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Abstract

We consider an operator �2 +A(x) ·D+q(x) with the Navier boundary conditions on a bounded domain
in R

n, n � 3. We show that a first order perturbation A(x) ·D +q can be determined uniquely by measuring
the Dirichlet-to-Neumann map on possibly very small subsets of the boundary of the domain. Notice that
the corresponding result does not hold in general for a first order perturbation of the Laplacian.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction and statement of results

Let Ω ⊂ R
n, n � 3, be a bounded simply connected domain with C∞ connected boundary,

and let us consider the following equation

LA,q(x,D)u = 0 in Ω,
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where

LA,q(x,D) = �2 +
n∑

j=1

Aj(x)Dj + q(x) = �2 + A(x) · D + q(x),

D = i−1∇ , A = (Aj )1�j�n ∈ C4(Ω,Cn), and q ∈ L∞(Ω,C). The operator LA,q , equipped
with the domain

D(LA,q) = {
u ∈ H 4(Ω): u|∂Ω = (�u)|∂Ω = 0

}
, (1.1)

is an unbounded closed operator on L2(Ω) with purely discrete spectrum, see [14]. The boundary
conditions in (1.1) are called the Navier boundary conditions. Physically, the operator LA,q with
the domain D(LA,q) arises when considering the equilibrium configuration of an elastic plate
which is hinged along the boundary, see [9]. Let us make the following assumption:

(A) 0 is not an eigenvalue of LA,q(x,D) : D(LA,q) → L2(Ω).

Under the assumption (A), for any (f0, f1) ∈ H 7/2(∂Ω) × H 3/2(∂Ω), the boundary value prob-
lem

LA,qu = 0 in Ω,

u = f0 on ∂Ω,

�u = f1 on ∂Ω, (1.2)

has a unique solution u ∈ H 4(Ω). Let ν be the unit outer normal to the boundary ∂Ω . We then
define the Dirichlet-to-Neumann map NA,q by

NA,q :H 7/2(∂Ω) × H 3/2(∂Ω) → H 5/2(∂Ω) × H 1/2(∂Ω),

NA,q(f0, f1) = (
∂νu|∂Ω, ∂ν(�u)|∂Ω

)
where u ∈ H 4(Ω) is the solution to the problem (1.2). Let us also introduce the set of the Cauchy
data CA,q for the operator LA,q defined as follows:

CA,q = {(
u|∂Ω, (�u)|∂Ω, ∂νu|∂Ω, ∂ν(�u)|∂Ω

)
: u ∈ H 4(Ω), LA,qu = 0 in Ω

}
.

When the assumption (A) holds, the set CA,q is the graph of the Dirichlet-to-Neumann map NA,q .
It was shown in [23] that the first order perturbation A(x) · D + q(x) of the polyharmonic

operator (−�)m, m � 2, can be recovered from the knowledge of the set of the Cauchy data CA,q

on the boundary of Ω . Notice that for the corresponding problem for a first order perturbation
of the Laplacian, this is no longer true, due to the gauge invariance of boundary measurements,
see [19,30,37]. In this case, the first order perturbation can be recovered only modulo a gauge
transformation [30,37].

In this paper we are concerned with the inverse problem of determining the first order per-
turbation A(x) · D + q(x) of the biharmonic operator from the knowledge of the Dirichlet-to-
Neumann map NA,q , given only on a part of the boundary ∂Ω .
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In many applications, say, arising in geophysics, performing measurements on the entire
boundary could be either impossible or too cost consuming. One is therefore naturally led to an
inverse boundary value problem with partial measurements. Substantial progress has been made
recently on the partial data problems in the context of electrical impedance tomography as well as
the Schrödinger equation. Specifically, in the paper [4] it was shown that an unknown conductiv-
ity is determined uniquely by performing voltage-to-current measurements on, roughly speaking,
a half of the boundary. The main technical tool was a boundary Carleman estimate with a linear
weight. The Carleman estimates approach to the partial data problem was very much advanced
in the work [20]. Here, rather than working with linear weights, a broader class of limiting Car-
leman weights was introduced and employed. The work [20] contains a global uniqueness result
for the conductivity equation, assuming that the voltage-to-current map is measured on a pos-
sibly very small subset of the boundary, with the precise shape depending on the geometry of
the boundary. The limiting Carleman weights approach of [20] has led to subsequent important
developments in the partial data problem for the magnetic Schrödinger operator [7,21] and the
Dirac system [36]. To the best of our knowledge, applications of this approach to partial data
problems for other important equations and systems of mathematical physics have not yet been
explored. The purpose of this paper is to apply the techniques of Carleman estimates to the partial
data problem for the perturbed biharmonic operator.

We should also mention another approach to the partial data problems for the conductivity
equation, which is due to [18], and which is based on reflection arguments. In this approach, the
subset of the boundary, where the measurements are performed is such that the inaccessible part
of the boundary is a subset of a hyperplane or a sphere. The work [6] gives a partial data result
analogous to [18] for the Maxwell equations.

Let us now proceed to describe the precise assumptions and results. Let x0 ∈ R
n \ ch(Ω),

where ch(Ω) is the convex hull of Ω . Following [20], we define the front face of ∂Ω with
respect to x0 by

F(x0) = {
x ∈ ∂Ω: (x − x0) · ν(x) � 0

}
, (1.3)

and let F̃ be an open neighborhood of F(x0) in ∂Ω . The main result of this paper is as fol-
lows.

Theorem 1.1. Let Ω ⊂ R
n, n � 3, be a bounded simply connected domain with C∞ connected

boundary, and let A(1),A(2) ∈ C4(Ω,Cn) and q(1), q(2) ∈ L∞(Ω,C), be such that the assump-
tion (A) is satisfied for both operators. If

NA(1),q(1) (f0, f1)|F̃ = NA(2),q(2) (f0, f1)|F̃ for all (f0, f1) ∈ H 7/2(∂Ω) × H 3/2(∂Ω),

then A(1) = A(2) and q(1) = q(2) in Ω .

