebesgue measure on R+. Also, this convo is Hermitian. 
Let J,, be the Bessel function of order zero. Let J be defined on R+ 

by J(x) = J,(2x). Thus, 
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So J is a bounded continuous function on R+. If x, y ER+ then 

J(x*y) =~o~.:;;12ff(x2+Y2+2r31COSt)“dt 
0 

= z. 9 u+$kEn (, ,” 2) X2uY2vwY)2k (‘k”) 4-” 

=f c C-1) u+o+2k 

+=O u+o+fk=n (’ + v + 24!(u + A)!@ + A)! 

x X2(u+k)y2W+k) (” ; “,e ; “) 

Thus J is an element of R, where K = R+. 
For each c > 0 define xc on K by xc(x) = J(a). Thus x0 = 1, and 

each xc is bounded and continuous. Moreover, if x, y E K then 

277 

xc(dx2 + y2 + 2xy cos t) dt 

= ; I” J(c I/X” + y2 + 2.zy cos t) dt 

= J(cx * CY> = JW J(cy) = x&4 xc(~). 

Thus each xc is in & also. 
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9.4. Rotations of the Sphere 

Let 2 be the unit sphere, 

z = {(x, y, x): x2 + y2 + 9 = l}, 

in R3. Let G be the group of all orientation-preserving isometries of Z. 
Thus G is isomorphic to the special orthogonal group SO(3). Let 
AU’ = (0, 0, 1) and let SP = (0, 0, -1). Finally, let 

H = (g E G: g(NP) = NP}. 

Thus H is a closed subgroup of G, and H is isomorphic to the circle 
group. We now examine three structures associated with G and H. 

EXAMPLE 9.4A. We apply the results of 8.4 to G. Two elements of 
G are conjugate if they rotate 2 through the same angle, which we 
represent by a number in the compact interval [0, ~1. A convolution 
operation is thereby defined on Kr = [0, ?T], and Kr is a compact 
commutative convo. It is clear that K, is Hermitian, that 0 is the identity 
element, and the support of a convolution p, * p, is either an interval 
or a singleton. In fact, p, Xp,, has support equal to Kr . 

EXAMPLE 9.4B. Consider the semiconvo G/H. For each x EC 
the set 

C, = {g E G: g(W) = x} 

is a left coset of H. Thus it may be assumed that Ks = 2 is a semiconvo, 
and that the mapping x t+ c, is an isomorphism from K, onto G/H. 

Let X, y E Z and let d, = 11 y - NP \I, the distance measured in R3. 
Then 

spt(pz *cp,) = s,,, = {x E z: Ij z - x II = d,}. 

If y # NP, SP then S,,, is a circle, and p, Y&p, is a multiple of the 
length measure. In the other two cases, 

PSJCPNP = P, and PSJCPSP =p4. 

Note that NP is not an identity, but just a right identity. 
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EXAMPLE 9.4C. Now we consider G//H. For each number x in the 
interval [ - 1, l] let 

D, = {g E G: g(NP) = (s, t, x) for some S, t}. 

Each set D, is a double coset of H. We thereby have a convo K3 = 
[- 1, 11. The identity element is 1. The convo K3 is Hermitian, since 
the only topological involution of [- 1, I] which leaves 1 fixed is the 
identity mapping. Thus K3 is commutative. But K3 is not isomorphic 
to Kl , since p-, *p-i = p, . 

9.5. An Example of Naimark 

The convo studied here is essentially the same as a structure given by 
Naimark [14, p. 2741. However, due to the difference in notation, a 
certain amount of verification is required. 

Let x, y E R+. If b is a nonzero complex number, then 

s 

z+Y sin bt sin 6x sin by 

lx-YI 
Tdt=2T.-. 

b 

When b = i this becomes 

s 

Xe+Y 
,r-y, sinh t dt = 2(sinh x)(&h y). 

Now we define the convo. Let K = R+. Let 0 be the identity element. 
If x, y E K, x > 0, y > 0, let 

1 
s 

Z+Y 
Px*PY = 2(sinh x)(sinh y) lo+1 

(sinh t) p, dt. 

It is clear that these measures are probability measures, that the operation 
is commutative, and that the mappings (x, y) t-+ p, 3+ p, and (x, y) I+ 
spt( p, Xp,) are continuous. Associativity will be verified later. 

For a E C let xa be defined on K by 
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Note that, for each a E C, the function xa is continuous, and ~~(0) = 1. 
Also, x-i = 1, and x0(x) = x/sinh x for x > 0. 

Let X, y E K and a, b E C, with a = b2. If x and a are non-zero then 

x~(x) = sin &v/b sinh x. 

If, in addition, y # 0 then 

xc& *Y> = 
1 x+V 

2(sinh x)(sinhy) s 
sin bt dt 

lr+,l b 

= x&d Xa(Y)- 

Now let z E K, with x > 0. It is apparent from the definition of the 
convolution that there exist finite nonnegative measures TV and u on K 
such that 

P, * (A, *A) = (sin+ 

(A * A,> * P, = (SinW. 

It follows from previous computations that 

s K*p(dt) = s, xa sinh 6 = x&4 XAY) xA-4 

f 
K F v(dt) = J‘, xa sinh dv = x&4 X&Y> x&+ 

Thus p = Y, by the faithfulness of the Fourier transform on the real 
line. 

It has just been proved that K is a semiconvo. It is apparent that K is 
actually a Hermitian convo and that each xa is an element of X(K). 
Naimark proves that the xa are the only multiplicative functions on K 
and that xa is bounded if and only 1 Im b 1 < 1, where a = b2. Thus, 

J,(K) = ixo+c~ c 2 d2/4 - 11 
R = {xc: -1 <c< co}. 

Recall that for a commutative group G it must be that G = 3&G). 
A Haar measure m on K is given by 

m(dx) = (sinh x)” dx. 
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To verify this, let f E C,+(K) and x > 0. Then 

1 co 2+11 

= 2 sinhx ss o ,r--y, f(Wnh Wnhy) dt dr 

1 m  x+t 
=-- 

ss 2 sinh x ,, 12-tl 
f(t)(sinh t)(sinhy) dy dt 

= 2 si!h x lmf(f) 2(sinh x)(sinh t)2 dt 
0 

= gf(t) mw. f 
Note that x0 is positive on K. Let m, = xom. Thenp, * WZ~ = x0(x) m, 

for all x E K. Thus m, is a subinvariant measure on K, but m, is not 
a Haar measure. 

Finally, we shall show that the Plancherel measure on R associated 
with m is given by 

j-/z dr = ; IO* Ii fidt. 

The topology on R is the obvious one. The formula for 7~ given above 
shows that 

spt 7T = (xt: 0 ,< t < co} # k 

For each number c > 1 let f, be defined on (0, co) by 

These functions, while not defined at 0, are in L,(m) n L,(m). Let 
c,d> 1. Then 

lKfcfd dm = jam e-(c+d)z dx = $ . 

If s > 0 and t = se then 

fcA(xt) = /ome-Cse & = h = 1. c2 + t 
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And if c # d then 

1” 1 1 =- 
s 

-----29th 
T o c2 + s2 de + sz 

2 m c2 = 
SC 

d2 ds ~-___ 
.rr(c2 - d2) ,, c2 + s2 d2 + s2 1 

= ,+&&;) 

1 
= - = 

c+d s 
Kfcfddm. 

By continuity, this is true even if c = d. 
It only remains to show that the linear span of the functions& is dense 

in L,(m). Let f EL,(~) and let g = f sinh. Then g is square-integrable 
with respect to Lebesgue measure. By the properties of the Laplace 
transform, there exists a number c > 1 such that 

I’ omg(x) eccm dx # 0. 

Thus Jx f f, dm # 0. This completes the proof. 

10. SUBCONVOS 

The notions of subgroup and coset extend naturally to the larger class 
of convos. One could also generalize the notions of normal subgroup and 
homomorphism, but this will not be done here. For one thing, there are 
certain difficulties in the case of noncompact subconvos. The main 
reason, though, is that the morphisms which are most useful in the 
theory of convos are not usually homomorphisms, even when the domain 
is a group. 

In this section, K is a convo. 

10.1. Subconvos 

A subset H of K will be called a subconvo of K if the following three 
conditions are satisfied: 
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(i) H is a closed nonvoid set, 

(ii) H- = H, 

(iii) H * H C H. 

It follows readily from (II) and (III) that 

(iv) e E H. 

If p, v E M(H), then these measures may be regarded as members of 
M(K), and then p * v may be regarded as a member of M(H). This 
defines a convolution on H. Recall that the topology on V(H) is equal to 
its relative topology as a subset of 9?(K), by 2SC. Also, a function f is 
in C,+(H) if and only if f = g 1 H, where g E C,+(K). Thus, with the 
operation defined above, H is a convo and has the same identity and 
adjoint mapping as K. 

The condition that a subconvo be closed cannot easily be relaxed, as 
is shown by lO.lA. 

LEMMA 10. IA. Let H be a nonvoid subset of K, with H X H C H 
and H- = H. Suppose that H is locally compact in the relative topology. 
Then H is a (closed) subconvo of K. 

Proof. It is clear that e is in H. Let x E cH, the closure of H, and let 
{x~}~~~ be a net in H converging to X. Let U be an open subset of K such 
that e E U and such that A = c( U A H) is a compact subset of H. 
There exists /3, E D, such that {x*-j %- {x8} meets U for all 01, ,f3 >, /3,, . 
Thus, (~a-1 * (4 meets A for all 01, /3 > /3,, . Let B = {x0,} S A. 
This is a compact subset of H. Also, x, E B for /3 > /3,, , by 4.1 B. 
Hence, x E B C H. 

LEMMA lO.lB. Let A be a subset of K. Then there exists a smallest 
subconvo H of K which contain-s A. 

Proof. The intersection of all subconvos of K which contain H is a 
subconvo of K. 

LEMMA lO.lC. Let A be a u-compact subset of K. Then there exists a 
subconvo of K which contains A and is both open and a-compact. 

