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We solve a problem of Komeda concerning the proportion of
numerical semigroups which do not satisfy Buchweitz’ necessary
criterion for a semigroup to occur as the Weierstrass semigroup of
a point on an algebraic curve. A result of Eisenbud and Harris gives
a sufficient condition for a semigroup to occur as a Weierstrass
semigroup. We show that the family of semigroups satisfying this
condition has density zero in the set of all semigroups. In the
process, we prove several more general results about the structure
of a typical numerical semigroup.
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1. Introduction

A numerical semigroup S is an additive submonoid of N such that N \ S is finite. The complement
is referred to as the gap set and is denoted by H(S). Its size is called the genus of S and is usually de-
noted by g(S). The largest of these gaps is called the Frobenius number, denoted F (S), and the small-
est nonzero nongap is called the multiplicity, denoted m(S). When it will not cause confusion we will
omit the S and write g, F and m. A very good source for background on numerical semigroups is [9].

Let C be a smooth projective algebraic curve of genus g over the complex numbers. It is a the-
orem of Weierstrass that given any p ∈ C there are exactly g integers αi(p) with 1 = α1(p) < · · · <

αg(p) � 2g − 1 such that there does not exist a meromorphic function f on C which has a pole
of order αi(p) at p and no other singularities [5]. This characterization makes it clear that the set
N\ {α1(p), . . . ,αg(p)} is a numerical semigroup of genus g . We say that a semigroup S is Weierstrass
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if there exist some curve C and some point p ∈ C such that S is this semigroup. In the late 19th
century, Hurwitz suggested studying which numerical semigroups are Weierstrass [8].

A point p such that (α1(p), . . . ,αg(p)) �= (1, . . . , g) is called a Weierstrass point of C , and it is
known that there are at most g3 − g such points. It is an active area of research to consider a mul-
tiset S of at most g3 − g semigroups of genus g and study the set of curves for which S is the
collection of semigroups of the Weierstrass points of the curve. This multiset gives us important
information about the geometry of the curve. We would like to better understand, for example, the
dimension of the moduli space of curves with a fixed collection of semigroups attached to their Weier-
strass points. For more on the history of this problem see the article of del Centina [5], or the book [1].

In this paper we focus on two criteria that address this problem of Hurwitz. The first is a simple
combinatorial criterion of Buchweitz which is necessary for a semigroup to occur as the Weierstrass
semigroup of some point on some curve C [4]. This condition gave the first proof that not all semi-
groups are Weierstrass. In the final section of the paper we consider a criterion of Eisenbud and
Harris [6], which shows that certain semigroups are Weierstrass. These two simple criteria cover
much of what we know about this problem. The main result of this paper is to show that in some
sense, both of the sets covered by these criteria have density zero in the entire set of numerical
semigroups. The overall proportion of Weierstrass semigroups remains completely unknown.

Let N(g) be the number of numerical semigroups of genus g . Recent work of Zhai [15], building
on work of Zhao [16], gives a better understanding of the growth of N(g). These papers build towards
resolving a conjecture of Bras-Amorós [3].

Theorem 1 (Zhai). The function N(g) satisfies

lim
g→∞

N(g)

ϕg
= C,

where C > 0 is a constant and ϕ = 1+√
5

2 is the golden ratio.

This result will play an important role in some of our proofs.
We next recall the criterion of Buchweitz [4].

Proposition 2 (Buchweitz). Let S be a semigroup of genus g and let H(S) be the set of gaps of S. Suppose that
there exists some n > 1 such that ∣∣nH(S)

∣∣ > (2n − 1)(g − 1),

where nH(S) is the n-fold sum of the set H(S). Then S is not Weierstrass.

Let NB(g) be the number of semigroups S of genus g for which there is some n such that S does
not satisfy the Buchweitz criterion with this n. Let NB2(g) be the number of semigroups S of genus g
such that |2H(S)| > 3(g − 1). Komeda seems to be the first to have studied limg→∞ NB2(g)

N(g)
[11].

The following is part of a table included in [11]:

g N(g) NB2(g)
NB2(g)

N(g)

16 4806 2 .000416
17 8045 6 .000746
18 13 467 15 .001114
19 22 464 31 .001380
20 37 396 67 .001792
21 62 194 145 .002331
22 103 246 293 .002838
23 170 963 542 .003170
24 282 828 1053 .003723
25 467 224 1944 .004161
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One main goal of this paper is to show that this limit is 0. In fact, we will show that the limit of
the ratio of NB(g) to N(g) is 0. The key step in this argument will be a technical result building on
work of Zhai [15].

In the final part of the paper we will focus on the proportion of semigroups which are known to
occur as Weierstrass semigroups. Eisenbud and Harris [6], have shown that a certain class of semi-
groups with F < 2m do occur as Weierstrass semigroups. We will show that the proportion of such
semigroups is 0 as g goes to infinity.