Following [20], we say that an open set Ω ⊂ R
n with smooth boundary is strongly star shaped

with respect to a point x1 ∈ ∂Ω , if every line through x1 which is not contained in the tangent
hyperplane cuts the boundary ∂Ω at precisely two distinct points x1 and x2, with transversal
intersection at x2. We have the following corollary of Theorem 1.1.

Corollary 1.2. Let Ω ⊂ R
n, n � 3, be a bounded simply connected domain with C∞ connected

boundary, and let x1 ∈ ∂Ω be such that the tangent hyperplane of ∂Ω at x1 only intersects ∂Ω
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at x1 and Ω is strongly star shaped with respect to x1. Furthermore, let A(1),A(2) ∈ C4(Ω,C
n)

and q(1), q(2) ∈ L∞(Ω,C), be such that the assumption (A) is satisfied for both operators. If for
a neighborhood U of x1 in ∂Ω , we have

NA(1),q(1) (f0, f1)|U = NA(2),q(2) (f0, f1)|U for all (f0, f1) ∈ H 7/2(∂Ω) × H 3/2(∂Ω),

then A(1) = A(2) and q(1) = q(2) in Ω .

Notice that if Ω is strictly convex, then the assumptions on Ω of Corollary 1.2 are satisfied
for any x1 ∈ ∂Ω , and therefore, measuring the Dirichlet-to-Neumann map on an arbitrarily small
open subset of the boundary determines the first order perturbation uniquely.

Let F̃ be an open neighborhood of the front face of ∂Ω with respect to x0, defined
in (1.3). Associated to F̃ , consider the set of the Cauchy data for the first order perturba-
tion of the biharmonic operator, which is based on the Dirichlet boundary conditions (u|∂Ω,

∂νu|∂Ω),

C̃F̃
A(j),q(j) = {(

u|∂Ω, ∂νu|∂Ω, ∂2
ν u|∂Ω, ∂3

ν u|F̃
)
: u ∈ H 4(Ω), LA(j),q(j)u = 0 in Ω

}
,

j = 1,2. Notice that the Dirichlet boundary conditions correspond to the clamped plate equation.
We have the following partial data result.

Corollary 1.3. Let Ω ⊂ R
n, n � 3, be a bounded simply connected domain with C∞ connected

boundary, and let A(1),A(2) ∈ C4(Ω,C
n) and q(1), q(2) ∈ L∞(Ω,C). If C̃F̃

A(1),q(1) = C̃F̃
A(2),q(2) ,

then A(1) = A(2) and q(1) = q(2) in Ω .

Corollary 1.3 follows from Theorem 1.1 and the explicit description for the Laplacian in the
boundary normal coordinates, see [26].

Finally, let us mention that the study of inverse boundary value problems has a long and distin-
guished tradition, in particular, in the context of electrical impedance tomography, see [1,2,29,38]
for the two-dimensional case, and [5,12,28,32,39] for the case of higher dimensions, as well as
in inverse boundary value problems and inverse scattering problems for the Schrödinger equa-
tion [3,8,12,17,30,31,34,37], and in elliptic inverse problems on Riemannian manifolds [15,16,
19,24–26]. For sufficiently non-regular coefficients, the inverse problems are not uniquely solv-
able, see [12,13], even when the measurements are performed on the whole boundary. These
counterexamples are closely related to the so-called invisibility cloaking, see e.g. [10,11,22,
27,33].

The paper is organized as follows. In Section 2 we construct complex geometric optics so-
lutions for the perturbed biharmonic operator, using the methods of Carleman estimates with
limiting Carleman weights. Section 3 is devoted to Carleman estimates with boundary terms for
the perturbed biharmonic operator. These estimates are crucial when estimating away the bound-
ary terms in the derivation of the main integral identity, which is carried out in Section 4. The
final Section 5 is concerned with the determination of the first order perturbation, relying upon
the main integral identity. We notice that the unique identifiability of the vector field part of
the perturbation becomes possible thanks to special properties of the amplitudes in the complex
geometric optics solutions.
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2. Construction of complex geometric optics solutions

Let Ω ⊂ R
n, n � 3, be a bounded domain with C∞-boundary. Following [7,20], we shall

use the method of Carleman estimates to construct complex geometric optics solutions for the
equation LA,qu = 0 in Ω , with A ∈ C4(Ω,C

n) and q ∈ L∞(Ω,C).
First we shall derive a Carleman estimate for the semiclassical biharmonic operator (−h2�)2,

where h > 0 is a small parameter, by iterating the corresponding Carleman estimate for the
semiclassical Laplacian −h2�, which we now proceed to recall following [20,35]. Let Ω̃ be an
open set in R

n such that Ω � Ω̃ and ϕ ∈ C∞(Ω̃,R). Consider the conjugated operator

Pϕ = e
ϕ
h
(−h2�

)
e− ϕ

h

and its semiclassical principal symbol

pϕ(x, ξ) = ξ2 + 2i∇ϕ · ξ − |∇ϕ|2, x ∈ Ω̃, ξ ∈ R
n. (2.1)

Following [20], we say that ϕ is a limiting Carleman weight for −h2� in Ω̃ , if ∇ϕ �= 0 in Ω̃ and
the Poisson bracket of Repϕ and Impϕ satisfies

{Repϕ, Impϕ}(x, ξ) = 0 when pϕ(x, ξ) = 0, (x, ξ) ∈ Ω̃ × R
n.

Here we may notice that dpϕ �= 0 on Ω̃ × R
n, so that the operator Pϕ is of principal type.

Examples of limiting Carleman weights are linear weights ϕ(x) = α · x, α ∈ R
n, |α| = 1, and

logarithmic weights ϕ(x) = log |x − x0|, with x0 /∈ Ω̃ . In this paper we shall use the logarithmic
weights.

In what follows we shall equip the standard Sobolev space Hs(Rn), s ∈ R, with the semiclas-
sical norm ‖u‖Hs

scl
= ‖〈hD〉su‖L2 . Here 〈ξ 〉 = (1 + |ξ |2)1/2. We shall need the following result,

obtained in [35], generalizing the Carleman estimate with a gain of one derivative, proven in [20].