Proof. Let {U,} be an increasing sequence of open subsets of K whose 
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union contains A and which has the property that cU, is compact and 
eE U, = U,-foreachn > l.Then 

u*n = (cu,)“-l* u, 3 (cUJ*-13 ( UnJ+l, 

by 4.1D. Thus the union H of the sets U,1z is an open u-compact sub- 
convo of K containing A, by lO.lA. 

10.2. Special Subconvos 

The following results are well known for groups. It is not true that the 
convolution of connected subsets of a convo is a connected set; consider 
any finite convo that is not a group. 

LEMMA 10.2A. Let H be a subconvo of K. If the interior of H is 
nonvoid then H is open. 

Proof. Let U be the nonvoid interior of H. Then e E U 36 U-. By 
4.1D, the set H = (U * U-) S H = U 3+ (U- * H) is open in K. 

LEMMA 10.2B. Let A and B be connected subsets of K. Suppose that 
there exist a E A, b E B, and a connected set C such that 

{a} 36 (6) C C C A * B. 

Then A 3+ B is connected. 

Proof. Suppose that A 3=+ B C I’ u IV, where V and W are open 
subsets of K, and where (A * B) n V and (A X B) n W are disjoint. 
Then C is contained in one of these sets, say (A * B) n V. The two sets 

are open in K x K. Moreover, P u Q contains A x B, and 
(A x B) n P and (A x B) n Q are disjoint. Thus A x B C P, since 
(a, b) E P and A x B is connected. Hence, A 36 B C V. 

LEMMA 10.2C. Let H be the component of e in K. Then H is a 
subconvo of K. 

Proof. Since H- is connected, H- = H. And H ++ H is connected, 
since {e} * {e} C (e} C H * H. Thus H ++ H C H. 
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LEMMA 10.2D. Let A be a compact subset of K and let a E A. Suppose 
that A S- A C A. Then there exists a probability measure p E M+(K) such 
thatsptpCA,p,*p =p,andp*p =p. 

Proof. For each n > 1 let 

Thus, 

Since A is compact and contains the supports of all these measures, there 
exists a limit-point p of the sequence {pn} in M+(K). It is clear that 
p(K) = 1 and p, 36 p = p. But this implies that pn * ~1 = p for all 
n > l.ThusPXP =/A. 

THEOREM. Suppose that there exists a Haar measure on K. 

(103) I'f cc E M+(K), P # 0, and p * p = ,u, then p- = II, the 
set H = spt p is a compact subconvo of K, and TV is the normalized Haar 
measure on H. 

(10.2F) If H is a compact nonvoid subset of K and H %- H C H, 
then H- = H and H is a subconvo of K. 

Proof E. Let m be a left Haar measure on K. It is clear that p(K) = 1. 
Thus 0 < 11 T, 11 < 1 and TU2 = TUqLL = T,, . It follows that T,, is an 
orthogonal projection on L,(m). This implies that T,* = T, . Hence, 
p- =p* = p and H- = H. 

We have shown that H is a subconvo of K. The following computa- 
tions take place on H. 

Let f E C,+(H). Let g = p X f, which is in C,+(H). Thus there exists 
b E H such that g(b) = I/ g IIU . Since p -X-g = g, we have that 

g(b) = J;7g(y- * b) AdY) = J-$x * v PL(W* 

It follows that g(b) = g(x -X b) f or all x E H. This implies that g is con- 
stant on H. Therefore, His compact. Moreover, if x E H then 

JHfW 1-449 = g(e) = &> = lHf(r * 4 P@Y). 

This implies that p is a right Haar measure on H. 

607/18/1-s 
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Proof F. Let a E H. It follows readily from the two previous results 
that a- E H also. 

10.3. Cosets 

In this subsection, His a subconvo of K. For x E K, let xH = (x} * H. 
These sets will be called left cosets of H. The collection K/H = 
{xH : x E K} will be given the quotient topology. 

LEMMA 10.3A. Let x, y E K. Then xH and tH are either equal or 
disjoint. 

Proof. Suppose that z E xH n yH. Then (x-1 * (a} meets H, by 
4.1B. Thus x E zH- = xH. It follows that xH = zH. By symmetry, 
yH = zH. 

THEOREM 10.3B. The space K/H is a locally compact Hausdorfs 
space. The natural projection, x I-+ xH, is an open continuous mapping 
from K onto K/H. 

Proof. Let n be the natural projection. If U is an open subset of K 
then &(rr( U)) = U * H is also open, and thus z(U) is open. So n is 
an open continuous mapping, and this implies that K/H is locally 
compact. 

Let xH and yH be distinct elements of K/H. Then {x-} * {y} is 
disjoint from H. By 3.2D, there exist open neighborhoods U and V of 
x andy such that (U-XV)nH=(U-XV)n(H*H-) is void. 
Using 4.1B again we see that U -X H and V X H are disjoint. This 
implies that r(U) and z-(V) are disjoint open neighborhoods of xH 
and yH. 

LEMMA 10.3C. The space K is the union of a collection of disjoint open 
and closed a-compact subsets. 

Proof. This is a consequence of lO.lC. 

10.4. Subgroups 

If x, y, x E K then the formula x * y = x will be used to say that 
p, * p, = p, . Let the set G be defined by 

G={x~K:x*x-=x-Xx==}. 

We shall call G the maximum subgroup of K. 
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LEMMA 10.4A. The domain of the mapping (x, y) ct x -E y is a closed 
subset of K x K, and the mapping is continuous on this set. 

LEMMA 10.4B. Let x E G. Then x Yc- y is defined for ally E K, and the 
mapping y ~--t x 3c y is a homeomorphism from K onto K. 

THEOREM 10.4C. The set G is a closed subconvo of K. If x, y E G then 
x 36 y is dejined and in G. With the operation (x, y) w x ++ y, G is a 
locally compact group. 

LEMMA 10.4D. Let x E G. Then the mapping y w x- * y * x is an 
automorphism of K. 

Proof A. This is apparent. 

Proof B. To simplify the notation, let ab stand for {a} * {b}. 
Let y E K and choose s E xy. Then x-s C x-xy = ey = y. Thus x-s = y. 
Also, xy = xx-s = s. 

Thus the mapping y I+ xy is well-defined and continuous. The 
inverse is y ++ x-y. 

Proof. C. Let x, y E G. Then x 36 y = z is defined, and xx- = 
xyy-x- = xx- = e. The rest is clear. 

ProofD. Ify,xEKthen(x-*y*x)-=x-*y-Xxand 

Par*e*s! * Pz-*e*z = P, * (p, *pz) *p, * 

10.5. Products and Joins 

Let J be a convo. 

Product. The set J x K can be made into a convo in the following 
way. The topology is the product topology. If (s, t) and (x, y) are in 
J x K then 

P (s,t) *&.?A = (P, *PA x (P, * P,). 

The details are not difficult. 

J oin. Suppose that J is compact and that K is discrete. Suppose also 
that J n K = (e>, where e is the identity of both convos. Let 
J V K = J v K have that unique topology for which J and K are 
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closed subspaces of J V K. Let u be the normalized Haar measure on J. 
The operation a is defined as follows: 

(i) Ifx,yEJthenp,*p, =p,*pp,. 

(ii) Ifx,yEKandx#y-thenp,*p, =p,*&. 

(iii) IfxEJande #yEKthenp,op, = p, =$+,*pz. 

(iv) IfxEKandx#eandp,-Xp,=&,,c,p,then 

Pz- l Pa! = w  A- 1 CtPt * 
tm 
tfe 

We omit further detail. 
Note that J is a compact subconvo of J V K. But K is not a subconvo 

unless either J or K is equal to {e}. Hence, if J and K are both finite but 
nontrivial, then J V K and K V J are not equal as convos. 

11. REPRESENTATIONS OF CONVOS 

In this section the theory of representations of convos on Hilbert spaces 
is developed. The results and their proofs are practically identical with 
those for groups. Certain proofs are therefore omitted. 

Though the fact plays no role here, there exist unbounded positive- 
definite (continuous) functions on certain convos. The unbounded real- 
valued multiplicative functions on the convo of Subsection 9.5 are 
examples. 

In this section, K is a convo. 

11.1. Positive-defmite Functions 

A complex-valued function f on K will be called positive-de$nite if f 
is continuous and 

for each choice of complex numbers ai and points x, in K. A positive- 
definite function need not be bounded. 

LEMMA. Let f be a bounded positive-definite function on K. 
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(1 1 .l A) J is positive-defiinite. 

(ll.lB) If p E M(K) then JKfd(p * p*) 3 0. 

(11.1 C) If p E M(K) then p *f * p* is positive-definite. 

(ll.lD) If xEK thenf(x-) =f(x). 

(ll.lE) f(e) = llf IL. 

Proof A. This follows directly from the definition. 

Proof B. The statement is true if p has finite support. One can use 
2.2A. 

Proof C. If p, v E M(K) and v = p- 93 v, then 

~pXf*p*)d(v*v*) = J”Kfd(?i*7r*) 3 0. 

Proofs D, E. Recall the following fact: If A, B, C, D are complex 
numbers, and 0 < A + Bz + C’S + Dz.% for all complex numbers z, 
then A 3 0, B = C, D > 0, 1 B I2 < AD, and 2 1 B 1 < A + D. 

Let xEK. If xEC then 

Thus, f (e) 3 0, f(x-) = f(x), f(x * x-) >, 0, I f (x)1” < f (e)f(x * x-), 
and 2 1 f (x)1 <f(e) +f(x * x-). The last inequality implies that 
2 If (x)1 <f(e) + Ilf IL. Thus, 2 IlfL <f(e) + Ilf IL. 

11.2. The Pseudo-Inner Product 

In this subsection, f is a bounded positive-definite function on K. 
If p, v E M(K) let 

k-h 4 = j-pv* * I4 
If p E M(K) let 

II P If = UP, PlrY2* 

LEMMA. Let ,u, V, n E M(K). 