2. Semigroups satisfying the Buchweitz criterion

We first show that certain classes of semigroups cannot possibly fail the Buchweitz criterion for
any n. Fix ε > 0 and suppose that S is a semigroup with (2 − ε)m < F < (2 + ε)m. We want to
consider when S fails the Buchweitz criterion for some chosen value of n. We have,

|nH| � (2 + ε)nm − (n − 1).

Therefore, |nH| > (2n − 1)(g − 1) implies that

g � (2 + ε)nm + n

2n − 1
= (2 + ε)

nm

2n − 1
+ n

2n − 1
<

(
2 + 1

20

)
nm

2n − 1

whenever ε < 1
20 − 1

m . We see that this inequality holds for any ε < 1
21 and m � 420.

We note that since n � 2 is an integer,

(
2 + 1

20

)
n

2n − 1
� 41

30
< 1.3667.

We will state the results of the above paragraph as a proposition.

Proposition 3. Let ε < 1
21 and m � 420.

Suppose that S is a semigroup with (2 − ε)m < F < (2 + ε)m. Then |nH| > (2n − 1)(g − 1) implies
g < 1.3667m.

The main technical result of the rest of this paper is that the restriction on the genus in the
proposition does not occur often.

Theorem 4.

(1) Fix ε > 0. Let A(g) be the number of semigroups of genus g satisfying (2 − ε)m < F < (2 + ε)m. Then

lim
g→∞

A(g)

N(g)
= 1.

(2) Let B(g) be the number of semigroups of genus g with m < 420. Then

lim
g→∞

B(g)

N(g)
= 0.

(3) Let C(g) be the number of semigroups of genus g with g < 1.3667m. Then

lim
g→∞

C(g)

N(g)
= 0.
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The claim for A(g) follows directly from Proposition 10 and Theorem 13 below. Suppose we have
established this claim. The proportion of numerical semigroups of genus g with Frobenius number at
least (2 + ε)m goes to 0 as g goes to infinity. For any ε the number of semigroups with Frobenius
number at most (2 + ε)420 is finite. Therefore, as g goes to infinity, almost all semigroups satisfying
(2 − ε)m < F < (2 + ε)m have m > 420. This establishes the claim for B(g). The statement regarding
C(g) follows from Corollary 8 and Proposition 16.

From Theorem 4 it is easy to prove our main theorem.

Theorem 5. Let NB(g) be the number of semigroups of genus g which fail the Buchweitz criterion for some n.
Then

lim
g→∞

NB(g)

N(g)
= 0.

Proof. Suppose Theorem 4 holds. Choose ε < 1
21 . Theorem 4 implies that almost all semigroups have

Frobenius number and multiplicity in the range given in the statement of Proposition 3, but that
almost no such semigroups satisfy g < 1.3667m, completing the proof. �
3. Apéry sets and semigroups with F < 2m

The Apéry set of a numerical semigroup S with respect to its multiplicity m, often just called
the Apéry set, is a set of m nonnegative integers giving for each 0 � i � m − 1 the smallest integer
in S congruent to i modulo m [9]. We will omit 0 from this set, and represent the Apéry set by
{k1m+1, . . . ,km−1m+m−1} where each ki ∈N. We note that there are exactly ki gaps of S equivalent
to i modulo m, and therefore the genus of S is

∑m−1
i=1 ki . The Frobenius number is the largest Apéry

set element minus m.
From the definition of the Apéry set it is clear that certain inequalities must hold between the

integers ki . In fact, a result of Branco, García-García, García-Sánchez and Rosales [2] gives a set of
inequalities which completely determine whether the set {k1m + 1, . . . ,km−1m + m − 1} is the Apéry
set of a numerical semigroup of multiplicity m.

Proposition 6 (Rosales et al.). Consider the following set of inequalities:

xi � 1 for all i ∈ {1, . . . ,m − 1},
xi + x j � xi+ j for all 1 � i � j � m − 1, i + j � m − 1,

xi + x j + 1 � xi+ j−m for all 1 � i � j � m − 1, i + j > m,

xi ∈ Z for all i ∈ {1, . . . ,m − 1},
m−1∑
i=1

xi = g.

There is a one-to-one correspondence between semigroups with multiplicity m and genus g and solutions
to the above inequalities, where we identify the solution {k1, . . . ,km−1} with the semigroup that has Apéry set
{k1m + 1, . . . ,km−1m + m − 1}.

Recent work has made use of this correspondence, counting semigroups by counting valid Apéry
sets, for example [10]. This can be very useful in giving numerical results. We will separately consider
two classes of semigroups, those with F < 2m and those with 2m < F < 3m. The first case is much
simpler. Note that F < 2m is exactly equivalent to the condition that each ki is equal to 1 or 2. Given
m, the above proposition implies that any set {k1, . . . ,km−1} where each ki is either 1 or 2 gives the
Apéry set of some numerical semigroup.
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Suppose we have a semigroup of genus g with F < 2m and Apéry set given by {k1m + 1,

. . . ,km−1m + m − 1}. Let R be the number of ki which are equal to 2. We see that m − 1 + R = g and
that R can take on any value from 0 to m − 1. Therefore we have that m can take on any value from
� g+2

2 	 to g + 1. Given a pair of m and R such that m − 1 + R = g we see that there are
(m−1

R

) = (g−R
R

)
choices for the R values of i such that ki = 2. It is a straightforward inductive exercise to prove that

� g
2 	∑

R=0

(
g − R

R

)
= F g+1,

the g + 1st Fibonacci number.

