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An extension of the inductive assertion method allowing one to prove the partial 
correctness of an attribute grammar w.r.t. a specification is presented. It is complete 
in an abstract sense. It is also shown that the semantics of systems of recursive 
imperative procedures or of recursive applicative procedures computed with call-by- 
value or call-by-name can be expressed by an attribute grammar associating 
attributes with the nodes of the so-called trees of calls. Hence the proof methods for 
the partial correctness of attribute grammars can be applied to these recursive 
procedures. We show also how the proof method can be applied in logic program- 
ming. ‘0 1988 Academic Press, Inc. 

INTRODUCTION 

The problem of proving the validity of an attribute grammar with 
respect to a given specification, saying what the values of the attributes 
should be, although essential, has been rarely considered (Pair et al., 1979; 
Katayama and Hoshino, 1981) and (Deransart, 1983; Courcelle, 1984) are 
preliminary versions of the present work. Since an attribute grammar, 
designed say, for specifying a compiler, can be very large, proving its 
validity, i.e., the correctness of the generated compiler, is clearly not a 
trivial task. 
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COURCELLE AND DERANSART 

We shall consider here the partial correctness of an attribute grammar 
with respect to a specfkation. A specification consists in a logical formula 
associated with each non-terminal and establishing a relation between the 
values of the attributes at a node labelled by this non-terminal. An 
attribute grammar is partially correct if, for every tree t, for. every 
assignment of values to the attributes at the nodes of the tree t which 
satisfies the semantic rules, the specification is satisfied at the root of the 
tree (there is no distinguished start symbol in this approach). In terms of 
flowcharts, this corresponds to saying that for every computation path, the 
output values satisfy some prescribed relation with the input ones. 

The total correctness of an attribute grammar requires the existence of at 
least one tree, with some assignment of values to attributes satisfying some 
condition. This problem will not be considered here (but it has been in 
(Deransart, 1984)). 

We propose two proof methods for establishing the partial correctness of 
an attribute grammar. The first consists in defining a specification stronger 
than the original one, which furthermore is inductive. This means that for 
each node of a derivation tree, the validity of the specification at this node 
follows from the validity of the specification at its sons and the semantic 
rules of the production associated with this node. 

Since the strongest specification is inductive this proof method is com- 
plete, provided one accepts for specifications arbitrary set theoretical 
relations as opposed to, say, first-order formulas. Otherwise, one gets an 
incompleteness result similar to Wand’s for the inductive assertion method 
(Wand, 1978). 

Our second method is a refinement of the first. We associate with every 
non-terminal a finite set of formulas (we call this an annotation), together 
with implications between formulas (and using the semantic rules as 
premises). Some formulas are called inherited, others synthesized. They 
behave with respect to implications as inherited and synthesized attributes 
behave w.r.t. dependencies, and we require non-circularity exactly as we do 
for ordinary attribute grammars. This non-circularity ensures the non- 
circularity of the proof that, for every tree, if the inherited formulas are 
valid at the root then so are the synthesized ones. 

Hence, in order to prove the validity of a specification 8 = {@X}XEN, it 
suffices to find an annotation which is non-circular and such that, for every 
non-terminal X, 

where X(X) (resp. Y(X)) is the set of inherited (resp. synthesized) formulas 
at the non-terminal X (and AND denotes the conjunction of a set of 
formulas 1. 
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The first method is a special case of the second since it corresponds to 
taking one synthesized formula for each non-terminal (and the non- 
circularity is then trivial as for purely synthesized attribute grammars). 
Roughly speaking, the second one consists in decomposing specifications 
into implications between conjuncts of simpler formulas; it is useful in prac- 
tice to get clearer proofs as we shall show with examples. It is shown in 
Section 5 that they are equally powerful. 

The originality of our approach is that our proof methods do not rest on 
the non-circularity of the given attribute grammar as did those of (Pair, 
1979) or (Katayama, 1981). (Recall that the partial correctness is stated as 
“for every tree, for every assignment satisfying the semantic rules...“; there 
may exist none or many in the case of a circular attribute grammar.) Hence 
we shall formulate our methods for a generalization of attribute grammars 
called relational attribute grammars where the semantic rules do not state 
that some attribute is a function of other ones but simply state relations 
(possibly not functional in any way) between attributes. Hence, there is no 
distinction between synthesized and inherited attributes. Clearly non- 
circularity is meaningless for relational attribute grammars. 