Proposition 2.1. Let ϕ be a limiting Carleman weight for the semiclassical Laplacian on Ω̃ .
Then the Carleman estimate

∥∥e
ϕ
h
(−h2�

)
e− ϕ

h u
∥∥

Hs
scl

� h

Cs,Ω

‖u‖
Hs+2

scl
, Cs,Ω > 0, (2.2)

holds for all u ∈ C∞
0 (Ω), s ∈ R and all h > 0 small enough.

Iterating the Carleman estimate (2.2) two times, we get the following Carleman estimate for
the biharmonic operator,

∥∥e
ϕ
h
(
h2�

)2
e− ϕ

h u
∥∥

Hs
scl

� h2

Cs,Ω

‖u‖
Hs+4

scl
, (2.3)

for all u ∈ C∞
0 (Ω), s ∈ R and h > 0 small.

Let A ∈ W 1,∞(Ω,C
n) and q ∈ L∞(Ω,C). Then to add the perturbation h4q to the esti-

mate (2.3), we assume that −4 � s � 0 and use that

‖qu‖Hs � ‖qu‖L2 � ‖q‖L∞‖u‖L2 � ‖q‖L∞‖u‖ s+4 .

scl Hscl
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To add the perturbation

h3e
ϕ
h (A · hD)e− ϕ

h = h3(A · hD + iA · ∇ϕ)

to the estimate (2.3), assuming that −4 � s � 0, we need the following estimates

∥∥(A · ∇ϕ)u
∥∥

Hs
scl

� ‖A · ∇ϕ‖L∞‖u‖
Hs+4

scl
,

‖A · hDu‖Hs
scl

�
n∑

j=1

∥∥hDj (Aju)
∥∥

Hs
scl

+ O(h)
∥∥(divA)u

∥∥
Hs

scl

� O(1)

n∑
j=1

‖Aju‖
Hs+1

scl
+ O(h)‖u‖

Hs+4
scl

� O(1)‖u‖
Hs+4

scl
.

When obtaining the last inequality, we notice that the operator, given by multiplication by Aj ,
maps Hs+4

scl → Hs+1
scl . To see this by complex interpolation it suffices to consider the cases s = 0

and s = −4.
Let

Lϕ = e
ϕ
h h4 LA,qe− ϕ

h .

Thus, we obtain the following Carleman estimate for a first order perturbation of the biharmonic
operator.

Proposition 2.2. Let A ∈ W 1,∞(Ω,C
n), q ∈ L∞(Ω,C), and ϕ be a limiting Carleman weight

for the semiclassical Laplacian on Ω̃ . If −4 � s � 0, then for h > 0 small enough, one has

‖Lϕu‖Hs
scl

� h2

Cs,Ω,A,q

‖u‖
Hs+4

scl
, (2.4)

for all u ∈ C∞
0 (Ω).

The formal L2-adjoint of Lϕ is given by

L∗
ϕ = e− ϕ

h
(
h4 LĀ,i−1∇·Ā+q̄

)
e

ϕ
h .

Notice that if ϕ is a limiting Carleman weight, then so is −ϕ. We would like to emphasize
that this is the key property of such weights, which implies in particular that the Carleman
estimate (2.4) holds also for the formal adjoint L∗

ϕ . We shall exploit this observation in Sec-
tion 4 below, when constructing complex geometric optics solutions, corresponding to both ±ϕ,
see (4.4) and (4.5).

To construct complex geometric optics solution we need the following solvability result, sim-
ilar to [7]. The proof is essentially well known, and is included here for the convenience of the
reader.
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Proposition 2.3. Let A ∈ W 1,∞(Ω,C
n), q ∈ L∞(Ω,C), and let ϕ be a limiting Carleman weight

for the semiclassical Laplacian on Ω̃ . If h > 0 is small enough, then for any v ∈ L2(Ω), there is
a solution u ∈ H 4(Ω) of the equation

Lϕu = v in Ω,

which satisfies

‖u‖H 4
scl

� C

h2
‖v‖L2 .

Proof. Consider the following complex linear functional

L : L∗
ϕC∞

0 (Ω) → C, L∗
ϕw �→ (w,v)L2 .

By the Carleman estimate (2.4) for the formal adjoint L∗
ϕ , the map L is well defined.

Let w ∈ C∞
0 (Ω). We have

∣∣L(
L∗

ϕw
)∣∣ = ∣∣(w,v)L2

∣∣ � ‖w‖L2‖v‖L2 � C

h2

∥∥L∗
ϕw

∥∥
H−4

scl
‖v‖L2,

showing that L is bounded in the H−4-norm. Thus, by the Hahn–Banach theorem, we may
extend L to a linear continuous functional L̃ on H−4(Rn) without increasing the norm. By the
Riesz representation theorem, there exists u ∈ H 4(Rn) such that for all g ∈ H−4(Rn),

L̃(g) = (g,u)(H−4,H 4), and ‖u‖H 4
scl

� C

h2
‖v‖L2 .

Here (·,·)(H−4,H 4) stands for the usual L2-duality. It follows that Lϕu = v in Ω . This completes
the proof. �

Our next goal is to construct complex geometric optics solutions of the equation

LA,qu = 0 in Ω, (2.5)

with A ∈ C4(Ω,C
4) and q ∈ L∞(Ω,C), i.e. solutions of the following form

u(x;h) = e
ϕ+iψ

h
(
a0(x) + ha1(x) + r(x;h)

)
. (2.6)

Here ϕ ∈ C∞(Ω̃,R) is a limiting Carleman weight for the semiclassical Laplacian on Ω̃ ,
ψ ∈ C∞(Ω̃,R) is a solution to the eikonal equation pϕ(x,∇ψ) = 0 in Ω̃ , where pϕ is given
by (2.1), i.e.

|∇ψ |2 = |∇ϕ|2, ∇ϕ · ∇ψ = 0, in Ω̃, (2.7)

the amplitudes a0 ∈ C∞(Ω) and a1 ∈ C4(Ω) are solutions of the first and second transport
equations, and r is a correction term, satisfying ‖r‖ 4 = O(h2).
Hscl(Ω)
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Following [7,20], we fix a point x0 ∈ R
n \ ch(Ω) and let the limiting Carleman weight be