It is well-known that F g+1 is asymptotic to ϕ√
5
ϕg = 5+√

5
10 ϕg as g goes to infinity. The above sum

is very tightly clustered around its maximum value.

Proposition 7. Let α = 5−√
5

10 and fix ε > 0. We have


(α−ε)g�∑
R=0

(
g − R

R

)
= o

(
ϕg).

We also have

� g
2 	∑

R=�(α+ε)g	

(
g − R

R

)
= o

(
ϕg).

Proof. Stirling’s approximation says that n! ∼ √
2πn(n

e )n . Therefore,

(
(1 − c)n

cn

)
= ((1 − c)n)!

(cn)!((1 − 2c)n)!

∼
√

2π(1 − c)n√
2π(1 − 2c)n

√
2πcn

ecne(1−2c)n

e(1−c)n

((1 − c)n)(1−c)n

((1 − 2c)n)(1−2c)n(cn)cn

= 1√
2πn

√
1 − c√

c
√

1 − 2c

(
(1 − c)1−c

cc(1 − 2c)1−2c

)n

.

We see that
(
(1−c)n

cn

)
is asymptotic to a constant depending on c divided by

√
n times

(
(1−c)1−c

cc(1−2c)1−2c

)n
.

Let f (c) = (1−c)1−c

cc(1−2c)1−2c . We claim that f attains its maximum value in the range from 0 to 1
2 at

5−√
5

10 . We instead find the maximum value of ln( f (c)) in this range. We can see that the derivative
of ln( f (c)) is 2 ln(1 − 2c) − ln(1 − c) − ln(c). Taking an exponential, we see that this is equal to 0

when (1−2c)2

(1−c)c = 1. This gives 5c2 − 5c + 1 = 0, which has roots at c = 5±√
5

10 . Only one of these roots
occurs in the range for which c < 1 − c, meaning that this is our unique critical point in this interval.
By choosing any value of c between 0 and this critical point, for example c = 1

4 , we see that f (c)
is increasing in the range from 0 to our critical value, showing that f (c) attains a maximum at

c = 5−√
5

10 . At this value, f (c) = ϕ , the golden ratio.
Therefore,


(α−ε)g�∑ (
g − R

R

)
� (g + 1)

(
g − �(α − ε/2)g	

�(α − ε/2)g	
)

,

R=0
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for g sufficiently large. This is asymptotic to a constant depending on ε times
√

g times
(

(1−c)1−c

cc(1−2c)1−2c

)g

for c = α − ε/2. This last term is rg where r < ϕ , showing that this sum is o(ϕg).
We also have

� g
2 	∑

R=�(α+ε)g	

(
g − R

R

)
� (g + 1)

(
g − 
(α + ε/2)g�


(α + ε/2)g�
)

,

for sufficiently large g . This is also asymptotic to a constant depending on ε times
√

g times some rg

where r < ϕ . This sum is therefore also o(ϕg). �
We first state a corollary related to the ratio of the multiplicity to the genus of a semigroup with

F < 2m.

Corollary 8. Fix ε > 0 and γ = 5+√
5

10 . Let Eε(g) be the number of numerical semigroups with F < 2m
and (γ − ε)g < m < (γ + ε)g. Let I(g) be the number of numerical semigroups with F < 2m. Then
limg→∞ Eε (g)

I(g)
= 1.

Proof. We have g = m−1+ R and have seen that almost all semigroups with F < 2m have (α−ε)g <

R < (α + ε)g for α = 5−√
5

10 . Since 1 − α = γ , we see that almost all semigroups with F < 2m have
(γ − ε)g + 1 < m < (γ + ε)g + 1. Taking g to infinity completes the proof. �

This proposition implies that for g sufficiently large, almost all semigroups S with genus g and
F < 2m have genus m − 1 + R close to m − 1 +αg . We note that when R >

g
4 + 1, since m − 1 + R = g

we have m − 1 <
3g
4 − 1. Also note that 5−√

5
10 > 1

4 . In this case, we see that since our largest gap is at
most 2m − 1, we have

|nH| < n(2m − 1) − (n − 1) = 2n(m − 1) + 1 <
3n

2
g − (2n − 1) � (2n − 1)(g − 1),

since n � 2. Therefore, we see that almost no semigroup with F < 2m fails the Buchweitz criterion for
any n. We have proven the following, the easy part of our main result.

Proposition 9. Let D(g) be the number of semigroups of genus g with F < 2m and which fail the Buchweitz
criterion for some n. Then

lim
g→∞

D(g)

N(g)
= 0.

The following proposition will play a part in the proof of Theorem 4.