(11.2A) The form [ , If is a pseudo-inner product on M(K). 

(11.2B) [7r * p, vlt = b, n* * v]r = JK (P *f * v*) dn-. 

U1.W II CL IIf < (f(eY2 II P Il. 

UlJD) II n- * P IIf < II n- II - II 1-1 Ilf - 
Proof. This is straightforward. 
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LEMMA. Let H = (x E K :f(x) =f(e)}. 

(11.2E) IfxEHthenIIp,-pp,llf = 0. 

(11.2F) H is a subconvo of K. 

Proof. If x, y E H then 

[PO - Pe P P, - Pelf = fbJ- * 4 -f(x) - f(r-1 + f(e> 

= f@- * 39 - f(x> - f(r) + f(e) 

= fb- * r> -f(e). 

Thus, if x E H then 0 < Ij p, - p, 11; = f (x- 4% x) - 11 f lIu < 0, and so 
II p, - p, IIf = 0. Using this, if x, y E H then 0 = f (x- * y) - f(e), 
which implies that {x-j 3+ { y} C H. Thus, e E H and H- * H C H. 

11.3. Representations 

Let ~9 be a Hilbert space, possible with dimension zero. Let B(X) 
be the Banach *-algebra of all bounded linear operators on $9, and let I 
be the identity operator. 

We shall say that U is a representation of K on SP if the following four 
conditions are satisfied: 

(i) The mapping p c-3 U, is a *-homomorphism from M(K) 
into B(Z). 

(ii) If CL E M(K) then II u, II < II p II. 
(iii) UP, = I. 

(iv) If a, b E ~6 then the mapping p t+ (U@a, b) is continuous 
on M+(K) with respect to the cone topology. 

Let U be as above. We shall write U, for UPS for x E K. By condition 
(iv), if a, b E Z’ then the mapping x I+ ( USa, b) is bounded and con- 
tinuous, and 

for all p E M(K). 
The only notion of equivalence between representations that will be 

used is that of unitary equivalence. 

LEMMA. Let U be a representation of K on the Hilbert space 8. 
Let a E8. 
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(11.3A) If f is defined on K by f (x) = ( Uza, a) then f is positive- 
dejnite. 

U1.3B) If &Js.r, is a net in M+(K) converging to TV then 

IiF 11 lJUflu - U,a )/ = 0. 

(11.3C) If p E M(K) then U,a is in the closed linear span of the set 
{Uza : x E K). 

Proof. The first part is obvious. For the second, using the same 
function f, we have that 

Ilu,,a- U,al12=Sfd(lL8-*~a-1Ls-*r-r-*ps+~-*~). 
K 

Recall that convolution is continuous on M+(K). The rest is clear. 

11.4. Irreducible Positive-DeJinite Functions 

In this subsection, f is a bounded positive-definite function. 
We shall say that f generates a function g on K if there exists a sequence 

bn> in M(K) such that 

lim m,n+m II h *f * A* -g IA = 0. 

Of course, if f generates g then g is bounded and positive-definite. 
We shall say that f is irreducible if f # 0 and whenever f = g + h, 

where g and h are bounded positive-definite functions, then g = cf and 
h = (1 - c)f for some number c in [0, 11. 

LEMMA 11.4A. Let (~~1 be a sequence in M(K). Then the following 
three conditions are equivalent: 

(i) {pn} is a Cauchy sequence with respect to the pseudo-norm 11 Ilf . 

(ii) The limm,n+co (pUm *f * p%*)(e) exists. 

(iii) There exists a function g on K such that 

$ym II Pm *f * I*?a* -g llu = 0. 

Proof. It is clear that (iii) implies (ii). And (ii) implies (i), since 
b, , pnlr = (pm *f % p,*)(e), by 11.2B. It is also true, by 11.2B, that 
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So (i) implies (iii), since 

THEOREM. 

(11.4B) There exists a Hilbert space SF and a cyclic representation 
U of K on X, with cyclic vector a, such thatfq = ( Uza, a> for all x E K. 

(11.4C) If p, v E M(K) then ( Uua, U,a) = b, v]t . 

(11.4D) Th’ p as re resentation is unique up to unitary equivalence. 

(11.4E) Af uric ion t g g is enerated by f if and only if there exists b E 2’ 
such that g(x) = (U,b, b) for all x E K. 

(11.4F) If f = g + h, where g and h are bounded positive-defkite 
functions, then f generates g and h. 

(11.4G) U is irreducible if and only sff is irreducible. 

Proof. The first three parts are standard results. 
For 11.4E, let {pm> b e a sequence in M(K), let b, = U,*a, and let 

g rn.A = Pm *f -X u,*. Then 

gm,&) = W&n > b,). 

The result follows from the previous lemma, since a is a cyclic vector. 
For 11.4F, recall that the mapping p t-+ JKj dp is a positive functional 

on M(K). This part follows from 11.4E. See Hewitt and Ross [3, p. 3251. 
The same considerations apply to 11.4G. 

11.5. Absolutely Continuous Measures 

In this subsection it is assumed that there exists a left Haar measure 
m on K. The algebra M,(K) of all measures which are absolutely con- 
tinuous with respect to m is discussed in subsections (5.6) and (6.2). 

THEOREM 115A. Let 2 be a Hilbert space and let v tt V, be a bounded 
*-homomorphism from the Banach *-algebra M,(K) into B(S). Suppose 
that, if a E 2 and V,a = 0 for all v E M,(K), then a = 0. Then there 
exists a unique representation U of K on S such that U, = V, for each 
v E M,(K). 

Proof. Let S be the linear span of the set {VYa : v E M,(K), a E SF’]. 
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Then S is dense in 2. Let ~1 E M+(K) and let {r+}BeD be a net in M,+(K) 
converging to CL. Let vk E M,(K) and ak E 2 for 1 < Iz < n. Then 

It follows that the operators VVP converge pointwise on 5’. Each 11 Vvfl I[ < 
1) vs /) = Q(K), and vB(K) + p(K) = 11 p 11. Since S is dense, there exists 
U, E B(X) such that Vus + U, pointwise on Z and such that jl U, jj < 
11 p II. The rest is clear. 

THEOREM 11.5B Let h be a bounded Bore1 function on K. Suppose that 
JKhd(v*v*) >Of OY all v E M,(K). Then there exists a (continuous) 
bounded positive-dejnite function f on K such that h = f locally almost 
everywhere. 

Proof. The mapping v c-t J h dv is a bounded positive linear 
functional on M,(K). Th us there exists a cyclic representation 
v tt V, of M,(K) which satisfies the conditions of the previous theorem. 
That is, there exists a E 2 such that ( Vya, a) = J h dv for all v E M,(K). 
Let U be as described in the theorem, and let f be defined on K by 
f(x) = <U,a, a}. Then Jf dv = J h dv for all v E M,(K). 

LEMMA 11.5C. Let f EL,(m). Then f *f- is a bounded positive- 
definite function on K. 

Proof. If ,u E M(K) then JK (f *f-) d(p +C p*) = [j p- ++ f 11: . 

THEOREM. Let P be the set of all bounded positive-dejkite functions f 
on K such that 0 < f(e) < 1. Let P have the topology determined by the 
mappings f t-t Jf dv, for all v E M,(K). If p E M(K) let N(p) = supfEp 11 p IIf. 

(11.5D) P is a compact space, and P is closed under convex combina- 
tion. 

(11.5E) A nonxero f E P is an extreme point of P if and only zf f  
is irreducible and f  (e) = 1. 

(11.5F) If p E M(K) and U is a representation of K then 

II ufi II < NLL). 
(11.5G) If/.&W(K),fEP, and U is the representation determined 

by f  as in 11.4B, then (( p (If < (/ U, (1. 
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(11.5H) If v E M,(K) then there exists an irreducible f E P such 
that 11 v (If = N(V) andf (e) = 1. 

Proof. The first two parts are standard results. 
For 11.5F, let U be a representation of K on 2 and let a E Z be such 

that j] a ]I < 1. Define f on K by f (x) = ( Uzu, a). Thenf E P and 

Thus )I p /If < 1) U, )I < N(p). This proves 11.5G also. 
For 11.5H, let v E J!.?,(K). It may be assumed that v # 0. The mapping 

g ++ J-g 4v” * 4 = II v IIf is linear and continuous. Therefore, the 
supremum No is achieved at an extreme point h of P. Let f = h. 

12. COMMUTATIVE CONVOS 

The main results here are the Inversion Theorem and Bochner’s 
Theorem. We also consider the question of when the dual of a commuta- 
tive convo is a convo and prove a (rather weak) Duality Theorem. 

In this section, K is a commutative convo, m is a Haar measure on K, 
and n is the PIancherel measure on &? associated with m. The notation is 
as in Section 7.3. 

12.1. The Inverse Fourier Transform 

Note that the mapping (x, X) -+ x(x) is continuous on k x K. If 
a E M(g) and k Eli then a’ = u” and k’ are defined on K by 

a”(x) = gx(“) 4dX), f 

W) = Jle x(4 k(x) 4dx). 

LEMMA. Let f, g E L,(m) n L,(m) and let h = f X g. 

(12.1A) h E C,,(K) n L,(m). 

(12.1B) h 6 C,,(R) n L,(n). 

(12.1 C) If p E M(K) then fK h dp- = Jf fafl dr. 



CONVOLUTION SPACES 73 

Proof. Recall that h = & and that p and j are both in C,(@ A J&(T). 
If CL E M(K) then 

LEMMA. Let p E M(K) and a E M(K). 

(12.1D) a’ is continuous and 11 aYllU < 11 a I[. 

(12.1E) (/.+ = ($)- (iv = w* (p*)^ = #ii. 

(12.1F) (a-)” = (&J- (n)” = (&)* (a*)” = Z 

(12.1G) &aYdp- = Jp$ da. 

(12.1H) p * a’ = @a)“. 

Proof. This is straightforward. 

THEOREM 12.11. Let k ELM n L2(x). Then 

jK ( k’ I2 dm = /& ( k I2 dT. 