In our proof method, we need a non-circularity at the level of logical 
formulas, not at the level of the attribute grammar we are validating. 

The proof method using an inductive specification is reminiscent of the 
classical fix-point induction for recursive procedures. 

We strengthen this analogy by showing that the semantics of certain 
recursive procedures either imperative or applicative can be formalized in 
terms of conditional attribute grammars (a conditional attribute grammar 
is an ordinary attribute grammar where a boolean condition is associated 
with each production; hence some trees may have no valid assignment of 
values to the attributes of their nodes even if the grammar is non-circular). 

The class of conditional attribute grammars lies between the class of 
attribute grammars and the class of relational attribute grammars. It has 
already been introduced in Watt and Madsen (1983), but here we give 
another illustration of this concept. 

The conditional attribute grammar associated with a recursive procedure 
is based on the set of trees of calls of the recursive procedure. Each node 
corresponds to “a call” (the root corresponds to the “main program”), is 
labelled by the name of the procedure which is called, and has attributes 
representing the parameters: the inherited attributes represent the input 
parameters and the synthesized attributes the output parameters. Each 
“production rule” corresponds to some alternative in the procedure body 
which is selected by some boolean test. The semantic rules of such a 
“production” include the test together with operations performed on the 
program variables (which are represented by attributes). The underlying 
attribute grammar is of a rather simple kind: it is an L-attribute grammar, 
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i.e., one for which the attributes are evaluable in one left-to-right pass 
(Engelfriet, 1984)). 

This attribute grammar is used in an unusual way:‘ the tree is not given a 
priori and then decorated and evaluated, but is constructed in interaction 
with the computation of attributes; this construction is oriented by the 
boolean conditions which determine it completely if the procedures are 
deterministic or only forbid some alternatives if they are non-deterministic. 

By means of this construction the partial correctness of recursive 
procedures can be expressed as the partial correctness of the associated 
attribute grammar, and the proof methods for attribute grammars are 
applicable. But this does not yield any new result. 

We also apply this method to the correctness of definite clause programs, 
i.e., the correctness of “pure” PROLOG programs. By correctness of a 
definite clause program w.r.t. a specification Y we mean that all possible 
answer substitutions satisfy the specification Y. It has been shown in 
(Deransart and Maluszynski, 1985) how definite clause programs can be 
considered as relational attribute grammars. Hence our proof methods give 
rise directly to validation methods for logic programming. See Deransart 
and Ferrand (1987). 

This paper is organized as follows. Section 1 consists of definitions con- 
cerning many-sorted algebras and attribute grammars. Section 2 shows the 
use of attribute grammars for studying the semantics of recursive 
procedures and logic programs. Section 3 deals with fix-point induction for 
attribute grammars (i.e., with the first proof method mentioned above). 
Section 4 introduces annotations (the second method) and Section 5 
establishes that these two methods are equally powerful. 

(1) BASIC DEFINITIONS AND NOTATIONS 

Attribute grammars will be defined in the algebraic style of Chirica and 
Martin (1979) or Courcelle and Franchi-Zannettacci (1982). 

( 1.1) Sorts, Signatures, Terms 

Let S be a finite set of sorts. An S-sorted signature (or simply an 
S-signature) is a finite set P of function symbols given with two mappings: 

Ci: P-9 (a(p) is called the arity of p in P) 

o:P+S (a(p) is called the sort of p in P). 

The length of a(p) is called the rank of p and is denoted by p(p). If 
a(p) = E (we denote by E the empty word of any free monoid except in one 
case (see (1.2) below), then p is a constant symbol. The pair (a(p), o(p)) 



PROOF OF PARTIAL CORRECTNESS FOR AG 5 

is the profile of p. A constant (or a variable) has profile (E, s). P,,,,, 
denotes the subset of P consisting of functions of profile (w, s). The 
notation p: (w, s) is a shorthand for p E P,,,,,. 

A heterogeneous P-magma (or -algebra) is an object M, 

kfn = mfsl.~Es~ (P&P), 

where {M,} is a family of sets indexed by S, the carriers, and each pM is a 
mapping, 

M,, x ... XM,, +M, if P E P~,I,....,,,,~. 

Unless otherwise specified, all magmas considered in the sequel will be 
heterogeneous. 