Proposition 10. Let ε > 0. Let N∗
ε (g) be the number of semigroups of genus g with F � (2 − ε)m. We have

lim
g→∞

N∗
ε(g)

N(g)
= 0.

Proof. We note that N∗
ε (g) = ∑� g

2 	
R=0

(�(1−ε)(g−R)	
R

)
. We note that for ε′ < ε/2 we have (1−ε)(g − R) <

(1 − ε′)g − R since ε
ε−ε′ < 2 � g

R . Therefore, for sufficiently large g we get an upper bound for this

sum that is g + 1 times the maximum value of
(�(1−ε′)g	−R

R

)
. By the proof of Proposition 7, this value

is asymptotic to some constant depending on ε′ and c divided by the square root of (1 − ε′)g , times
rg for some r < ϕ . This shows that the sum is o(ϕg). �
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Finally, the following proposition will be convenient for the proof of Theorem 22.

Proposition 11. For any ε > 0, there exists a δ > 0 so that


δg�∑
R=0

(
g − R

R

)
= o

(
(1 + ε)g).

Proof. Consider again the function f (c) = (1−c)1−c

cc(1−2c)1−2c . Recall from the proof of Proposition 7 that(
(1−c)g

cg

)
is asymptotic to f (c)g times a constant depending on c divided by

√
g . As c approaches 0,

L’Hôpital’s rule shows that c ln c = ln c
1/c approaches 0, and thus cc approaches 1. Then f (c) ap-

proaches 1 as c approaches 0. The proposition follows directly. �
4. Semigroups with F > 2m

We first recall a recent result of Zhai [15], building on work of Zhao [16], that shows that we can
focus on semigroups with 2m < F < 3m.

Theorem 12 (Zhai). Let L(g) be the number of semigroups with F > 3m and genus g. Then

lim
g→∞

L(g)

N(g)
= 0.

In the rest of this section we will focus on the semigroups with 2m < F < 3m in more detail and
show that for any ε > 0, the proportion of them with (2 + ε)m < F < 3m goes to zero as g goes to
infinity.

Theorem 13. Let ε > 0 and let Pε(g) be the number of semigroups with (2 + ε)m < F < 3m. Then

lim
g→∞

Pε(g)

N(g)
= 0.

We require the following concepts from Zhao [16]. Let Ak = {A ⊂ [0,k − 1] | 0 ∈ A and k /∈ A + A}.
Let S be a numerical semigroup with multiplicity m and Frobenius number F satisfying 2m < F < 3m.
We say that S has type (A;k), where 0 < k < m and A ∈Ak , if F = 2m +k and S ∩[m,m +k] = A +m.
Every numerical semigroup with 2m < F < 3m has a unique type (A;k), since k = F − 2m and A =
S ∩ [m,m + k] − m. Zhao proves the following.

Proposition 14 (Zhao). Let k be a positive integer and let A ∈ Ak. Then the number of numerical semigroups
of genus g and type (A;k) is at most

F g−|(A+A)∩[0,k]|+|A|−k−1,

where Fa is the ath Fibonacci number.

We now note that if a semigroup S of type (A;k) satisfies (2 + ε)m < F < 3m, it must have
k > εm > εg/3, since g � 3(m − 1). We also have the general fact that Fa � 2√

5
ϕa for all a. Therefore

Pε(g) �
∑

εg/3<k<g

∑
A∈Ak

F g−|(A+A)∩[0,k]|+|A|−k−1

� 2√
5

∑
εg/3<k<g

∑
A∈A

ϕg−|(A+A)∩[0,k]|+|A|−k−1
k
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implying that

Pε(g)ϕ−g � 2√
5

∑
εg/3<k<g

∑
A∈Ak

ϕ−|(A+A)∩[0,k]|+|A|−k−1

� 2√
5

∞∑
k=
εg/3�

∑
A∈Ak

ϕ−|(A+A)∩[0,k]|+|A|−k−1.

Let T (g) be the number of numerical semigroups of genus g satisfying F < 3m. We have the following
theorem from Zhao [16].

Theorem 15 (Zhao).

lim
g→∞ T (g)ϕ−g = ϕ√

5
+ 1√

5

∞∑
k=1

∑
A∈Ak

ϕ−|(A+A)∩[0,k]|+|A|−k−1.

We are now in a position to prove Theorem 13.

Proof of Theorem 13. By Theorem 1, we know that T (g)ϕ−g is bounded above, so the sum

∞∑
k=1

∑
A∈Ak

ϕ−|(A+A)∩[0,k]|+|A|−k−1

converges. It follows that
∑∞

k=
εg/3�
∑

A∈Ak
ϕ−|(A+A)∩[0,k]|+|A|−k−1 approaches 0 as g goes to infin-

ity. �
Proposition 16. Let ε > 0 and γ = 5+√

5
10 . Let Φε(g) be the number of numerical semigroups with genus g

and (γ − ε)g < m < (γ + ε)g. Then limg→∞ Φε(g)
N(g)

= 1.