Proof. Let f E L,(m) n L,(m). By (12.1G), 

JK k’j dm = JKkVd( f *m)- = s, (f *m)̂ k dr = /K kfdr. 

In view of 7.31, 11 k’ /I2 = 11 k /I2 . 

12.2 The Inversion Formula 

Note that the functionsf which satisfy the conditions of (12.2C) form a 
dense subspace of L,(m). 

THEOREM 12.2A. Let a E M(x). If a’ = 0 then a = 0. 

LEMMA 12.2B. Let p E M(K) and a E M(g). Then p = ain if and 
only ;f a = j&r. 

THEOREM 12.2C. Let f E C(K). Supp ose that f is integrable and that 
f’ is also integrable. Then f = (3)“. That is, if x E K then 
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Proof A. Suppose that a # 0. Since the set (9 : u E M,(K)) is dense 
in C,(R), there exists p E M,(K) such that 0 # JR $ da = JK a’dp-. 

Proof B. Let h be as in the previous subsection. Then, by 12.lC 
and 12.1G, 

jK h d(Zm)- = Jg h da. 

Note that the h are dense in C,(K) and that the h are dense in C,,(R). 

Proof C. This follows from the previous result, with TV = fm and 
a = 377 = $7. 

12.3. Bochner ‘s Theorem 

THEOREM 12.3A. Let a E M+(R). Then a’ is a bounded positive-definite 
function on K. 

THEOREM 12.3B. Let f be a bounded positive-definite function on K. 
Then there exists a unique a E M+(R) such that f = a’. 

Proof A. Let ,u E M(K). Then 

Proof B. Assume that 0 < f(e) < 1. Let v E M,(K). By 11.5H, 
there exists an irreducible bounded positive-definite function x on K 
such that x(e) = 1 and 1) u (If < 11 v IjX . Since K is commutative, x E R. 

Thus I Jf dv- I = I JJdv I = I[y, PA < II v Ilj II P, Ilf < II v Ilf < II v Ilx = 
lSM4 = Mx)l dllfillu- 

The mapping P t+ Jf dv- is therefore bounded and linear on a dense 
subspace of C,(R). Thus there exists a E M(R) such that SK f dv- = 
JR P da for all v E M,(K). By (12.1G), f = a’. One can see from the 
previous proof that a > 0. 

12.4 The Dual Convo 

In general, the product of characters is not positive-definite. See the 
Example 9.1C. However, if x, # E R and XZ,!J is positive-definite then, by 
Bochner’s Theorem, there exists a measure a E M+(R) such that a’ = x#. 
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It is clear that a is a probability measure, and we might set p, * p, = a. 
The statement R is a convo means that the formula 

(a * b)’ = 26 for a, b E M(R) 

determines a convolution on J?, that with this convolution J? is a convo, 
and that the adjoint of x is x- for each x E J?. Note that the identity of 
R must be the constant function 1. 

THEOREM. Suppose that I? is a convo. For each x E K let x” be defined 
onl?byZ(x) =X(x).LetR = {a: xEK)andZetL =&? 

(12.4A) The measure rr is a Haar measure on L, and spt r = L. 

(12.4B) The mapping x tt x” is a homeomorphism from K onto the 
closed subset I? of e. 

(12.4C) The measure rii = JKp,m(dx) is the Plancherel measure on 
L associated with rr. 

(12.4D) If e is a convo then it is isomorphic to K. 

Proof A. Let k E L,( VT and x EL. Suppose that f = k’ E L,(m). If ) 
#EL then k(x- %-#) = Jkd(p,- -%pplL) = jx-#f-dm = Jx$f dm, by 
(12.1G). Thus (pX Sk)’ = xk’. 

Let j E C,+(L). A s in the proof of 7.3P, j can be approximated simul- 
taneously in L,(n) and L2(n) by functions such as k above. Thus, 
( pX ++ j)” = x j’ for x EL. Recall the definition of rr in 7.3N and note 
;:a; j’ = j’. Thus J ( p, *j) dn = ( p, *j)“(e) = (x j”)(e) = j”(e) = 

7T. 

Proof B. It is obvious that i? CL and that the mapping is both 
continuous and one-to-one. Let {x~}~~~ be a net in K such that x8 -co. 
All we must show is that it is not possible for & -+ 4, where 4 EL. If 
& -+ 4 then there exists k E C,(L) such that k(#) # 0, and this implies 
that the &(&) do not converge to 0. But it follows from previous results 
that k’ E C,,(K). This is a contradiction, since each A(&) = ky(xB). 

Proofs C, D. These are apparent. 

13. ORESITAL MORPHISMS 

Most of the examples of convos considered previously have been (or 
have been isomorphic to) decompositions of locally compact groups. Here 
we shall study the mappings, 4 : G -+ K, associated with these decom- 
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positions; that is: G is a locally compact group, K is a convo, and (b is a 
continuous mapping from G onto K which (somehow) takes the operation 
on G to the convolution on K. 

Actually, we consider mappings 4 : J-+ K, where J is a convo also. 
The mappings will be called orbital morphisms. The concept of an 
orbital morphism is not really a generalization of the concept of a group 
homomorphism. The observations below should illustrate the distinc- 
tion. 

The following proposition is well known. If G is a group, S is a set with 
a binary operation, and 4 : G -+ S is an operation-preserving mapping 
from G onto S, then S is a group. This can be restated in terms of 
decompositions. If & is a decomposition of a group G, and each product 
AB of a pair of members of ~2 is a subset of a member of z&‘, then 
& = G/H for some normal subgroup H of G. 

Recall the convo K = R+ of Section 9.3. Let 4 : R x R -+ K be 
given by 9(x, y) = (x2 + y 2 ) 1/2. This is the sort of mapping to be studied 
here. The sets C, = $-l(r) f orm a decomposition of the group G = 
R x R. Rather than use the fact that these circles are the orbits asso- 
ciated with the action of a compact group on G, we wish to define the 
convolution on K solely in terms of the structure of G and the decom- 
position & = (C, : Y E R+}. This can be done as follows. Let h be 
Lebesgue measure on G. This is a Haar measure. The idea is to decom- 
pose h with respect to &. That is, to put a probability measure 4,. on each 
set C, in such a way that qT depends continuously on Y, and h can be 
expressed (as an integral) in terms of the qT . There is exactly one way to 
do this. For Y > 0, qT must be a multiple of the length measure on Cr. 
The mapping r w  qr is called the recomposition of 4 consistent with X. 
To convolute two point masses p, and p, on K, we carry the measure 
qv * qs on G to the corresponding measure &(q,. * q.J on K. This 
mapping, A+ : M(G) -+ M(K), depends only on 4, and has nothing to 
do with the fact that G is a group. 

The previous paragraph was meant to show how the mapping 
4 : G + K and the structure of G impose a convolution on K. Let G, 
denote the group G with the discrete topology. The identity mapping 
i : Gd -+ G is a continuous homomorphism. But it is clear that the 
composition + 0 i : Gk --t K does not in any way respect the convolutions 
on Gd and K, since each nontrivial convolution on K is a continuous 
measure. This illustrates one contrast between homomorphisms and 
orbital morphisms. For another contrast, consider the closed subgroup 
H = R x (01 of G. Even though 4(H) = K, the convolution on K 
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imposed by H and 4 1 H is not the given one. Rather, it is specified by 

the rule: p, *p, = Q PI,-,I + 4 P,,, . 
In the first two subsections here topological and measure-theoretic 

questions are considered. It is assumed that X, Y and 2 are nonvoid 
locally compact HausdorfI spaces. 

The definition and certain properties of orbital morphisms are given 
in Subsection 13.3. In the examples studied in Section 8, Haar measure 
played an indirect role; that is, it was not used to define the convolution. 
Here, however, Haar measure is used in the definition of orbital 
morphism. 

There are two main classes of orbital morphisms: the unary morphisms 
and the double coset morphisms. Section 14 is devoted to double coset 
morphisms and includes the basic factorization theorem, 14.3B. 

Suppose that J is a convo with a Haar measure and that yc4 is a decom- 
position of J into compact subsets. The statement that .JJ is a convo 
means that zz2 can be given the structure of a convo in such a way that 
the natural projection, rr : J --+ JZ?‘, is an orbital morphism. This structure 
is unique, as will be seen. Referring to the examples above, we may say 
that {C, : r E R+) and {{x, -x> : x E R+} are convos. 

The main results in this section are Theorems 13.5A and 13.7B. The 
first theorem gives sufficient conditions for a decomposition & of a 
convo J to be a convo. These conditions are satisfied by the two decom- 
positions of the previous paragraph. The second theorem gives sufficient 
conditions, if JZZ is a commutative convo, for a character of JZZ to deter- 
mine a representation of J. 

13.1. Continuous Decompositions 

Let & be a decomposition of X into compact subsets, and let 
rr : X--f & be the natural projection. Thus & C q(X) and 7~ is a mapping 
from X into q(X). We shall say that S? is a continuous decomposition and 
that r is a continuous decomposition projection if r is continuous with 
respect to the topologies on X and V?(X). 

LEMMA. Let LS? and v be as above, with r continuous. 

(13.1A) The quotient topology on &’ and the relative topology on z? 
are equal. 

(13.1 B) rr is an open mapping from X onto &. 

(13.1 C) If .Z is a compact subset of ~2’ then V-‘(Z) is a compact 
subset qf X. 
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(13.1D) I~{x~J~D is a net in X such that x, -+ 00 then 57(xJ 4 (00). 

(13.1E) &’ is a closed subset of g(X). 

(13.1 F) & is a locally compact Hausdorff space. 

(13.1 G) T is a closed mapping. 

(13.1H) If g is a function on JZZ with values in some space, and if 
g ( rr is continuous, then g is continuous. 

Proof. For 13.lA, let Z be a subset of & and let S = ~-l(z). If 2 
is open in the quotient topology then (by definition) S is open in X, and 
this implies that Z = &’ n g(X) is relatively open. If Z is relatively 
open then r-l(Z) is open (by the continuity of r) and this implies that Z 
is open in the quotient topology. 