Let X be an S-sorted set of variables (i.e., each x in X has arity E and a 
sort O(X) in S, and X, = {x E X/a(x) = s} ); one can also define the free-P- 
magma generated by X, denoted by M(P, X). It is identified as usual with a 
set of terms, “well typed” with respect to sorts and arities. Terms will be 
written with commas and parentheses if infix notation is not used. They 
will also be identified with trees in a well-known manner. The words “tree” 
and “term” will be synonymous in this paper and will refer to elements of 
some free magma. We shall denote by M(P, X), the carrier of sort s of 
M(P, X), ,and by M(P), the set of all terms without variables (ground 
terms) of sort s. M(P) is the set of all ground terms. 

A term t in M( P),T is considered as denoting a value t, in 44, for a 
P-magma Ml. Similarly a term t in M(P, {x,, . . . . x~})~ is considered as 
denoting a function, 

t, : M,(x,, x . . . x Mot,,, + 4, called a derived operator. 

For any P-magma M and S-sorted set X of variables, an assignment of 
values to variables is an S-indexed family of functions: 

v= {v,: X,v -4Y},Es (also denoted by v: X + M). 

It is well known that this assignment can be extended into a unique 
homomorphism v’: M(P, X) + Ml such that v’(x.) = v(x) for all x in X. 

Let Q be an S-indexed family of propositions {Qs}scs, where .Q, is a 
unary proposition on M(P),. We say that the proposition 

(1) Vs~s, VtEMtP),, Q,(t) 
is provable by structural induction iff conditions (2) and (3) below are both 
provable: 

(2) VSES, vp~P<e,,>v Q,(P) 

(3) vs,, -.., s,, s E 8 VP E P,, I,..., s..s> Vt, EM(P),,, . . . . Vt, EM(P),“: 
Q,,(t,) and ...and Q,,ttJ = Q,tpttl, . . . . t,)). 



b COURCELLE AND DERANSART 

It is easy to show that a proposition is true if it is provable by structural 
induction (an elegant proof is given in (Chirica and Martin, 1979)). 

( 1.2) Trees and Grammars 

Let P be a fixed S-signature. By a tree we mean an element of M(P) or 
of M(P, X). Let np = Max{p(p)/pE P}. 

For any integer n, we let [n] denote the set (1, 2, . . . . n} if n 3 1 and @ if 
n = 0. 

The nodes of a tree t will be represented in Dewey notation by words in 
[n,]*. Whereas we shall use E to denote the empty word of any free 
monoid, we shall use 0 for the empty word of the free monoid [n,]*, just 
to simplify some notations. We denote by Node(t) the set of nodes of a tree 
t; hence Node(t) E [np] * and 0 E Node(t) (0 denotes the root of the tree t). 

Every node u in t is labelled by a unique element p of P denoted by 
lab,(u). We define the sort of u (and denote it by a,(u), or G(U) if t is clear) 
as the sort of lab,(u) and the sort of t (denoted by a(t)) as the sort a,(O) of 
its root. 

Let u be a node of t. We denote by t/u the subtree of t issued from U. 
We denote by t[t,/x,, . . . . tk/xk] the result of the simultaneous sub- 

stitution in t of t, for x1, . . . . tk for ?ck, where x,, . . . . xk are pairwise distinct 
variables. 

If P 2 Q and M( P, X) I> T we denote by Q(T) the set of trees in M(P, X) 
of the form q(t), . . . . tk) with q E Q and t,, . . . . t, E T. We denote by M(P, T) 
the set of trees of the form t[t,/x,, . . . . tk/xk] for t in M(P, {x1, . . . . xk}) and 
t,, ‘.., t, E T. 

An attribute grammar can be thought of as a way to associate a meaning 
with a derivation tree (i.e., an abstract syntax tree) rather than with a word, 
and this approach eliminates the need for a non-ambigous grammar. 

In order to emphasize this fact we redefine as follows a context-free 
grammar. A context-free grammar is a triple (N, P, C> where N is a finite 
set (the “non-terminal alphabet”), P is a finite N-signature, and C is a 
mapping associating with every p in P of profile (X, ... X,, X0) an 
(n + 1) - tuple of words on some finite alphabet T (the “terminal 
alphabet”). 

An abstract context free grammar is a pair (N, P) as above. A produc- 
tion rule X0 -+a,X,a,X, ..-~,X,a,+i in the usual sense is split here into a 
symbol p, its name with profile (X, .. X,, X,,), and the (n + l)-tuple 
C(p)= (aI, . . . . a,+,) (aI, . . . . a,,+, are words in T*). 