ϕ(x) = 1

2
log|x − x0|2, (2.8)

and

ψ(x) = π

2
− arctan

ω · (x − x0)√
(x − x0)2 − (ω · (x − x0))2

= distSn−1

(
x − x0

|x − x0| ,ω
)

, (2.9)

where ω ∈ S
n−1 is chosen so that ψ is smooth near Ω . Thus, given ϕ, the function ψ satisfies

the eikonal equation (2.7) near Ω .
Consider the conjugated operator

e
−(ϕ+iψ)

h h4 LA,qe
ϕ+iψ

h = (
h2� + 2hT

)2 + h3A · hD + h3A · (Dϕ + iDψ) + h4q, (2.10)

where

T = (∇ϕ + i∇ψ) · ∇ + 1

2
(�ϕ + i�ψ). (2.11)

Substituting (2.6) into (2.5) and collecting powers of h, we get the first transport equation

T 2a0 = 0 in Ω, (2.12)

the second transport equation

T 2a1 = −1

2
(� ◦ T + T ◦ �)a0 − 1

4
A · (Dϕ + iDψ)a0 in Ω, (2.13)

and

e
−(ϕ+iψ)

h h4 LA,q

(
e

ϕ+iψ
h r

) = −e
−(ϕ+iψ)

h h4 LA,q

(
e

ϕ+iψ
h (a0 + ha1)

)
= −h4�2(a0 + ha1) − 2h4(� ◦ T + T ◦ �)a1 − h4A · Da0

− h5A · Da1 − h4A · (Dϕ + iDψ)a1 − h4q(a0 + ha1). (2.14)

Let us now discuss the solvability of the Eqs. (2.12), (2.13) and (2.14). To this end we fol-

low [7] and choose coordinates in R
n so that x0 = 0 and Ω̃ ⊂ {xn > 0}. We set ω = e1 =

(1,0Rn−1), and introduce also the cylindrical coordinates (x1, rθ) on R
n with r > 0 and θ ∈ S

n−2.
Consider the change of coordinates x �→ (z, θ), where z = x1 + ir is a complex variable. Notice
that Im z > 0 near Ω . Then in these coordinates, we have

ϕ = log|z| = Re log z, ψ = π

2
− arctan

Re z

Im z
= Im log z,

when Im z > 0. Hence,

ϕ + iψ = log z.
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Moreover, we have

∇(ϕ + iψ) = 1

z
(e1 + ier ), (2.15)

where er = (0, θ), θ ∈ Sn−2, and

∇(ϕ + iψ) · ∇ = 2

z
∂z̄, �(ϕ + iψ) = −2(n − 2)

z(z − z̄)
. (2.16)

In the cylindrical coordinates, the operator T , defined in (2.11), has the form

T = 2

z

(
∂z̄ − (n − 2)

2(z − z̄)

)
.

Thus, it follows that (2.12) has the form

(
∂z̄ − (n − 2)

2(z − z̄)

)2

a0 = 0 in Ω.

In particular, one can take a0 ∈ C∞(Ω) satisfying (∂z̄ − (n−2)
2(z−z̄)

)a0 = 0. The general solution of

the latter equation is given by a0 = (z − z̄)(2−n)/2g0 with g0 ∈ C∞(Ω) satisfying ∂z̄g0 = 0.
In the cylindrical coordinates, the second transport equation (2.13) has the form

(
∂z̄ − (n − 2)

2(z − z̄)

)2

a1 = f in Ω, (2.17)

where f is given. Notice that a1 will have in general the same regularity as f , which is the same
as the regularity of A. It follows from (2.14) that we need four derivatives of a1, which explains
our regularity assumptions on A, i.e. A ∈ C4(Ω,C

n).
In order to solve (2.17), given f ∈ C4(Ω), one can find v ∈ C4(Ω), which satisfies

(
∂z̄ − (n − 2)

2(z − z̄)

)
v = f in Ω, (2.18)

and then solve (
∂z̄ − (n − 2)

2(z − z̄)

)
a1 = v in Ω.

We look for a solution of (2.18) in the form v = egv0 with g ∈ C∞(Ω) satisfying ∂z̄g = n−2
2(z−z̄)

.

Thus, v0 ∈ C4(Ω) can be obtained by solving ∂z̄v0 = e−gf , applying the Cauchy transform, i.e.

v0(z, θ) = 1

π

∫
χ(z − ζ, θ)e−g(z−ζ,θ)f (z − ζ, θ)

ζ
d Re ζ d Im ζ,
C
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where χ ∈ C∞
0 (Rn) is such that χ = 1 near Ω . Hence, the second transport equation (2.13) is

solvable globally near Ω with a solution a1 ∈ C4(Ω).
Having chosen the amplitudes a0 ∈ C∞(Ω) and a1 ∈ C4(Ω), we obtain from (2.14) that

e
−ϕ
h h4 LA,qe

ϕ
h
(
e

iψ
h r

) = O
(
h4),

in L2(Ω). Thanks to Proposition 2.3, for h > 0 small enough, there exists a solution r ∈ H 4(Ω)

of (2.14) such that ‖r‖H 4
scl

= O(h2).
Summing up, we have the following result.

Proposition 2.4. Let A ∈ C4(Ω,C
n), q ∈ L∞(Ω,C). Then for all h > 0 small enough, there

exist solutions u(x;h) ∈ H 4(Ω) to the equation LA,qu = 0 in Ω , of the form

u(x;h) = e
ϕ+iψ

h
(
a0(x) + ha1(x) + r(x;h)

)
, (2.19)

where ϕ ∈ C∞(Ω̃,R) is a limiting Carleman weight for the semiclassical Laplacian on Ω̃ , cho-
sen as in (2.8), ψ ∈ C∞(Ω̃,R) is given by (2.9), a0 ∈ C∞(Ω) and a1 ∈ C4(Ω) are solutions
of the first and second transport equations (2.12) and (2.13), respectively, and r is a correction
term, satisfying ‖r‖H 4

scl(Ω) = O(h2).

Remark 2.1. We would like to emphasize that the precise estimate for the remainder r , obtained
in Proposition 2.4, will be crucial in Section 4, when obtaining the main integral identity for
the unknown first order perturbation. In order to get the required decay property of r as h → 0,
we have found it convenient to introduce explicitly the next order term ha1 in the semiclassical
expansion of the amplitude of the solution (2.19).