Proof. By Theorem 12, it suffices to consider the cases m < F < 2m and 2m < F < 3m. The first case
is simply Corollary 8, so we now assume 2m < F < 3m.

The Apéry set of a numerical semigroup with 2m < F < 3m is of the form {k1m + 1, . . . ,km−1m +
(m − 1)} where each ki ∈ {1,2,3} and at least one is equal to 3. Let a be maximal such that ka = 3.
By Proposition 6, the number of semigroups with multiplicity m and F = 2m + a is exactly equal to
the number of sequences (k1, . . . ,km−1) satisfying the following conditions:

(1) For each 1 � i � a − 1, ki ∈ {1,2,3}.
(2) ka = 3.
(3) For each a + 1 � j � m − 1, k j ∈ {1,2}.
(4) For each i, j with i + j � m − 1 and ki = k j = 1 we have ki+ j �= 3.

Let H(a,b) be the number of numerical semigroups with 2m < F < 3m, multiplicity a + 1, and
genus b. Then the number of possibilities for the sequence (k1, . . . ,ka) satisfying

∑a
i=1 ki = b is simply

H(a,b). Since
∑m−1

i=1 ki = g and F = 2m + a, the remaining elements (ka+1, . . . ,km−1) consist of g −
b − (m − 1 − a) values of ki equal to 2, with the rest equal to 1. These can be arranged in any order.
Thus the total number of numerical semigroups with 2m < F < 3m is

g∑
b=3

b∑
a=
b/3�

g∑
m=a+1

H(a,b)

(
m − 1 − a

g − b − (m − 1 − a)

)
.
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Applying Theorem 13 with ε = ε/6, we need only consider the case a < εm/6, for which b � 3a <

εm/2 � εg/2. The number of such numerical semigroups is at most

∑
b<εg/2

b∑
a=
b/3�

g∑
m=a+1

H(a,b)

(
m − 1 − a

g − b − (m − 1 − a)

)
.

We need to show that those terms in the above sum for which m is outside the range ((γ − ε)g,

(γ + ε)g) contribute o(ϕg) to the sum. For such m, we have |m − γ g| � εg , which implies that

∣∣m − 1 − a − γ (g − b) + 1 + a − γ b
∣∣ � εg.

By the triangle inequality, we have

∣∣m − 1 − a − γ (g − b)
∣∣ + 1 + a + γ b = ∣∣m − 1 − a − γ (g − b)

∣∣ + |1 + a| + | − γ b|
�

∣∣m − 1 − a − γ (g − b) + 1 + a − γ b
∣∣.

Therefore, when |m − γ g| � εg we have

∣∣m − 1 − a − γ (g − b)
∣∣ + 1 + a + γ b � εg,∣∣m − 1 − a − γ (g − b)

∣∣ � εg − 1 − a − γ b

� εg − 1 − εg/6 − γ εg/2

� 0.471εg � 0.471ε(g − b)

for sufficiently large g . As in the proof of Proposition 7, for such m, there is some ψ < ϕ for which( m−1−a
g−b−(m−1−a)

) = O (ψ g−b). Since the total number of numerical semigroups of genus b is asymptotic

to ϕb , we certainly have H(a,b) = O (ϕb). We conclude that for a,b,m satisfying the above conditions,

H(a,b)

(
m − 1 − a

g − b − (m − 1 − a)

)
� cψ g−bϕb � cε

(
ψ1−ε/2ϕε/2)g

,

so the total contribution to the sum from such m is indeed o(ϕg). �
Proposition 16 implies, in particular, that for fixed ε > 0, as g approaches infinity, the proportion of

numerical semigroups with m > (γ + ε)g approaches 0. For ε = 1
1.3667 −γ ≈ 0.0081 > 0, the property

m > (γ + ε)g is precisely g < 1.3667m. This implies statement (3) of Theorem 4, and thus completes
the proof of Theorem 5.

We also point out the following corollary which answers a question from [10].

Corollary 17. Let R(g) be the number of semigroups of genus g for which 2g < 3m. Then

lim
g→∞

R(g)

N(g)
= 1.

Proof. We note that 2g < 3m is equivalent to 2g
3 < m. Proposition 16 implies that for any ε > 0,

almost all semigroups satisfy (γ − ε)g < m. Since γ > .72, this completes the proof. �
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It is interesting that this limit is 1 since the numerical evidence for small g is inconclusive. For
example, for g = 24 the value of this ratio is approximately .3962 and there is no clear trend toward 1.
See the chart at the beginning of Section 6 of [10].

This corollary has implications for Theorem 1 of [10]. Let N(m, g) denote the number of semi-
groups S with multiplicity m and genus g .

Theorem 18. Suppose 2g < 3m. Then N(m − 1, g − 1) + N(m − 1, g − 2) = N(m, g).

This theorem combined with the previous corollary gives one way to understand why N(g) grows
like a constant times ϕg . Unfortunately, this does not give a new proof of Zhai’s result, Theorem 1,
because it is used in the proof of the corollary.