For 13.lB, let U be an open subset of X. Then n(U) = & n V”(X). 
For 13.1 C, let Z be a compact nonvoid subset of &. Then n-‘(Z) = 

u .Z is compact, by 2.5F. 
For 13.1 D, suppose that x, + co but that the 7r(xg) do not converge 

to {co}. Then there exists a compact subset C of X and a subnet (yc}asE 
such that each z-( yd) meets C. Thus ya -+ co and each ‘rr( ya) is contained 
in VT-~(Z-(C)). This contradicts 13.1C. 

The other parts are apparent. 

13.2. Orbital Mappings 

An open continuous mapping 4 from X onto Y will be called orbital 
if it satisfies the four equivalent conditions of the following lemma. The 
compact sets +-l(y) will be called the &orbits. 

Consider the following example. The projection (x, y) w  x from the 
solid square [0, I] x [0, l] onto the interval [0, l] is orbital. But the 
restriction of this mapping to the boundary is not orbital. 

Lemma 13.2D is going to be used in the following way. Suppose that 
we have two continuous decompositions, & and 9?, of X into compact 
subsets. Suppose that & is finer than 97, which means that each member 
of ~4 is contained in a member of 97. Then 99 induces a continuous 
decomposition of & into compact subsets. 

Let 4 : X -+ Y be continuous. There is a natural positive-continuous 
linear mapping 4 * : M(X)+ M(Y) associated with 4. It can be defined 
by the formula 4.&L) = Jxp4(z,p(dx), Another way is by the formula 
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for all g E: C,(Y). Note that 11 $&)I/ < 11 p II for all ~1 E M(X). In view of 
13.2E, it is correct to write &&) = p 0 4-r. 

Let 4 be an orbital mapping from X onto Y, and let !E M”(X) have 
support equal to X. A recomposition of 4 consistent with &is a continuous 
mapping y t-+ qy from Y to M+(X) such that each qg is a probability 
measure on X with support equal to d-‘(y), and such that 

LEMMA 13.2A. Let 4: X -+ Y be an open continuous mapping from X 
onto Y. Then the following four conditions are equivalent: 

(i) The set &’ = {$-l(y) : y E Y> is a continuous decomposition of 
X into compact subsets, and the mapping y t+@‘(y) is a homeomorphism 
from Y onto &. 

(ii) If C is a compact subset of Y then r/-l(C) is a compact subset 
of x. 

(iii) Lf &~>B~D is a net in X such that x6 --+ CO then $(x8) -+ CQ. 

(iv) 4 is a closed mapping, and $-‘( y) is compact for each y E Y. 

Proof. By 13.1C, (i) implies (ii). It is apparent that (ii) implies (iii) 
and (iii) implies (iv). 

Assume (iv). Let 7r: X -+ &’ be the natural projection. Then n(x) = 
~$-~(q5(x)) for x E X. Let 4: Y -+ &’ be given by $( y) = $-l(y). Thus 
rr = $ 0 4. To see that II, is continuous, let U and V be open subsets of 
X. Then Z = &’ n %‘u( V) is a subbasic open subset of J.&‘. Note that 
a,h-‘(Z) = c+(U) - 4(X - V). Th’ IS is an open subset of Y, since + is 
an open and closed mapping. Thus 4 is continuous. This implies that 
7~ = $ 0 4 is continuous. And 1,4-l is continuous, by 13. lH, since 
#r--l 0 7~ = q5 is continuous. 

LEMMA. Let 4 be an orbital mapping from X onto Y. 

(13.2B) The mapping A M+(A) from g’(X) to W(Y) is continuous. 

(13.2C) The mapping B t+ +-l(B) from U(Y) to %‘(X) is continuous. 

Proof. For the first, let U and V be open subsets of Y. Then 

-54 E W): d(4 E ~uv71 = gsm, 

where S = d-‘(U) and T = +-l(V). 

607/d/1-6 
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For the second, let S and T be open subsets of X. Then 

{B E 2?(Y): c$-l(B) E V,(T)} = U”(V), 

where U = #(S) and V = Y - 4(X - T). 

LEMMA 13.2D. Let the mappings +1 : X--z- Y, $2 : Y + 2, and 
+3 : X -+ Z be surjective. Suppose that & = C$~ 0 C/Q . If any two of these 
mappings are orbital then so is the third. 

Proof. One need only use the fact that a mapping $ is orbital if and 
only if both C$ and 4-l preserve openness and compactness. 

LEMMA. Let 4 be an orbital mapping from X onto Y, and let 4’ E Mm(X) 
have support equal to X. Suppose that the mapping y F+ qV is a recomposi- 
tion of 4 consistent with A 

(13.2E) The measure m = 5*(t) = Jxp&(dx) is defined. 

(13.2F) e = Jy q,m(dy). 

(13.2G) A function g is in Bm( Y) if and only ifg 0 4 E Bm(X). 

(13.2H) If g E Bm( Y) then Jy g dm = Jx ( g 0 4) d4. 

(13.21) The mapping y t-+ qV is the unique recomposition of C$ con- 
sistent with e. 

Proof. The measure m is defined, since 4-l preserves compactness. 
The equation G = J q,m(dy) is just a restatement of the definition of 
recomposition. 

For 13.2G, use 2.3F. Note that there are two positive-continuous 
linear mappings, determined by p, t+ p+cz) and p, w  qy . 

For 13.2H, use 2.3G. The condition of u-compactness is not needed 
here, since C$ is an open mapping. 

For 13.21, let y E Y. Let V be an open subset of Y containing y and 
having compact closure. Let 

PV = & /y4dY). 

This is a probability measure on X. If V is a small neighborhood of y 
then pV is close to qV in the cone topology. That is, pv -+ qV as CY --+ (y}. 
But the pV do not depend on the recomposition, since, with U = +-l(V), 
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13.3. Orbital Morphisms 

Let J and K be convos, and let 4 be a left Haar measure on J. An 
orbital morphism from J onto K is a mapping 4 which satisfies the 
following four conditions: 

(i) q5 is an orbital mapping from J onto K. 

(ii) There exists a (necessarily unique) recomposition y I-+ qY of + 
consistent with 8. 

(iii) If y E K then q2/- = (Q~)-. 

(iv) If y, z E K thenp, S p, = #.&, * qa). Recall that the recom- 
position gives rise to a positive-continuous linear mapping from M(K) 
to M(J). This mapping will be denoted by $*. That is, #*( p,) = qY and 

for y E K and v E M(K). It is clear that the qU do not depend on the 
choice of the left Haar measure /. By 13.3F, below, a right Haar measure 
could be used also. 

THEOREM. Let 4 be an orbital morphism from J onto K. Let /, the qU , 
and +* be as above. Set m = d.+(t). 

(13.3A) m is a left Haar measure on K. 

(13.3B) 4* 0 4* is the identity mapping on M(K). 

(13.3C) If v E M(K) then +*(v-) = d*(v)- and 11 $*(v)ll = 11 v II. 

(13.3D) If x E J and y E K then 4(x-) = d(x)- and $-‘(y-) = 

P(Y)-* 

(13-3E) If CL E M(J) then Ah-) = h&)-. 
(13.3F) The mapping y t-t qV is a recomposition of 4 consistent 

with 8-. 

(13.3G) If A is the modular function of K then A 0 4 is the modular 
function of J. 

(13.3H) Ifp, v E M(K) then t.~ X v = $*(4*(p) X d*(v)). 

THEOREM 13.31. Let J, K and L be convos and let the mappings 
r+4l : J-+ K, q32 : K + L, and $3 : J-+ L be surjective. Suppose that 
&,. = C& 0 41 . If any two of these mappings are orbital morphisms then so 
is the third. 
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Proof. For 13.3A, let y E K. Then 

For 13.3B, 4, 0 #J* is positive-continuous on M(K), and 

(4* 0 #*>(P*> = 4*(Qu) = P, 

for ally E Y. 
For 13.3C, let v E: M(K). By condition (iii), $*(v-) = $*(v)-. By 

13.3B, 4* must be an isometry, since II+.+ 11 < 1 and II4* 11 < 1. 
For 13.3D and 13.3E, note that d-‘(y) = spt qr,- = spt(q,-) = 

(spt !I!/)- = k’(Y)-* 
For 13.3F, we have that 8- = J (q+(r~))- Qdx) = J’q+(.+ /(dx) = 

s %(z-, W) = s Wt) f-(4. 
For 13.3G, recall that m = Am-. Thus 8 = 4*(m) = +*(Am-) = 

(A 0 4) C*(m-) = (A 0 C) L’-. 
And 13.3H follows directly from condition (iv). 
For 13.31, one can use 13.2D and 13.3H. 

13.4. Consistent Measures 

In the next subsection a certain class of orbital morphisms will be 
constructed. The idea is illustrated by the following result. 

LEMMA 13.4A. Let A be an algebra, L a linear space, and h: A --t L a 
linear mapping. Let B be the set of all x 6 A such that h(xy) = 0 = h(yx) 
whenever h(y) = 0. Suppose that h(B) = L. Then B is a subalgebra of A, 
and there exists a unique multiplication on L such that L is an algebra with 
this multiplication, and such that h 1 B is an algebra homomorphism. 
Moreover, h(xy) = h(x) h(y) if either x or y is in B. 

Proof. Let I = h-l(O). It is apparent that B is a subalgebra of A and 
that I n B is an ideal of B. Thus the multiplication on L exists. Now let 
x s A and y E B. There exists x’ E B such that h(x’) = h(x). Thus 
h(xy) = h((x - x’)y) + h(x’y) = h(x’y) = h(x’) h(y) = h(x) h(y). 

The context of interest here is when A = M(J), L = M(Y), and 
h =$a+, where J is a convo, Y is a locally compact space, and 4 is an 
orbita mapping from J onto Y. Under these circumstances, a measure 
p E M(J) will b e said to be left +-consistent if +.+&..J * v) = 0 whenever 
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d.+.(v) = 0, and p will be said to be $-consistent if +.+(p XV) = 0 = 
$*(v * p) whenever +.Jv) = 0. 