Remark 2.2. Notice that in order to construct complex geometric optics solutions for the equa-
tion LA,qu = 0, we use a limiting Carleman weight for the semiclassical Laplacian. This is due
to the fact that the concept of a Carleman weight is irrelevant for the biharmonic operator. Indeed,
the semiclassical principal symbol of the conjugated operator eϕ/h(h4�2)e−ϕ/h is given by p2

ϕ ,
with pϕ introduced in (2.1), and therefore, the conjugated operator is not of principal type. On
the other hand, it would be interesting to investigate the notion of a limiting Carleman weight for
some other elliptic operators of higher order, e.g.

∑n
j=1(hDxj

)4.

3. Boundary Carleman estimates

Following [7,20], in order to prove that some boundary integrals tend to zero as h → 0, we
shall use Carleman estimates, involving the boundary terms.

Let Ω ⊂ R
n, n � 3, be a bounded domain with C∞-boundary, and Ω̃ ⊂ R

n be an open set
such that Ω � Ω̃ , and ϕ ∈ C∞(Ω̃,R) be a limiting Carleman weight for the semiclassical Lapla-
cian. We define

∂Ω± = {
x ∈ ∂Ω: ±∂νϕ(x) � 0

}
.

We shall need the following result from [20].
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Proposition 3.1. Let ϕ be a limiting Carleman weight for the semiclassical Laplacian on Ω̃ .
Then there exists C > 0 such that the following Carleman estimate

∥∥e
−ϕ
h

(−h2�
)
u
∥∥

L2 + h3/2
∥∥√−∂νϕe− ϕ

h ∂νu
∥∥

L2(∂Ω−)

� 1

C

(
h
∥∥e

−ϕ
h u

∥∥
H 1

scl
+ h3/2

∥∥√
∂νϕe− ϕ

h ∂νu
∥∥

L2(∂Ω+)

)
, (3.1)

holds for all u ∈ H 2(Ω), u|∂Ω = 0, and all h > 0 small enough.

Iterating (3.1) two times and adding a first order perturbation, we get the following boundary
Carleman estimate for the first order perturbation of the biharmonic operator.

Proposition 3.2. Let A ∈ W 1,∞(Ω,C
n), q ∈ L∞(Ω,C), and ϕ be a limiting Carleman weight

for the semiclassical Laplacian on Ω̃ . Then the following estimate

∥∥e
−ϕ
h

(
h4 LA,q

)
u
∥∥

L2 + h3/2
∥∥√−∂νϕe− ϕ

h ∂ν

(−h2�u
)∥∥

L2(∂Ω−)
+ h5/2

∥∥√−∂νϕe− ϕ
h ∂νu

∥∥
L2(∂Ω−)

� 1

C

(
h2

∥∥e
−ϕ
h u

∥∥
H 1

scl
+ h3/2

∥∥√
∂νϕe− ϕ

h ∂ν

(−h2�u
)∥∥

L2(∂Ω+)
+ h5/2

∥∥√
∂νϕe− ϕ

h ∂νu
∥∥

L2(∂Ω+)

)
,

(3.2)

holds, for all u ∈ H 4(Ω), u|∂Ω = (�u)|∂Ω = 0, and all h > 0 small enough.

Here we use that

∥∥e− ϕ
h h4A · Du

∥∥
L2 � h3

n∑
j=1

(∥∥hDj

(
Aje

− ϕ
h u

)∥∥
L2 + ∥∥(

hDj

(
Aje

− ϕ
h
))

u
∥∥

L2

)

� h3
n∑

j=1

(
2
∥∥(hDjAj )e

− ϕ
h u

∥∥
L2 + ∥∥AjhDj

(
e− ϕ

h u
)∥∥

L2

+ ∥∥Aj(Djϕ)e− ϕ
h u

∥∥
L2

)
� O

(
h3)∥∥e− ϕ

h u
∥∥

H 1
scl

.

Notice that when ϕ is given by (2.8), we have ∂νϕ(x) = (x−x0)·ν(x)

|x−x0|2 and therefore,
∂Ω− = F(x0).

4. Integral identity, needed to recover the first order perturbation

We shall need the following Green’s formula, see [14],∫
Ω

(LA,qu)v dx −
∫
Ω

uL∗
A,qv dx = −i

∫
∂Ω

ν(x) · uAv dS −
∫

∂Ω

∂ν(−�u)v dS +
∫

∂Ω

(−�u)∂νv dS

−
∫

∂νu(−�v)dS +
∫

u
(
∂ν(−�v)

)
dS, (4.1)
∂Ω ∂Ω
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valid for all u,v ∈ H 4(Ω). Here L∗
A,q = LĀ,i−1∇·Ā+q̄ is the adjoint of LA,q , ν is the unit outer

normal to the boundary ∂Ω , and dS is the surface measure on ∂Ω .
Let (f0, f1) ∈ H 7/2(∂Ω) × H 3/2(∂Ω) and uj ∈ H 4(Ω) be such that

LA(j),q(j)uj = 0 in Ω, j = 1,2, u1|∂Ω = u2|∂Ω = f0, (�u1)|∂Ω = (�u2)|∂Ω = f1.

Then by assumption of Theorem 1.1, there exists an open neighborhood F̃ of F(x0) = ∂Ω−
in ∂Ω , such that

∂νu1|F̃ = ∂νu2|F̃ , ∂ν(�u1)|F̃ = ∂ν(�u2)|F̃ .

We have

LA(1),q(1) (u1 − u2) = (
A(2) − A(1)

) · Du2 + (
q(2) − q(1)

)
u2 in Ω. (4.2)

Let v ∈ H 4(Ω) satisfy L∗
A(1),q(1)v = 0 in Ω . Using (4.1), we get

∫
Ω

((
A(2) − A(1)

) · Du2
)
v dx +

∫
Ω

(
q(2) − q(1)

)
u2v dx

= −
∫

∂Ω\F̃
∂ν

(−�(u1 − u2)
)
v dS −

∫
∂Ω\F̃

∂ν(u1 − u2)(−�v)dS. (4.3)

To show the equalities A(1) = A(2) and q(1) = q(2), the idea is to use the identity (4.3) with u2
and v being complex geometric optics solutions and to use the boundary Carleman estimate (3.2)
to show that the boundary integrals in (4.3), multiplied by some power of h, tend to zero as
h → 0.