( 1.3 ) Many-Sorted Logical Languages 

Let S be a finite set of sorts. Let b denote an additional sort, that of the 
boolean values true and false. 

Let $= {$,ls,s be a sorted set of variables, let 9 be an S-signature, and 
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let 9 be a finite set of many-sorted predicate symbols (i.e., a set of symbols 
.B’, each R E 9 having an arity cl(R) E S+ and, implicitly, the sort b). 

A logical language over (9, 9, 9) consists of a set offormufas 9 written 
with 9, 9, 9 and connectives like V, 3, *. We do not give any more detail 
here. We assume that each formula cp in 9’ has a (possibly empty) set of 
free variables Free (cp). For 9 2 9’ we denote by 9’(Y) the logical language 
(cp~P/$‘zFree(cp)}. 

Let w  denote a class of structures, i.e., of objects, of the form D = 
((D,LsF (fD),..F7 (rdrrs) where <(D3Ls, (fD)fe-s> is a 
heterogeneous P-magma and for each r in 9, rD is a total mapping 
D,, x . . . x Dsn -+ {true, false} where c((r) = S, . . ‘s,,, i.e., in other words an 
n-ary relation on D,, x ... x D,$“. 

Let k denote the validity relation defined as follows. For every 
assignment v as in (1.1) every D in %?, every cp in Y one assumes that 
(D, v) k cp either holds or does not hold. In the former case we also say 
that rp holds in (D, v) and in the latter that it does not. 

We write D t= cp if (D, v) + cp holds for every assignment v. In many 
cases we shall identify 9’ with the triple (9, 9?, k ) if no confusion can 
arise. 

The logical connectors we shall use are and, or, not, =>, o. For a finite 
set of formulas A, we denote by AND A (resp. OR A) the conjunction 
(resp. the disjunction) of A (with AND 0 = true and OR 0 =false). 
Finally, if @ E 9’( {ui , . . . . ok},, we denote by @pcw,/u,, . ..) u’k/uk] (or 
@[wi/ui; 1 d i<k]) the result of the substitution of wi for each free 
occurrence of ui (some renaming of variables may be necessary). 

( 1.4) Relational Attribute Grammars 

(1.4.1) DEFINITION. A relational attribute grammar is a Stuple G = 
(N, P, Attr, @, D) consisting of 

(1) an abstract context free grammar (N, P) 

(2) a set of attributes Attr defined as 

(i) a finite set Attr of attributes such that Attr = UXEN Attr(X) 
where Attr(X) is the set of attributes of X in N (one can have Attr(X) n 
Attr(X’)#@, XZX,). 

of 9. (ii) 
every attribute a in Attr has a sort a(a) in the set of sorts S 

(3) a set of relations CD defined as 

(iii) a logical language (9, Q?, + ) 

(iv) for each production p of profile (X, ... X,, X,,) a formula @, 
belonging to the logical language 5?( W(p)) where W(p) is now defined. 
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For each i in (0, . . . . U} and each a in Attr(X,) we introduce a new symbol 
a(i) and call it an occurrence of the attribute u in p. We denote by W(p) the 
set of these symbols. We also say that W(p) is the set of attribute occurren- 
ces of p. 

The sort a(a(i)) is defined as a(a). 

(4) ID is a structure in %. 

Convention. The sets Attr(X) will be ordered in a fixed way so that 
Attr(X) will be used as a sequence (an element of Attr* ) in some cases. 

(1.4.2) Semantics of a relational attribute grammar. Let t E M(P). We 
define a set of variables W(t) called the set of attribute occurrences of t as 

W(t) = (a(u)/u E Node(t), a E Attr(a,(u))}. 

Hence a(u) is a new symbol. The sort of a(u) is defined as a(a(u))=a(a). 
We denote by WJt) the set {a(O)/aE Attr(o,(O))}. 

For each u E Node( t) we denote by QU E P’( W( t)) the formula 

@,IIa(Wa(i); 40 E Wp)l, 

where p = lab,(u). Recall that 0 denotes the empty word so that ui = u for 
i = 0. 