LEMMA 13.4B. Let 4 be an orbital mapping from J onto Y. Let p E M(J). 
Then the following three conditions are equivalent: 

(i) f*- is Ieft &consistent. 

(ii> Ifs, t E J and 4(s) = 4(t) then hb * PJ = A& *pi). 
(iii) If f E C,(J) and f is constant on each $-orbit then t.~- 4% f is 

constant on each $-orbit. 

Proof. It is apparent that (i) implies (ii). 
Assume (ii). Let f = g 0 4, where g E C,(Y). If 4(s) = 4(t) then 

w *f>(s) = Sf 4E.L *PA = sg W*(P *pa> = b- *f Xt). Thusf is 
constant on each #-orbit. Hence (iii). 

Assume (iii). Suppose that I+*(V) = 0. If g EC,(Y) and f = g 0 4 then 
Sgd(~,(~*3Cv))=Sfd(~*Cv)=S(tL-*f)dv=S(hO~)dv= 
J h d(&.(v)) = 0, for some h E C,(Y). Hence (if. 

13.5. Unary Morphisms 

A unary morphism is an orbital morphism + such that +-l(e) = {e}. The 
decomposition projection determined by the action of a compact group 
of automorphisms of a locally compact group is a unary morphism. Not 
every unary morphism satisfies the hypotheses of the following theorem. 
See (15.1C). 

THEOREM 13.5A. Let J be a convo with left Haar measure /, and let 
Y be a locally compact Hausdor- space. Let + be an orbital mapping from 
J onto Y, and set Z = d(e). Suppose that the following three conditions are 
satisfied: 

(i) +-l(Z) = {e>. 

(ii) If A is a #-orbit then so is A-. 

(iii) For each y E Y there exists a probability measure qar on J such 
that spt qll C +-l(y) and such that qV is &consistent. 

Then there exists a unique convolution 36 on Y such that (Y, *) is a 
convo and + is a unary morphism. 

LEMMA 13.5B. Let t.~ be a left +-consistent measure on J and suppose 
that 4*(p) = 0. Then p = 0. 
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Proof. Let f E C,(J) and supp ose that f is constant on the #-orbits. 
If x E J and y = $(x) then 

(P- *.0(x) = s, (P- *I) 4, = lJ (f * qv-)+ = 0. 
Thus p- * f = 0. Hence CL- G+ (ft) = 0. But p, can be approximated 
in M+(J) by measures of the form f4, since r#-i(Z) = (e}. Therefore TV = 0. 

LEMMA 13.X. There exists a topological involution y t+ y- of Y 
such that c#(x-) = 4(x)- for all x E J. 

Proof. In view of condition (ii), the involution can be defined. By 
13.2D, it is continuous. 

LEMMA 13.5D. Let y E Y. Then qy is the unique left &consistent 
probability measure on J whose support is contained in @-l(y). Moreover, 

qf/- = k7J- and spt %/ = F(Y). 

Proof. Suppose that p is a left #-consistent probability measure 
supported by #-l( y). Then+& - qg) =pr, - p, = 0. Thus p - qu = 0, 
by the first lemma. 

It is easy to see that (q& is also #-consistent. Since it is supported by 
+-l( y-) it must equal qg- . 

Now let x E d-‘(y). The following three conditions on x are equivalent: 
(i) x E spt ql/, (ii) e E spt (p,- * qV), (iii) e” E spt 4*( p,- 9+ qg). Since qV 
is left $-consistent, condition (iii) is either satisfied by all x E I$-“( y) or by 
none. In view of condition (i), 4-l = spt qV . 

Proof of Theorem. If {yB)BED is a net in Y converging to y, then the 
sets spt qu, converge to +-l(y), and each limit point of {qyB}BED in M+(J) 
is a left $-consistent probability measure, which must then be equal 
to qV . Thus the mapping y t-+ qv from Y to M+(J) is continuous, and 
there exists a unique positive-continuous linear mapping +*: M(Y) --t 
M(J) such that 4*( p,) = qu for each y E Y. This is by 2.3H. 

It is not hard to see that +*(M(Y)) is just the set of left +-consistent 
measures on J. In fact, it is just the set of $-consistent measures, also. 
It follows from the definition that these measures form an algebra. Since 
4.+ 0 $* is the identity mapping on M(Y), +* is an isometry. Also, +* 
preserves adjoints. 

The restriction of +* to the range of d* is a linear isomorphism, and 
thus carries the convolution on $*(M(Y)) to an operation on M(Y). 



CONVOLUTION SPACES 85 

It is straightforward to verify that Y is a convo with this operation. In 
particular, if y, x E Y then 

The adjoint mapping is specified in 13.5C and the identity of Y is E. 
Continuity of supports can by proved using 13.2B and 13.2C. 

All that remains to be proved is that & = d*(m), where m is defined 
by m = 4.+.(t). Let X = d*(m), and note that JJ f dh = J, f df if f is con- 
stant on each +-orbit. 

If x E J, y = #>, f 6 C,(l), and f is constant on each &orbit, then 

= s bv *f) dh .l 
= s J (9%. *f) df 
= JfdL’ s 

= s J (~z *f > d/. 

Thus, if P E K(J), f E C,(J), and f is constant on each r&orbit, then 
J (p 94 f) dh = J (p X f) de. But +-l(E) = {e}, and each function in 
C,(J) can be approximated by these p Sf. The precise statement is in 
5.1B. Therefore, h = 8, and the proof is complete. 

13.6. Consistent Orbital Morphisms 

In this subsection, J and K are convos and 4 is an orbital morphism 
from J onto K. Let e be a left Haar measure on J and let m = C*(k) be the 
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corresponding left Haar measure on K. For 13.6D the measures must be 
related in this way. 

We shall say that 4 is consistent if the mapping +*: M(K) -+ M(J) 
is an algebra homomorphism. By 13.6C, if 4 is consistent then $* is a 
Banach *-algebra isomorphism. 

LEMMA 13.6A. Suppose that each measure qy = #*(p,) is left 
+-consistent. Then q5 is consistent. 

THEOREM. Suppose that (b is consistent. Let v E M(K) and g, h E C,(K). 

(13.6B) 4*(v) is a #-consistent measure on J. 

(13.6C) (v *g) 0 4 = 4*(v) * (g 0 4). 

(13.6D) (g *h) od = (g 04) *(h o$>. 

Proof A. Let y E K and g E C,(K). It is enough to show that 

4”(P, */Cm) = +*u,> * 9*@0, 

since $* is continuous on M+(K). We have: 

+*(P, * g4 = +*((A *&w = KP, *d 0 5w = fi4 
4*hJ * 4*(P) = !zY * (g 0 w = kY * k 0 at = f.Le. 

Since qV = (qU-)- is left $-consistent, fi is constant on each $-orbit. 
Moreover, &(f$‘) = p, *gm = &(fs/). Thus fi = fi . 

Proofs B, C, D. Note that 13.6C implies that 4*(v)- is left +con- 
sistent. By symmetry, this implies 13.6B. And 13.6D implies 13.6C, 
since v can be suitably approximated by measures of the form gm. Finally, 
13.6D merely says that $*( gm X hm) = #*( gm) *$*(hm), which is 
true by assumption. 

13.7. Positive-Dejinite Functions 

In this subsection 4 is an orbital morphism from J onto K. 

LEMMA 13.7A. Let g E C(K) and let f = g 0 4. If f is a positive- 
definite function on J then g is a positive-dejinite function on K. 

THEOREM 13.7B. Suppose that + is a consistent orbital morphism from 
J onto K and that K is a commutative convo. Let x be a (bounded self- 
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adjoint multiplicative) character of K. If x is an element of the support of 
the Plancherel measure on & then x 0 4 is a positive-dejkite function on J. 

Proof A. Let v E M,.(K) and let p = r+*(v). By 13.3H, 

Proof B. Let m be a Haar measure on K and suppose that x is in the 
support of the Plancherel measure on I?. Using the inverse Fourier 
transform, we can construct a net of (continuous) functions of the form 
g *g* which converge to x uniformly on compact sets, where each g 
is in L,(m). Since C,(K) is dense in L,(m), we may assume that each 
g E C,(K). By 13.6D, x 0 4 is the limit (uniformly on compact sets) 
of a net of functions of the form f 3c f *, where each f E C,(J), But such 
functions are positive-definite, by 11.5C. Note that J is unimodular, 
by 13.3G. 

14. DOUBLE COSET CONVOS 

We have already seen that the collection of double cosets of a compact 
subgroup of a group is a convo in a natural way. The corresponding 
statement for convos is valid. That is, if H is a compact subconvo of the 
convo K, then the sets H ++ {x} * H = HxH form a decomposition 
of K, and K//H ={HxH: x E K} has a natural convolution. The 
existence of a Haar measure on K is not needed for this. 

One question (especially interesting in the case where K is a group) 
that is considered here is as follows: What can be said about the repre- 
sentations of K, given the representations of K // H? An answer is given 
in 14.4D. This answer is expressed in terms of positive-definite functions. 
There are two reasons for this. First, the notation is simpler. Second, in 
the examples of particular interest, K // H is commutative (though K is 
not) and it is natural to work with characters, rather than one-dimen- 
sional representations, of K // H. One can see from 13.7B that there 
are many characters of K/j H which determine irreducible representa- 
tions of K if K /I H is commutative. 
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To work directly with the representations, one need only note that 
M(K) contains a subalgebra M(K 11 H) isomorphic to M(K // H). Each 
representation of K on a Hilbert space 2 gives rise, in a canonical way, 
to a representation of K // H on a (possibly trivial) subspace P of &‘. 
A representation of K // H can sometimes be raised to a representation 
of K on a larger Hilbert space; if it exists the raised representation of K 
is essentially unique. We omit the detailed statements and proofs. 