To construct the appropriate complex geometric optics solutions, let ϕ and ψ be defined
by (2.8) and (2.9), respectively. Then thanks to Proposition 2.4, we can take

u2(x;h) = e
ϕ+iψ

h
(
a

(2)
0 (x) + ha

(2)
1 (x) + r(2)(x;h)

)
, (4.4)

v(x;h) = e
−ϕ+iψ

h
(
a

(1)
0 (x) + ha

(1)
1 (x) + r(1)(x;h)

)
, (4.5)

where a
(j)

0 ∈ C∞(Ω) and a
(j)

1 ∈ C4(Ω), j = 1,2, are such that

(
(∇ϕ + i∇ψ) · ∇ + �ϕ + i�ψ

2

)2

a
(2)
0 = 0,

(
(−∇ϕ + i∇ψ) · ∇ + −�ϕ + i�ψ

2

)2

a
(1)
0 = 0, (4.6)

and ∥∥r(j)
∥∥

4 = O
(
h2). (4.7)
Hscl
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Substituting u2 and v, given by (4.4) and (4.5), in (4.3), we get

∫
Ω

(
A(2) − A(1)

) · 1

h
(Dϕ + iDψ)

(
a

(2)
0 + ha

(2)
1 + r(2)

)(
a

(1)
0 + ha

(1)
1 + r(1)

)
dx

+
∫
Ω

(
A(2) − A(1)

) · (Da
(2)
0 + hDa

(2)
1 + Dr(2)

)(
a

(1)
0 + ha

(1)
1 + r(1)

)
dx

+
∫
Ω

(
q(2) − q(1)

)(
a

(2)
0 + ha

(2)
1 + r(2)

)(
a

(1)
0 + ha

(1)
1 + r(1)

)
dx

= −
∫

∂Ω\F̃
∂ν

(−�(u1 − u2)
)
v dS −

∫
∂Ω\F̃

∂ν(u1 − u2)(−�v)dS. (4.8)

Let us now show that

h

∫
∂Ω\F̃

∂ν

(−�(u1 − u2)
)
v dS → 0, as h → +0, (4.9)

and

h

∫
∂Ω\F̃

∂ν(u1 − u2)(−�v)dS → 0, as h → +0, (4.10)

where u2 and v, given by (4.4) and (4.5). To this end, notice that (4.7) implies that r(j) = O(1),
j = 1,2, in the standard (h = 1) H 2(Ω)-norm. Hence,

r(j)
∣∣
∂Ω

= O(1) in L2(∂Ω), (4.11)

and

∇r(j)
∣∣
∂Ω

= O(1) in L2(∂Ω). (4.12)

Moreover, it follows from (4.7) that r(j) = O(1/h), j = 1,2, in the standard H 3(Ω)-norm.
Thus,

�r(j)
∣∣
∂Ω

= O(1/h) in L2(∂Ω). (4.13)

Furthermore, by the definition of F(x0) and F̃ , there exists ε > 0 fixed such that

∂Ω− = F(x0) ⊂ Fε := {x ∈ ∂Ω: ∂νϕ � ε} ⊂ F̃ .
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Using the Cauchy–Schwarz inequality and (4.11), we have

∣∣∣∣h
∫

∂Ω\F̃
∂ν

(−�(u1 − u2)
)
v dS

∣∣∣∣
� h

∫
∂Ω\Fε

∣∣∂ν

(−�(u1 − u2)
)∣∣e −ϕ

h

∣∣a(1)
0 + ha

(1)
1 + r(1)

∣∣dS

� O(h)

( ∫
∂Ω\Fε

ε
∣∣∂ν

(−�(u1 − u2)
)∣∣2

e
−2ϕ

h dS

)1/2∥∥a
(1)
0 + ha

(1)
1 + r(1)

∥∥
L2(∂Ω)

� O(h)
∥∥√

∂νϕe
−ϕ
h ∂ν

(−�(u1 − u2)
)∥∥

L2(∂Ω+)
. (4.14)

By the boundary Carleman estimate (3.2) and (4.2), we get

O(h)
∥∥√

∂νϕe
−ϕ
h ∂ν

(−�(u1 − u2)
)∥∥

L2(∂Ω+)

� O
(
h3/2)∥∥e

−ϕ
h LA(1),q(1) (u1 − u2)

∥∥
L2(Ω)

= O
(
h3/2)∥∥e

−ϕ
h

(
A(2) − A(1)

) · Du2 + e
−ϕ
h

(
q(2) − q(1)

)
u2

∥∥
L2(Ω)

� O
(
h3/2)∥∥∥∥(

A(2) − A(1)
) · 1

h
(Dϕ + iDψ)

(
a

(2)
0 + ha

(2)
1 + r(2)

)∥∥∥∥
L2(Ω)

+ O
(
h3/2)∥∥(

A(2) − A(1)
) · (Da

(2)
0 + hDa

(2)
1 + Dr(2)

)∥∥
L2(Ω)

+ O
(
h3/2)∥∥(

q(2) − q(1)
)(

a
(2)
0 + ha

(2)
1 + r(2)

)∥∥
L2(Ω)

� O
(
h1/2). (4.15)

Thus, (4.9) follows.
To establish (4.10), we first notice that thanks to (2.7), we have

�v = e
−ϕ+iψ

h

(−�ϕ + i�ψ

h

(
a

(1)
0 + ha

(1)
1 + r(1)

)

+ 2
−∇ϕ + i∇ψ

h
· (∇a

(1)
0 + h∇a

(1)
1 + ∇r(1)

) + �a
(1)
0 + h�a

(1)
1 + �r(1)

)
.

This together with (4.11), (4.12) and (4.13) imply that

�v|∂Ω = e
−ϕ
h ṽ, ṽ = O(1/h) in L2(∂Ω).