5. Semigroups which do occur as Weierstrass semigroups

We first recall the definition of the weight of a numerical semigroup. This is another way of
measuring a semigroup’s complexity.

Definition. Let S be a semigroup of genus g with gap set {a1, . . . ,ag}. We define the weight of S by

W (S) = ∑g
i=1 ai − g(g+1)

2 .

Note that for any g � 1, the semigroup containing all positive integers greater than g has weight
zero. This definition plays an important role in the theory of semigroups and algebraic curves since for
any curve C of genus g it is known that the sum of the weights of all the semigroups of Weierstrass
points of C is g3 − g [1].

The following difficult result of Eisenbud and Harris proves that certain semigroups do occur as
the Weierstrass semigroup of a point on some curve [6].

Theorem 19. Let S be a semigroup with F < 2m and W (S) < g − 1. Then S is Weierstrass.

We will show that this condition on the weight of S is quite restrictive.

Proposition 20. Let Q (g) be the number of semigroups S with F < 2m and W (S) < g − 1. Then

lim
g→∞

Q (g)

N(g)
= 0.

This proposition is actually a consequence of a much stronger statement about the weights of
numerical semigroups. To prove that statement, we first need the following lemma.

Lemma 21. Let p(x, y, z) be the number of partitions of x into at most y parts, each of size at most z. Then the
number of numerical semigroups with genus g, multiplicity m, and weight w satisfying m < F < 2m is exactly
p(w − (g − m + 1), g − m + 1,2m − 2 − g).

Remark. Equivalently, this is the coefficient of qw−(g−m+1) in the q-binomial coefficient
[ m−1

g−m+1

]
q .

See [12] for details.

Proof. Suppose N0 \ S = {1,2, . . . ,m−1,m+ i1, . . . ,m+ i g−m+1} with ia ∈ [1,m−1] for all a. We have

w = 1 + 2 + · · · + m − 1 + (m + i1) + · · · + (m + i g−m+1)

− (1 + 2 + · · · + m − 1 + m + · · · + g) =
g−m+1∑

(ia − a + 1),
a=1
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which can be rearranged as

w − (g − m + 1) =
g−m+1∑

a=1

(ia − a).

The ia −a are nonnegative because i1 � 1 and ia+1 > ia . They are non-decreasing since ia+1 −(a+1) �
ia + 1 − (a + 1) = ia − a. Finally, since m − 1 � i g−m+1 and i g−m+1 − (g − m + 1) � ia − a, we have
2m − 2 − g � ia − a. Thus each distinct choice of these ia is associated with a unique partition of
w − (g −m + 1) into at most g −m + 1 parts, each of size at most 2m − 2 − g . Furthermore, from any
such partition j1 + · · · + jg−m+1, where 0 � j1 � · · · � jg−m+1, it is easy to reconstruct S by setting
ia = ja + a; the resulting ia will be strictly increasing and bounded above by m − 1, as desired. This
completes the proof of the lemma. �

We recall the convention that there is a unique partition of 0 which has 0 parts. This shows that
the lemma also holds for semigroups with F < m, which all satisfy F = m − 1.

We observe that p(x, y, z) = p(yz − x, y, z), since if j1 + · · · + j y = x is a partition of x into parts
of size at most z, then (z − j1) + · · · + (z − j y) = yz − x is a partition of yz − x into parts of size at
most z, and vice versa. This simple fact will be useful later.

We now state and prove our main theorem of this section.

Theorem 22. Let β1 = 3
2

( lnϕ
π

)2
, γ = 5+√

5
10 , β2 = (1 −γ )(2γ − 1)−β1 , and ε > 0. Let Yε(g) be the number

of numerical semigroups with genus g and weight at most (β1 − ε)g2 and Zε(g) be the number of numerical
semigroups with genus g and weight at least (β2 + ε)g2 . Then limg→∞ Yε (g)

N(g)
= limg→∞ Zε (g)

N(g)
= 0.

In order to show this, we need the Hardy–Ramanujan formula [7]:

Theorem 23 (Hardy, Ramanujan). Let p(n) be the total number of partitions of n. Then as n grows large, p(n)

is asymptotically equal to

1

4n
√

3
eπ

√
2n
3 .

Proof of Theorem 22. We may assume that F < 3m by Theorem 12. We consider the cases F < 2m
and 2m < F < 3m separately.

First suppose F < 2m. Let K2(w,m, g) be the number of numerical semigroups with genus g ,
weight w , multiplicity m, and F < 2m. We wish to bound Yε(g) = ∑g

m=1

∑
w<(β1−ε)g2 K2(w,m, g).

Now by Lemma 21, K2(w,m, g) is equal to p(w − (g −m + 1), g −m + 1,2m − 2 − g), so in particular
K2(w,m, g) � p(w − (g − m + 1)) � p(w) where p(w) is the total number of partitions of w . But by
Theorem 23, we have

g∑
m=1

∑
w<(β1−ε)g2

p(w) = O
(

geπ
√

2/3
√

β1−εg) = o
(
ϕg)

for β1 such that eπ
√

2/3
√

β1 = ϕ , which gives β1 = 3
2

( lnϕ
π

)2 ≈ 0.035. This gives the desired lower
bound on the weight of a typical numerical semigroup.