In this section, K is a convo, H is a compact subconvo of K, and u 
is the normalized Haar measure on H. 

14.1. Double Cosets 

For x E K, let HxH = H * {x} -X H. These sets will be called 
double cosets of H. Clearly, each double coset is compact. In view of 
14.1A, the collection K // H = {HxH : x E K} is a decomposition of K 
into compact subsets. The natural projection, x I+ HxH, will be 
denoted by n-. In view of 14.1 C, the quotient topology and the relative 
topology on K // H are equal. We give K /I H this common topology. 

THEOREM. Let x, y e K. 

(14.1A) Either HxH and HyH are equal or they are disjoint. 

(14.lB) ~-Xp~-Xu=u~p~-SuifandonZyifHxH=HyH. 

(14.1 C) The mapping r is a continuous decomposition projection. 

(14.1D) The mapping HtH I-+ u 36 p, 95 u is a homeomorphism 
from K // H onto a closed subset of M+(K). 

Proof. For 14.1A, let x E HxH. Then HzH C HxH. Using 4.1B, 
we have that x E HxH, H-2: meets xH, and H-zH- contains x. Since 
H- = H, it must be that HzH = HxH. The result follows from this. 

For 14.1B, if HxH # HyH then the measures are unequal because 
they have disjoint supports. Suppose that HxH = HyH. Let f E C,+(K) 
and let h=u*f* u. Since h E C,+(K) also, there exists z E HxH 
such that h(x) = sup {h(t) : t E HxH}. Ifs, t E H thenp,- -3c h 3+ p,- = h 
and h(s * x * t) = ( p,- 36 h *pi-)(z) = h(z), which implies that h 
is constant on the set {s) * {z} * {t}. It follows that h is constant on HzH, 
which contains x and y. Thus 

Jfd(oXp,*u) =h(x) =h(y) = Jfd(u*p,*o). 

This implies that the measures are equal. 
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Parts 14.1 C and 14.1D are apparent, since convolution is continuous 
on V(K) and M+(K). 

14.2. The Operation 

In view of 14.1 B and 14.1 D, there exists a (unique) positive-continuous 
linear mapping 7r*: M(K // H) -+ M(K) such that r*(pHzH) = 
TV X p, -X u for each x E K. The convolution on K // H is defined by: 

p * v = Tr*(7r*(p) * n.*(v)) 

for p, v E M(K // H). Let 

THEOREM. Let M(K // H) h ave the operation specajied above. 

(14.2A) K // H is a convo. 

(14.2B) The identity of K // H is H. 

(14.2C) If x E K then (HxH)- = Hz-H. 

(14.2D) M(K 11 H) is a closed self-adj,int subalgebra of M(K). 

(14.2E) YT* is an isomorphism from the Banach *-algebra M(K I/ H) 
onto M(K I/ H). 

(14.2F) If x, y E K then 

PHdf * PH,H = v*(Pz * cJ * PY) = s, Pmf(P, 3% 0 * p,)(dt). 

(14.2G) If x, y E K, g E B”O(K // H), and f = g 0 rr then 

g(HxH * HyE) = JHf(X * t * y) u(h). 

(14.2H) If there exists a left Haar measure 6’ on K then r is an 
orbital morphism from K onto K /I H, the mapping HxH c-t (T * p, * 0 is 
the recomposition of r consistent with e, and 

is a left Haar measure on K /I H. 

Proof. Everything follows readily from 14.2D and the fact that VT* 
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is a norm-preserving adjoint-preserving positive-continuous linear 
mapping from M(K // H) onto M(K [( H). The operation on M(K /[ H) 
is, by definition, the operation inherited from M(K I] H) through n* 
and its inverse 7r* ) M(K 1) H). 

14.3. Factorization Theorems 

The first result here is an analog of the First Isomorphism Theorem for 
groups, For convos with Haar measure it is a special case of 13.31. 

The second result has no analog in the theory of groups. The existence 
and uniqueness of Haar measure is crucial in this case, since all we 
prove is that the decomposition (1x1: x E J} of J is finer than the decom- 
position ($-‘( y) : y E K). 

THEOREM 14.3A. Let J be a compact subconvo of K and suppose that 
H C J. Then J // H is a compact subconvo of K // H, and 

KIIJ = KlIH II JIP. 

THEOREM 14.3B. Let J be a convo and let 4 be an orbital morphism from 
J onto K. Let I = #-l(e). Then I is a compact subconvo of J, and the 
diagram 

commutes, where z- is the natural projection and $ is a unary morphism. 

Proof A. We omit the details. The isomorphism is given by: 

Proof B. Let y w  qv be the recomposition of 4. Then qe- = qe- = qe 
and pe = p, *p, = &(qe * qe)- Since 1 = spt qe , we have that 
I- =IandI*IC.l. Thus1 is a compact subconvo of J. Let y E K. 
Then +*(qe * qV) = p, Jc P, = pV , Thus I * $-l(y) C $-‘( y). Simi- 
larly, +-i(y) -X I C +-l(y). Th is implies that +-l(y) is a union of double 
cosets of I. The rest follows from 13.31. 
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14.4. Positive-Definite Functions 

These results do not generalize to arbitrary orbital morphisms. 
Referring to the example in Subsection 9.3, the function f(x, y) = 
Jo((x2 + Y ) 1 2 l/2 is osi ive-definite on R x R, but is not irreducible. P t 
In fact,fis a combination of functions of the form (x, JJ) -+ ei(ax+bg), none 
of which is constant on the circles. 

THEOREM. Let f be a bounded positive-definite function on K and 
suppose that f is constant on H. 

(14.4A) f is constant on each double coset of H. 

(14.4B) f = g o rr, where g is a bounded positive-dejinite function 
on K I/ H. 

(14.4C) If f = fi + f2 , where fi and f2 are bounded positive-dejinite 
functions on K, then fi andf, are constant on each double coset of H. 

(14.4D) f is an irreducible positive-definite function on K if and only 
if g is an irreducible positive-definite function on K /I H. 

Proof A. By 11.2E, jj p, - p, IIf = 0 for all x E H. Thus 11 u - p,J, = 0. 
IfxEKthen 

By 14.1 B, J is constant on each double coset. 

Proof B. This follows from 13.7A. 

Proof C. It is enough to show that fi and f2 are constant on H. 
IfxEHthen 

0 = f(e) -f(x) = V;(e) -t&N + Me> - f2WJ 

The two expressions on the right are nonnegative. Hence, they are zero. 

Proof D. If f is reducible then so is g, by the preceding results. 
Suppose now that g = g, + g, , where g, and g, are bounded positive- 
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definite functions on K 11 H. It is enough to show that each fk = g, 0 7~ 
is positive-definite. By 11.4F, g generates g, and g, . That is, there exist 
two sequences {vnl} and {vfi2} in M(K // H) such that 

lim jlvmk*g*((vnk)*-gKIlu =0 n,n*co 

for K = 1, 2. Let pfik = T*(v,~). By 13.6C, 

$zm II /4nk *cf* (Pnk)* -fk IIU = 0 

fork = 1, 2. By ll.lC,fl and f2 are positive-definite. 

15. EXAMPLES 

Except in the first subsection, the object of study here is the group 
SL(2, C) of all two-by-two complex matrices with determinant 1. The 
convos, mappings and functions constructed should illustrate our results 
on orbital morphisms. Recall that a convo K is Hermitian if 3c- = x for 
each x in K. 

15.1. Several Convos 

EXAMPLE 15.1A. Let 2, = (0, 1, 2, 3, 4, 5) be the additive group of 
order 6. The decomposition {0), (31, (1, 5}, {2,4} of Zs is a convo, 
determined by the group of automorphisms x I-+ x, x ti --x. 

EXAMPLE 15.lB. The decomposition {0), (31, (1,4), (2, 5} of Z, is a 
convo, and the natural projection is consistent. 

EXAMPLE 15.1 C. The decomposition (01, {3}, {1,2), (4,5> of Zs is a 
convo, but the natural projection is not consistent. 

EXAMPLE 15.1D. For each positive integer n let b, be a number such 
that 0 < b, < 1. Let cs = 1 and define numbers c, inductively by the 
rule: 

For each n > 1 the two-point set K, = (0, n> can be made into a 
convo by letting 0 be the identity and setting 

P, *P, = 0, + Cl- b,) P, . 
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We consider here the infinite discrete join (K, l ), where 

K = ICI v I‘& v **a = (0, I,2 ,... }. 

The operation on K is defined by 

P,.P*=Pn*PwL=P, 

for 0 < m < n. Thus K is a Hermitian convo with identity 0. A Haar 
measure m on K is given by 

m = f c,p, . 
k-0 

An interesting fact about this convo is that each set H, = (0, 1, 2,..., N) 
is a subconvo of K. 

EXAMPLE 15.1E. Let G, be the circle group and let G, be a two- 
element group, with G, n G, = (1). Then G, v G, is a nondiscrete 
convo with an isolated point. 

15.2. The Group SL(2, C) 

In the remaining subsections several related convos will be constructed. 
They depend on the structure of the group G = SL(2, C) of all two-by- 
two complex matrices with determinant equal to 1, and the subgroup 
H = SU(2) f o unitary matrices in G. The idea is illustrated by the 
diagram: 

G----+GH 

GIIH - G*/I. 