This and the Cauchy–Schwarz inequality yield that
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∣∣∣∣h
∫

∂Ω\F̃
∂ν(u1 − u2)(−�v)dS

∣∣∣∣ � O(1)
∥∥√

∂νϕe
−ϕ
h ∂ν(u1 − u2)

∥∥
L2(∂Ω+)

� O
(
h3/2)∥∥e

−ϕ
h LA(1),q(1) (u1 − u2)

∥∥
L2(Ω)

� O
(
h1/2). (4.16)

Here we use the boundary Carleman estimate (3.2) and proceed similarly to (4.15). Hence,
(4.10) follows.

5. Determining the first order perturbation

Multiplying (4.8) by h and letting h → +0, and using (4.9) and (4.10), we get∫
Ω

(
A(2) − A(1)

) · (∇ϕ + i∇ψ)a
(2)
0 a

(1)
0 dx = 0, (5.1)

where a
(1)
0 , a

(2)
0 ∈ C∞(Ω) satisfy the transport equations (4.6).

Consider now (5.1) with a
(1)
0 = eΦ1 and a

(2)
0 = eΦ2 such that

(∇ϕ + i∇ψ) · ∇Φ2 + �ϕ + i�ψ

2
= 0,

(∇ϕ + i∇ψ) · ∇Φ1 + �ϕ + i�ψ

2
= 0, (5.2)

and Φj ∈ C∞(Ω), j = 1,2. In the coordinates (z, θ), introduced in Section 2, Eqs. (5.2) have
the following form

∂z̄Φ2 − (n − 2)

2(z − z̄)
= 0, ∂z̄Φ1 − (n − 2)

2(z − z̄)
= 0.

Hence,

∂z̄(Φ2 + Φ1) − n − 2

z − z̄
= 0. (5.3)

Notice that geΦ2 with g ∈ C∞(Ω) such that

(∇ϕ + i∇ψ) · ∇g = 0 in Ω, (5.4)

also satisfies the transport equation (4.6). In the coordinates (z, θ), the condition (5.4) reads
∂z̄g = 0 in Ω .

Substituting a
(2)
0 = geΦ2 and a

(1)
0 = eΦ1 in (5.1), we get

∫ (
A(2) − A(1)

) · (∇ϕ + i∇ψ)geΦ2+Φ1 dx = 0. (5.5)
Ω
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In the cylindrical coordinates (z, θ), by (2.15), the identity (5.5) has the form∫
Ω

(
A(2) − A(1)

) · (e1 + ier )
g

z
eΦ2+Φ1rn−2 dr dθ dx1 = 0.

Let Pθ be the two-dimensional plane consisting of points (x1, rθ) for θ fixed, and write Ωθ =
Ω ∩ Pθ . We also use the complex variable z = x1 + ir , which identifies Pθ with C.

Taking g = g1(z) ⊗ g2(θ) ∈ C∞(Ω), where g1 is holomorphic and varying g2, we obtain as
in [7], for almost all θ ∈ S

n−2,∫
Ωθ

(
A(2) − A(1)

) · (e1 + ier )
g1

z
eΦ2+Φ1(z − z̄)n−2 dz ∧ dz̄ = 0,

and hence, for all θ ∈ S
n−2, by continuity. Since Im z > 0 in Ω , the function g1/z is an arbitrary

holomorphic function and therefore, we can drop the factor 1/z. We get∫
Ωθ

(
A(2) − A(1)

) · (e1 + ier )g1e
Φ2+Φ1(z − z̄)n−2 dz ∧ dz̄ = 0.

By (5.3), we conclude that

∂z̄

(
eΦ2+Φ1(z − z̄)n−2) = 0. (5.6)

Since Im z > 0 in Ω , the holomorphic function eΦ2+Φ1(z − z̄)n−2 is nowhere vanishing, and we
can choose g1 = (eΦ2+Φ1(z − z̄)n−2)−1g0, where ∂z̄g0 = 0 in Ω . We get∫

Ωθ

(
A(2) − A(1)

) · (e1 + ier )g0 dz ∧ dz̄ = 0. (5.7)

Choosing complex geometric optics solutions u2 and v as in (4.4) and (4.5), where ψ is
replaced by −ψ , we conclude, by repeating the arguments above, that also∫

Ωθ

(
A(2) − A(1)

) · (e1 − ier )g̃0 dz ∧ dz̄ = 0, (5.8)

where ∂zg̃0 = 0 in Ω .
Thus, since any ξ ∈ Pθ is a linear combination of e1 and er , choosing g0 = g̃0 = 1 in (5.7)

and (5.8), we get ∫
Ωθ

(
A(2) − A(1)

) · ξ dz ∧ dz̄ = 0 for all ξ ∈ Pθ .

At this point we are exactly in the same situation as the one, described in [7, Section 5], see
formula (5.7) there. Repeating the arguments given in that paper, following this formula, we
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obtain that d(A(2) − A(1)) = 0 in Ω . Here A(1) and A(2) are viewed as 1-forms. We may notice
that the arguments of [7, Section 5] are based upon the microlocal Helgason support theorem
combined with the microlocal Holmgren theorem.

Since Ω is simply connected, we may write

A(2) − A(1) = ∇Ψ, (5.9)

with Ψ ∈ C5(Ω).
Our next step is to prove that Ψ = 0 on Ω . Writing (5.7) and (5.8) in the Euclidean coordinates

and using (5.9) and (2.15), we have

∫
Ωθ

(x1 + ir)(∇ϕ + i∇ψ) · (∇Ψ )g0 dx1 dr = 0,

∫
Ωθ

(x1 − ir)(∇ϕ − i∇ψ) · (∇Ψ )g̃0 dx1 dr = 0.