We denote by @( the conjunction of all the @,‘s, for u~Node(t). 
An assignment v: W(t) + D is called a t-assignment. It is valid if 

(P v) I=@,. 
One may be interested in all valid assignments or simply in their restric- 

tions to the set W,(t) of the attribute occurrences at the root of t (i.e., 
WJt) = {a(u)E W(t)/u=O}). In this case we shall use the relation R,, G 
D du1) x ... x Do(+) (where (a,, . . . . ak) is the sequence Attr(cr,(O))) defined 
by 

(d , , . . . . dk) E R,,, iff there exists a valid t-assignment v such that 
v(a,(O)) = dj for i= 1, . . . . k. 

Note that with these definitions there is no distinction between syn- 
thesized and inherited attributes and R,,D is always defined (but possibly 
empty) without any extra-condition like non-circularity. 

(1.4.3) EXAMPLE. In the following example, attributes are used to com- 
pute the longest prefix v of a word w  E {a, b} + with UE b+ u b*a. Two 
boolean functions on words are used: bword(w) is true iff w E b*, baword(w) 
is true iff w  E b*a. 

We present two relational attribute grammars which compute the same 
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prefix, the equivalence of the two attribute grammars will be demonstrated 
later, 

G,: N=(S,A,a,b} 

P= (pl: (A, S), p2: (AA, A), p3: (a, A), 
~4: (b, A >, ~5: (e, a>, ~6: (6, b)) 

Attr(S) = (x} 

Attr(A) = (u, X> 

Attr(a) = Attr(h) = 0 

Inh = {u) 

Syn = {x> u and x are of type word. 

G, : N = as in G, 

P=asinG, 

Attr = Attr(S) = Attr(A) = {v} 

Inh = 0 

Syn= b> y is of type word. 

The relations are the implicit conjunctions of the formulas shown in the 
boxes in Figs. 1 and 2 (hence Qp, is: “u( 1) = E and x(0) =x( 1)“). 

( 1.5) (Usual) Attribute Grammars 

An attribute grammar is a relational attribute grammar (N, P, Attr, @, 
D ) such that Attr = Inh u Syn is the union of two disjoint sets (inherited 
and synthesized attributes). We denote Inh(X) = Attr(X) n Inh and 
Syn(X) = Attr(X) n Syn. 

We partition each W(p) as follows. 
W(p) = Wi,(p)u W,,,(p) is the disjoint union of the input and output 

attribute occurrences of p in P~x,,...~x,,x~> defined as 

Win(p) = {a(i)/aEInh(X,) and i=O, or aE Syn(X,) and 16 i<n) 

W,,,,(p) = (a(i)/aE Syn(X,) and i=O, or a~Inh(X,) and 1~ i<n}. 

The formulas cQ~ satisfy the following (where F is the S-signature of 9). 
For each attribute occurrence w  of W,,,(p) one has a formula rDp,%, of the 
form w  = t, where t E M(@, W(p)) and Qp is: 



p1: 

p2: 

p3: 

p4: 

FIGURE 1 

p1: 

p3: 

p4: 

~5, ~6: 
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The formulas Qip+. are attribute definitions. We refer to @, as to the 
semantic rules of production p. If all the terms t as above are in 
M(P;, W,,(P)) we say that G is in normal form. 

(1.5.1) EXAMPLE. We borrow from Katayama and Hoshino (1981) the 
following school example which serves to compute four times the height of 
a linear tree, 

G,: N= {S, A} 

p= {PI? P2, P3) with P~:(A,S),P,:(A,A),P,:(E,A) 

Attr = Attr(S) u Attr(A) 

Attr(S) = {k) 

AWA) = {f, k g, k} 

Inh= {f,h} 

Syn= {g,k}. 

Attribute definitions are written inside squares in Fig. 3 recalling the gram- 

wb (~1) = (s(l). k(l)1 

u (~1) = (k(o). f(1). h(l)) 

wm (~2) = (f(o)> h(o), g(l). k(l)1 

k (~2) = if(l)t h(l). s(o), k(o)1 

p3 r-a-@-A @-a-, 

9(O) = f(O) 
k(o) = h(o) 

Wh (~3) = (f(o). h(o)1 

Ww (~3) = (g(o). k(o)) 

FIGURE 3 
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matical rule profile. Non-terminal (or set) symbols are numbered from left 
to right. Hence Qp, is: “f( 1) = 0 and k(0) = k( 1) and h( 1) = g( 1 ).” Note that 
it is a usual attribute grammar, since all attributes in W,,,( pi) have a 
functional definition. 