To show Zε(g)/N(g) goes to 0 as g goes to infinity, we transform the problem of bounding Zε(g)

into the problem of bounding Yε/2(g). Recall that γ = 5+√
5

10 and β2 = (1 − γ )(2γ − 1) − β1, and
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define I := ((γ − δ)g, (γ + δ)g). From Proposition 16, it suffices to consider those semigroups for
which m ∈ I . We use Lemma 21 to write

∑
m∈I

∑
w>(β2+ε)g2

K2(w,m, g) =
∑
m∈I

∑
w>(β2+ε)g2

p
(

w − (g − m + 1), g − m + 1,2m − 2 − g
)
.

As noted above, we have p(w − (g − m + 1), g − m + 1,2m − 2 − g) = p((g − m + 1)(2m − 2 − g) +
(g − m + 1) − w, g − m + 1,2m − 2 − g). Let w ′ = (g − m + 1)(2m − 2 − g) + (g − m + 1) − w , so that
the right-hand side of the above equation can be rewritten as

∑
m∈I

∑
w>(β2+ε)g2

p
(

w ′, g − m + 1,2m − 2 − g
)

=
∑
m∈I

∑
w ′<(g−m+1)(2m−2−g)+g−m+1−(β2+ε)g2

p
(

w ′, g − m + 1,2m − 2 − g
)

=
∑
m∈I

∑
w ′′<(g−m+1)(2m−2−g)+2(g−m+1)−(β2+ε)g2

p
(

w ′′ − (g − m + 1), g − m + 1,2m − 2 − g
)

=
∑
m∈I

∑
w ′′<(g−m+1)(2m−2−g)+2(g−m+1)−(β2+ε)g2

K2
(

w ′′,m, g
)

where we again used Lemma 21 in the last line. Assuming from Proposition 16 that m ∈ I , we have
g − m + 1 < g − (γ − δ)g + 1 = (1 − γ + δ)g + 1 and 2m − 2 − g < 2(γ + δ)g − g = (2γ − 1 + 2δ)g .
Hence the last line above is at most

∑
m∈I

∑
w ′′<[(1−γ +δ)g+1](2γ −1+2δ)g+2(1−γ +δ)g+2−(β2+ε)g2

K2
(

w ′′,m, g
)

=
∑
m∈I

∑
w ′′<[(1−γ )+δ][(2γ −1)+2δ]g2−(β2+ε)g2+(1+4δ)g+2

K2
(

w ′′,m, g
)

=
∑
m∈I

∑
w ′′<(β1+δ+2δ2−ε)g2+(1+4δ)g+2

K2
(

w ′′,m, g
)

�
∑
m∈I

∑
w ′′<(β1−ε/2)g2

K2
(

w ′′,m, g
)

for sufficiently large g , since ε − (δ+2δ2) > ε/2 by construction. But the last line is at most Yε/2(g) =
o(ϕg), so we are done.

Next suppose 2m < F < 3m, and suppose the Apéry set is given by {k1m + 1, . . . ,km−1m + m − 1}.
Let K3(w,m, t, g) be the number of numerical semigroups with genus g , weight w , multiplicity m,
F satisfying 2m < F < 3m, and exactly t values of a such that ka = 3. Using Theorem 13 and Propo-
sition 16 above, we may assume that F < (2 + δ0)m, where δ0 will be chosen later. We first bound
the number of semigroups with w < (β1 − ε)g2. The intuition here is that the numerical semigroups
with 2m < F < (2 + δ0)m and weight w look fairly similar to the numerical semigroups with F < 2m
and weight w , and the ability to set some ki equal to 3 does not greatly increase the number of such
semigroups.
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Let i1 < · · · < is be the set of indices such that kia � 2, and let i j1 < · · · < i jt be the set of indices
such that ki ja

= 3. We have s + t = g − m + 1, or alternatively, g = m + s + t − 1. We can write the
weight w as follows:

w =
m−1∑
a=1

a +
s∑

a=1

(m + ia) +
t∑

a=1

(2m + i ja ) −
m+s+t−1∑

a=1

a

=
s∑

a=1

(m + ia) −
s∑

a=1

(m − 1 + a) +
t∑

a=1

(2m + i ja ) −
t∑

a=1

(m + s − 1 + a)

=
s∑

a=1

(ia − a) + s +
t∑

a=1

(i ja − a) + t(m − s + 1).