The expression GH refers to the convo of H-conjugacy classes of G. 
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We write GH/I because GH is commutative. Of course, it is more con- 
venient to use models for these convos. The notation is: 

L-K 
iS0 

The convo K is the one defined and studied in Section 9.5. Here, uny = 
unary morphism, dbc = double coset morphism, and iso = iso- 
morphism. The mappings studied explicitly are as follows, where the 
convos are replaced by spaces of which they are subsets: 

GwCxR 

R- cash R 

The two functions T and 4 are defined on G by 

a 6 
7 u I) c d = Ha + 4 

4 [(z $1 = +(I a I2 + I b I2 + I c I2 + I d I”)* 

In his thesis Andrew Bao-Hwa Wang [16] constructs the spherical 
functions on X42, C) associated with the various irreducible represen- 
tations of SU(2). Th e main object of study in this thesis is the convolu- 
tion algebra I,(G) of all functions f on G = SL(2, C) which are infinitely 
differentiable, have compact support, and have the property that 
f(t-lxt) =f(x) f or all x E G and t E H. It is easily seen that I,(G) is 
isomorphic to a dense subalgebra of L,(J). Some of Wang’s results can 
thereby be expressed in terms of J and 9, but this will not be done here. 
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15.3. Double Cosets in W(2) 

The group H = SU(2) is compact. The elements of H are of the 
form 

a b 
1 3 -6 H 

1 
cos e sin e 

ro = 
-sin 19 cos e I 

4, = r; j$ 

D = {di,: t E R} 

[a : b] = [_“, !!] 

h([a : b]) = J a I2 - 1 b 1”. 

The purpose here is to study the convo H /I D, which is isomorphic to E 
since the diagram below commutes: 

\l h 

E 

PROPOSITION. 

(15.3A) Each double coset of D in H is equal to Dr,D for a unique 
e E [O, V/2]. 

(15.3B) The function h is an orbital mapping from H onto E = 
[-l,l]. Each h-orbit is a double coset of D. g 8 E R then 

h-l(cos 20) = Dr,D. 

(15.3C) E is a Hermitian convo with identity 1. 

607/18/I-7 
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(15.3D) The convolution on E is specified by the formulas: 

f(cos s * cos t) = i [offf(cos s cos t - sin s sin t cos U) du, 

where A = xy and B = (1 - x2)r12(l - ya)rls. 

(15.3E) L b g e es ue measure is a Haar measure on E. 

(15.3F) The normalized Haar measure CJ on H is given by the 
formula: 

1 f du = & 1”” Ini2 1”” f (disredtt) sin 28 ds d8 dt. 
H t-o e=o s=o 

Proof. Note that h(r8) = cos 20 and 

&[a : b] di, = [e”(S+t)a : ei(+t)b]. 

The first four parts now follow readily. For the convolution, the defini- 
tion says that 

f(WJ * Wt)) = k ~2’f(Ws4u~,)) du. 
0 

This gives the first formula, though with 2.r, 2t, 224 instead of s, t, u. The 
second formula can be deduced from the first by an obvious change of 
variable. 

For Haar measure on E, it must be shown that 

This can be checked directly, using the second formula in 15.3D and the 
fact that (for C < D) 

l = : s,” ((D - y,; - C))1/2 ’ 

For 15.3F, we know that u is of this form, though the correctness of the 
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expression sin 20 de is not obvious. In view of 15.3A and 15.3B we need 
only verify that 

s 
ml2 

o f(COSW sin2OdO = & I 
1 

-If (4 dx* 

15.4. The Conjugacy Classes of SU(2) 

It was proved in Subsection 8.4 that the conjugacy classes of a compact 
group form a convo. Here, we use F = [- 1, l] as a model for the convo 
of conjugacy classes of H. The dual p is also a convo. Note that each 
character xn of F is a polynomial of degree n. For example: x0(x) = 1, 
Xl(X) = x, x2(x) = $x2 - Q. 

PROPOSITION. 

(15.4A) The function T / H is an orbital mapping from H onto F = 
[ - 1, 11. Each orbit is a conjugacy class of H. 

(15.4B) F is a Hermitian convo with identity 1. 

(15.4C) The convolution on F is speci$ed by the formulas: 

f(COSS*coSt) =qf( cos s cos t - sin s sin t cos u) sin u du, 

f(CoSs*coSt) = 2sin~sint j 
s+t 

f (cos u) sin u du, S-t 

where A = xy and B = (I - x”)‘/“(l - y2)llz. 

(15.4D) The normalized Haar measure p on F isgiven by the formulas: 

jFf 4 = ; J:lf (y)(l - ~‘7’~ 4x 

I- i 1: f (cos 0) sin2 0 do. 

(15.4E) The members of the dual P = {x0 , x1 ,...> of F are given by 
the formula: 

XnJCOS e) = s1n ne 
nsin 



98 ROBERT I. JEWETT 

Proof. It is well known and easily shown that two matrices in H are 
conjugate if and only if they have the same trace. Since T(&) = cos t 
and T(H) = [--I, 11, each conjugacy class of H contains & for some 
t E R. Note that 

= cos s cos t - sin s sin t cos 28. 

The first formula in 15.4C now follows from 15.3F, with u = 20. The 
others are easily deduced from this. 

For 15.4D, one can use the Haar measure o on H, since p = T*(U). 
But it is easier to use the formula for f (x X y) to verify directly that 

J-)x *JJ)(l - y2)llr dy = Cf(a)(l - 22)1/Z dz. 

Hewitt and Ross [4, p. 1341 compute the characters of H = SU(2). 
The relationship between the characters of H and F is noted in 8.4A. 
One can check directly using the second formula in 15.4C. Since each 
xn is a polynomial of degree n, the linear span of the xn is just the set of 
polynomials on F. This set is dense in C(F), which implies that there are 
no characters other than the xn . 

15.5. The Double Cosets of SU(2) in SL(2, C) 

Here, we take L = [l, GO) as a model for G // H. Recall that K is the 
convo of Section 9.5. In view of 15.5E, which is obvious from 15.5D, the 
dual of L can be constructed using R. The characters of L then determine 
the zonal spherical functions on G relative to H. By 14.4D, those which 
are positive-definite on G are irreducible. Of course, formulas for these 
functions are well known. 

For z E C, let 

PROPOSITION. 

(15.5A) Each double coset of H in G contains d, for a unique t > 0. 
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(15.5B) Th f t cj e ELM ion is an orbital mapping from G ontoL = [l, co). 
Each $-orbit is a double coset of H. If t E R then 4-l (cash 2t) = Hd,H. 

(15.X) L is a Hermitian convo with identity 1. 

(15.5D) The convolution on L is spec$ied by the formulas: 

f(cosh s * cash t) = 4 jozf( cos h s cash t - sinh s sinh t cos u) sin u du, 

f(cosh s Jc cash t) = 2 sinh ‘, sinh t Jytf(cosh U) sinh ic du, 
s t 

f(x * r> = & 12 f(z) dx, 

where A = xy and B = (x2 - l)l12(yz - 1)1/2. 

(15.5E) The mapping x w cash x is an isomorphism from K onto L. 

Proof. Here we regard the elements of G as linear operators on the 
two-dimensional Hilbert space C x C by the rule: 

a b [ I e d (s, t) = (as + bt, cs + dt). 

Let g E G and set ef = 1) g 11. S ince det g = 1, it must be that t > 0. 
There exists x E C x C such that /I x Ij = 1 and IIg(x)ll = e? There 
exist hr , h, E H such that h,(l, 0) = x and h,( g(x)) = (et, 0). Let 
g’ = h, Og 0 h, . Thus g’(1, 0) = (et, 0). Since 1) g’ 1) = I)g )) = et, it 
is necessary that g’ = d, . 

One can prove by direct computation that 4 is constant on double 
cosets. The rest of the proof is similar to that of the previous subsection. 

15.6. The SU(2)-Conjugacy Classes of SL(2, C) 

The group H acts on G by inner automorphisms: (g, h) c, h-lgh. 
Each orbit (h-lgh : h E H> will be called a H-conjugacy class of G. The 
space of orbits is a convo, which was denoted by GH in Subsection 8.3. 
As a model for GH the set 

J = {(z, I) EC x R: [ x - 1 I + I z + 1 I d (2(r + I))‘/“) 

will be used. This set is something like a solid cone, but has a line-seg- 
ment I = r-1, l] x (1) at its base instead of a point. In fact, I is the 
image of H under the mapping (T, 4) and is isomorphic to the convo F 
of 15.4. The projection (a, r) t-t Y from J onto L is a double coset 
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morphism with kernel I. Thus each horizontal cross-section of J is a 
coset of I. These cosets are solid planar ellipses. 

PROPOSITION. 

(15.6A) Each H-conjugacy class of G contains a matrix of the form 
r,dtid, , where 8 E [0, n/2], s E R, and t E [0, co). 

(15.6B) The mapping (T, #) is an orbital mapping from G onto J. 
Each (T, $)-orbit is a H-conjugacy class of G. If 0, s, t E R then 

7(ysdisdt) = [cos s cash t + i sin s sinh t] cos 0, 

$(r,&dJ = cash 2t. 

(15.6C) J is a Hermitian convo with identity (1, 1). 

Proof. Let g E G and let gH denote the H-conjugacy class of G 
containing g. By 15.5B, there exists t E [0, co) such that g = h,dlh, 
for some h, , h, E H. Let h = h;lh, . ThengH = (hdJH. By 15.3A, there 
exist 19 E [0,7~/2] and U, v E R such that h = di%r,di, . Let s = u + V. 

Then gH = (r,di,dJH. 
By 15.5B, $ is constant on g H. Certainly T is also. Thus gH is contained 

in a (T, $)-orbit. We can see from the second of the two formulas in 
15.6B, which are easily checked, that t is uniquely determined by g. 
If t = 0 then gH is a (T, +)-orbit, by 15.4A. Assume that t > 0. Then 19 
is uniquely determined by g. If cos 6’ $2 0 then eis is determined by g, 
and this would imply that gH is a (T,4)-orbit. Assume that cos 0 = 0. 
That is, 0 = 7~12. The equation 

shows that gH is a (7, $)-orbit. 
The convo is Hermitian, since T( g-l) =(T( g) and 4( g-l) = d(g). 
Now we verify that the range of (T, 4) is equal to J. Let g = r, di, d, 

and Set x + iy = T(g), Y  = 4(g). Suppose that t # 0. Then x and y 
can be any real numbers such that 

X2 
-+&<I, cosh2 t 

by 15.6B. Thus z = x + iy can be any complex number such that 

( z - 1 ( + [ z + 1 ( < 2 cash t = (2(r + I))‘/“. 
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