(1.6) Conditional Attribute Grammars 

A conditional attribute grammar is similar to an attribute grammar. The 
only difference concerns the formulas QP which are of the form 

where the QP,,,,‘s are as in (1.5) and B, is a boolean conjunction of atomic 
formulas of the form R( t,, . . . . fk) or not (R(t, , . . . . rk)) for some k-ary 
predicate symbol R in $%! and some terms t,, . . . . t, in M(9, W,,(p)). 
Examples of conditional attribute grammars are given in the next section 
(see (2.3.4)). 

(2) RELATION TO RECURSIVE PROCEDURES AND LOGIC PROGRAMMING 

(2.1) Recursive Imperative Procedures 

We show that the semantics of certain recursive imperative procedures 
can be formalized by means of attributes associated with the nodes of a tree 
called the tree of calls which defines the structure of recursive calls in some 
computation for some interpretation and some values of the arguments. 

A conditional attribute grammar will be defined, based on a signature 
which corresponds to the structure of recursive calls. In order to give 
precise statements, we need a precise class of programs. We shall use the 
one introduced by Gallier (1981). 

(2.1.1) DEFINITIONS. Let 9, 3, 9 be as in (1.3). Since the set of sorts S 
will be irrelevant we shall imply take it reduced to a single sort. The exten- 
sion to multiple sorts is trivial. 

The set 9 will be partitioned into 9, u 9, u 9, where 9, = {x1, x2, . . . . X, 
x’, x”, . ..} is the set of input variables, 8, = { y,, y,, . . . . y, y’, . ..} is the set of 
local variables, and 9, = {z,, zZ, . . . . z, z’, . . . } is the set of output variables. 

We shall denote by 9,,, the set (x,, x2, . . . . xk} and similarly for QL,k, 
8 O.k. 

Let d be a finite set of procedure symbols; each A in d has a rank 
p(A) = (n, m) which is a pair of positive integers. 

A procedure definition over (F, @, &) is an equation 

A(x,, . . . . x,; zl, . . . . z,) = S,, 
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where (n, m) = p(A) and S, is a flowchart over (9, 9, ~4) of rank (n, m). 
We shall abbreviate it to 

A(x; z) = s,, 

where x represents the list (x,, . . . . x,) called the list of formal input 
parameters and z represents ( zl, . . . . zm), the list of formal output parameters. 

A non-deterministicflou&art over (9, 9, &) of rank (n, m) consists of: 

(I) a finite directed graph G with a special node in called the entry 
node, a special node out called the exit node, and such that in (resp. out) is 
not the target (resp. the source) of any edge and such that each node 
belongs to some path from in to out, and 

(2) a labelling function which associates an instruction over 
(9, R, S) of type (n, p, m) for some p with every edge, and satisfying a 
condition which will be stated later in terms of computation paths. 

By an instruction of type (n, p, m) over (9,&T, d) we mean 

(1) null, the null instruction, 

(2) or a simultaneous assignment of the form 

(01, . . . . Uk) + ([I> ..‘, tk), 

where u, , . . . . uk are pairwise distinct variables in 

9 0.m ” $L,p and t, , . . . . tk E8(‘%.n “‘%,,b-%., “%,, 

(see (1.2) for notations), 

(3) or a guard, i.e., an instruction of the form 

or 
NV Ukf * 3 ..., 

not (R(h, . . . . uk)) 

for some R in .%$ (the set of predicate symbols of W of rank k), ul, ;.., rk in 
%n “h,, ” QO,m 

(4) or a procedure call, i.e., an instruction of the form 
callA(u,, . . . . u,.; u,, . . . . u,,) where A ELZ!, p(A)= (n’, m’), ul, . . . . u,, E 
h,, ” QLp, 01, ..., urns E k., ” $o,, and vi # uj for i # j and ui # uj for all i, j. 

Such a procedure call is abbreviated callA(u; v); u(v) is the list of actual 
input (output) parameters. 

A system of recursive imperative procedures Z over (9, 9, d) is a set of 
procedure definitions over (9, !4?, ~2) such that for every A in d there is 
one and only one definition with left-hand side of the form A(x; z). 
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A recursive imperative program scheme over (5, B?, &) (we shall simply 
say a scheme in this section), is a pair (2, A ) consisting of a system of 
recursive imperative procedures C over (9, W, d) and some A in JX! play- 
ing the role of the “main program.” The rank of the scheme is defined as 
that of A. 

An interpretation for (C, A) (or C) is any structure I= (D, (f,),.,,, 
(rr)rc &) where thefr’s and the rI’s are total functions and relations over D 
of appropriate arity (as in (1.3)). 