We set
∑s

a=1(ia − a) = d. We work in parallel to the case F < 2m. By the same reasoning as in
the proof of Lemma 21, the number of choices for the ia is precisely p(d, s,m − 1 − s) < p(d) < p(w).
The total number of choices for the i ja is at most

(s
t

) = (g−m+1−t
t

)
. Choose ε0 small enough that ψ :=

(1 + ε0)eπ
√

2/3
√

β1−ε < ϕ . By Proposition 11, there is some δ0 > 0 so that
∑
δ0 g�

R=0

(g−R
R

)
is bounded

above by a constant times (1 + ε0)
g for sufficiently large g . Since we assumed that F < (2 + δ0)m,

we have t � i jt � δ0m < δ0 g . Then
(g−t

t

)
is bounded above by (1 + ε0)

g , and so of course
(g−m+1−t

t

)
is as well. Summing over d, we conclude that K3(w,m, t, g) is bounded by a polynomial in g times
p(w)(1+ε0)

g , which is in turn bounded by p((β1 −ε)g2)(1+ε0)
g = O

(ψ g

g2

)
by the Hardy–Ramanujan

formula. Summing over all m, t , and w < (β1 − ε)g2 gives a count of possible such semigroups S
which is o(ϕg), as desired.

For w > (β2 + ε)g2, we proceed by reducing to the situation w < (β1 − ε/4)g2, again in parallel
with our strategy for F < 2m. Let 0 < δ0 < ε/4; then for sufficiently large g and all t < δ0 g , we have

t(2m − s + 1) + s < 2mt + t + s � 2gt + t + s < 2δ0 g2 + t + s < (ε/2)g2.

Now since (1 − γ )δ0 < (1 − γ )ε/4, we can choose δ1 so small that δ1 + 2δ2
1 + (1 − γ + δ1)δ0 < ε/4.

Next, choose ε0 small enough such that ψ := (1 + ε0)eπ
√

2/3
√

β1−ε/4 < ϕ . Finally, choose δ2 small
enough that

∑
δ2 g�
R=0

(g−R
R

)
is bounded above by (1 + ε0)

g , and let δ = min{δ0, δ1, δ2}. Since i ja −a < m,
for any t we have

∑t
a=1(i ja − a) < tm. For t < δg ,

s∑
a=1

(ia − a) = w − s −
t∑

a=1

(i ja − a) − t(m − s + 1) > w − s − tm − t(m − s + 1) > (β2 + ε/2)g2.

If d = ∑s
a=1(ia −a), then for a fixed d we have p(d, s,m − 1 − s) ways of choosing the ia and no more

than
(s

t

)
ways of choosing the i ja from the ia . Therefore we have

K3(w,m, t, g) �
∑

d>(β2+ε/2)g2

p(d, s,m − 1 − s)

(
s

t

)

and again using the fact that p(x, y, z) = p(yz − x, y, z), the right-hand side can be rewritten as

∑
d<s(m−1−s)−(β2+ε/2)g2

p(d, s,m − 1 − s)

(
s

t

)

� (1 + ε0)
g

∑
d<s(m−1−s)−(β +ε/2)g2

p(d, s,m − 1 − s).
2
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For t < δg , we have s = g − m + 1 − t > (1 − δ)g − m. Then further assuming that m ∈ ((γ − δ)g,

(γ + δ)g), we have s � g − m + 1 < (1 − γ + δ)g + 1 and m − 1 − s < 2m − (1 − δ)g < (2γ − 1 + 3δ)g .
Thus the last line can be bounded above by

(1 + ε0)
g

∑
d<[(1−γ +δ)g+1](2γ −1+3δ)g−(β2+ε/2)g2

p(d, s,m − 1 − s)

= (1 + ε0)
g

∑
d<(β1−ε/2)g2+(δ+2δ2+(1−γ +δ)δ)g2+(2γ −1+3δ)g

p(d, s,m − 1 − s).

Since we chose δ so that (δ + 2δ2 + (1 − γ + δ)δ)g2 < (ε/4)g2, for sufficiently large g this is at most

(1 + ε0)
g

∑
d<(β1−ε/4)g2

p(d, s,m − 1 − s)

� (1 + ε0)
g

∑
d<(β1−ε/4)g2

eπ
√

2/3
√

β1−ε/4·g = O
(
ψ g)

by the Hardy–Ramanujan formula. Summing over t and m gives the desired bound. �
It would be interesting to see whether we can improve on the constants given in the statement of

this result. A more careful analysis of the partitions occurring in this proof will probably yield better
bounds.

Since g − 1 < (β1 − ε)g2 for, say, ε = β1/2 and sufficiently large g , Proposition 20 follows immedi-
ately from Theorem 22. This result shows that although the Eisenbud and Harris family of semigroups
are Weierstrass, they also have density zero in the entire set of numerical semigroups. The main
theorem of the paper shows that the set of semigroups which are not Weierstrass because they fail
the Buchweitz criterion for some n also has density zero. There are other known examples of semi-
groups which are known to be Weierstrass but do not fit into this Eisenbud and Harris family, and
semigroups which are not Weierstrass but do not fail the Buchweitz criterion. See for example [13,14].

It would be very interesting to show that a positive proportion of numerical semigroups are Weier-
strass, or to show that a positive proportion are not Weierstrass. The problem of determining the
density of the set of Weierstrass semigroups in the entire set of numerical semigroups remains com-
pletely open.
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