Thus, by (2.16) we get

∫
Ωθ

(∂z̄Ψ )g0 dz ∧ dz̄ = 0,

∫
Ωθ

(∂zΨ )g̃0 dz ∧ dz̄ = 0,

for all θ ∈ Sn−2, g0, g̃0 ∈ C∞(Ωθ ) such that ∂z̄g0 = 0 in Ωθ , and ∂zg̃0 = 0. By Sard’s theorem,
the boundary of Ωθ is smooth for almost all θ , see [7,21] for more details. Thus, by Stokes’
theorem, we get

∫
∂Ωθ

Ψg0 dz = 0,

∫
∂Ωθ

Ψ g̃0 dz̄ = 0,

for almost all θ ∈ S
n−2. Hence, taking g̃0 = g0, we obtain that

∫
∂Ωθ

Ψ g0 dz = 0,

and therefore, ∫
∂Ωθ

(ReΨ )g0 dz = 0,

∫
∂Ωθ

(ImΨ )g0 dz = 0,

for any g0 ∈ C∞(Ωθ ) such that ∂z̄g0 = 0 and for almost all θ . At this point we are precisely in the
same situation as the one, described in the beginning of [7, Section 6]. Repeating the arguments
of that paper, we conclude that Ψ is constant along the connected set ∂Ω , and we may and shall
assume that Ψ = 0 along ∂Ω .
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Going back to (5.1), we get

∫
Ω

(∇Ψ ) · (∇ϕ + i∇ψ)a
(2)
0 a

(1)
0 dx = 0, (5.10)

where a
(1)
0 , a

(2)
0 ∈ C∞(Ω) satisfy the transport equations (4.6). Integrating by parts in (5.10) and

using the fact that Ψ = 0 along ∂Ω , we obtain that

∫
Ω

Ψ
(
(�ϕ + i�ψ) + (∇ϕ + i∇ψ) · ∇)

a
(2)
0 a

(1)
0 dx = 0.

This implies that

∫
Ω

Ψ
((

T a
(2)
0

)
a

(1)
0 + a

(2)
0 T a

(1)
0

)
dx = 0, (5.11)

where the operator T is given by (2.11). We choose now a
(1)
0 ∈ C∞(Ω) being a solution of the

equation T a
(1)
0 = 0 of the form a

(1)
0 = eΦ1 . As for a

(2)
0 ∈ C∞(Ω), we require that T a

(2)
0 = eΦ2g,

where Φ2 ∈ C∞(Ω) is such that T eΦ2 = 0 and g ∈ C∞(Ω) is such that (∇ϕ + i∇ψ) · ∇g = 0.
It is clear that T 2a

(2)
0 = 0. The existence of such a

(1)
0 and a

(2)
0 is explained in Section 2. Thus, it

follows from (5.11) that

∫
Ω

Ψ eΦ2+Φ1g dx = 0. (5.12)

In the coordinates (z, θ), (5.12) reads

∫
Ω

ΨgeΦ2+Φ1(z − z̄)n−2 dz ∧ dz̄ ∧ dθ = 0. (5.13)

As before, the function eΦ2+Φ1(z − z̄)n−2 is nowhere vanishing holomorphic in z, see (5.6), and
we shall take g = (eΦ2+Φ1(z − z̄)n−2)−1 ⊗ g2(θ), where g2 is smooth. Hence, (5.13) implies
that ∫

Ω

Ψ (x1, r, θ)g2(θ) dx1 dr dθ = 0,

for any smooth function g2(θ). We arrive exactly at the formula (6.2) of the paper [7], and arguing
as in [7], appealing, as before, to results of analytic microlocal analysis, we obtain that Ψ = 0
in Ω . Hence, we conclude that A(1) = A(2) in Ω .

The final step in proving Theorem 1.1 is to show that q(1) = q(2) in Ω . To that end we shall
need to establish the following estimates



K. Krupchyk et al. / Journal of Functional Analysis 262 (2012) 1781–1801 1799
∣∣∣∣
∫

∂Ω\F̃
∂ν

(−�(u1 − u2)
)
v dS

∣∣∣∣ � O
(
h1/2),

∣∣∣∣
∫

∂Ω\F̃
∂ν(u1 − u2)(−�v)dS

∣∣∣∣ � O
(
h1/2), (5.14)

where u2 and v are given by (4.4) and (4.5). First, similarly to (4.14), we obtain that

∣∣∣∣
∫

∂Ω\F̃
∂ν

(−�(u1 − u2)
)
v dS

∣∣∣∣ � O(1)
∥∥√

∂νϕe
−ϕ
h ∂ν

(−�(u1 − u2)
)∥∥

L2(∂Ω+)
.

Using the boundary Carleman estimate (3.2), and (4.2) with A(1) = A(2), we get

∥∥√
∂νϕe

−ϕ
h ∂ν

(−�(u1 − u2)
)∥∥

L2(∂Ω+)
� O

(
h1/2)∥∥e

−ϕ
h LA(1),q(1) (u1 − u2)

∥∥
L2(Ω)

= O
(
h1/2)∥∥e

−ϕ
h

(
q(2) − q(1)

)
u2

∥∥
L2(Ω)

� O
(
h1/2),

which shows the first estimate in (5.14). To show the second estimate in (5.14), we follow (4.16)
and write

∣∣∣∣
∫

∂Ω\F̃
∂ν(u1 − u2)(−�v)dS

∣∣∣∣ � O
(
h−1)∥∥√

∂νϕe
−ϕ
h ∂ν(u1 − u2)

∥∥
L2(∂Ω+)

� O
(
h1/2)∥∥e

−ϕ
h LA(1),q(1) (u1 − u2)

∥∥
L2(Ω)

� O
(
h1/2).

Here we have also used the boundary Carleman estimate (3.2), and the fact that A(1) = A(2).
Now substituting A(1) = A(2) in (4.8), letting h → +0, and using (5.14), we get

∫
Ω

(
q(2) − q(1)

)
a

(2)
0 a

(1)
0 dx = 0. (5.15)

We choose a
(1)
0 , a

(2)
0 ∈ C∞(Ω) to be such that a

(1)
0 = eΦ1 and a

(2)
0 = eΦ2g, where Φ1,Φ2 ∈

C∞(Ω) are such that T eΦ1 = 0, T eΦ2 = 0, and g ∈ C∞(Ω) is such that (∇ϕ + i∇ψ) · ∇g = 0.
Thus, (5.15) yields that

∫
Ω

(
q(2) − q(1)

)
eΦ2+Φ1g dx = 0.

Arguing in the same way as after (5.12), we conclude that q(1) = q(2). This completes the proof
of Theorem 1.1.
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