A recursive imperative program P is a pair ((Z, A), I) consisting of a 
scheme and an interpretation. Such a program defines a relation P, E 
D” x D” where p(A) = (n, m). The definition of P, is recalled informally in 
Section (2.2) below. A formal definition can be found in Gallier (1981). 

(2.1.2) EXAMPLE. Let C be reduced to the single definition 
A(x,, x,; z) = S where S is the flowchart shown in Fig. 4. 

In order to help the reader to make a correspondence between Fig. 4 and 
Definition (2.1.1) we make precise that the nodes of the underlying graph 
are in, LX, /?, y, 6, E, out. The instructions labelling the edges are indicated in 
boxes. 

cd A(y,.x2; Y,) 

P- 
E 



PROOF OF PARTIAL CORRECTNESS FOR AG 15 

The node o! is a non-deterministic choice. The node j? is a deterministic 
choice due to the presence of the two exclusive guards p(x,, y2) and 
not(p(x,, y2)): at most one of the edges (/I, 6) and (/I, y) can be taken in 
each case. 

(2.1.3) Syntactic restrictions. The above definitions reproduce Gallier’s 
except that we have omitted his relational assignments (just for simplifying 
the exposition, but all our definitions and results could be extended so as 
to admit them). 

We shall make another more important restriction. A flowchart is loop- 
free if its underlying graph has no cycle. It is well known that a scheme 
(Z, A ) where some right-hand sides of procedure definitions are not loop- 
free can be transformed into an equivalent one with loop-free right-hand 
sides at the cost of introducing new procedure symbols. A special case of 
this transformation is the recursive definition of the while construct (see 
MC Carthy et al. (1965)). Our construction only works for loop-free 
systems in a fundamental way. 

(2.2) Operational Semantics 

(2.2.1) Informal deJnition. We recall the definition given by Gallier 
(1981, pp. 204-209). We first consider the case of a flowchart S of rank 
(n, m) over (9, B’, a), i.e., without procedure calls (but with possible 
loops). Let Paths(S) be the set of all finite paths in S from in to out. Such a 
path can be formally defined as a sequence 

P= (in, Q,, sl, Q,, s2,..., Q,, out), 

where the sls, are its nodes and Oi is the instruction labelling the edge 
Csi- *9 si) Of p. 

Let I be an interpretation (with domain D) and d be an n-tuple of input 
values (in D). If there exists a successful computation of S in I with an 
input d, it must follow some path in Paths(S) and yields as a result an 
m-tuple d’. 

The set of pairs (d, d’) in D” x D” associated in this way with some path 
p in Paths(S) will be denoted by pI (note that p, is functional). 

The relation S, defined by S in I is the union of the p,‘s for p in Paths(S). 
Since we allow non-deterministic choices, it is not functional in general. 
Note also that p is a flowchart, with only one path from in to out. 

The formal definition of p, from p is obvious (we hope) so we omit it. 
For a flowchart S over (5,&?, &), we shall denote by Paths(S) the 

same set as before. Some of the 0;s occurring in paths will be procedure 
calls, i.e., instructions of the form call A(u; v). 

We denote by S,,, the union of all p,‘s for p in Paths,(S), defined as the 
set of all paths in Paths(S) which do not contain any procedure call. This 

643/78/l-2 
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means that S,., is the relation defined by S if one assumes that no 
procedure call terminates. 

Of course our aim is to define S,, the relation defined by S in I in the 
context ofasystemZ= (A(x,z)=s,;A~&). InGallier (1981), Ciscon- 
sidered as a graph grammar with productions A --, S,, where applying a 
production at some edge labelled by call A(u; v) consists in substituting the 
“body” S, of A for its “call,” in a way which formalizes Algal’s “copy rule.” 

The notation S -+ * T will be used if T is obtained from S after finitely 
many such replacements. Then S, is defined by 

S, = U {T,,o/S --, * T). 

Let us make precise that the substitution of S, for callA(u; v) involves 

- a substitution of actual parameters (u; v) for the formal ones in S, 
- a renaming of the local variables of S,. 

See Gallier ( 1981) for more details. In the context of a fixed system Z we 
let A, = (S,),. 

(2.2.2) Well-formed program schemes. We now state the extra conditon 
announced in (2.1) that our flowcharts will have to satisfy. We shall require 
that on every computation path every variable has been assigned a value 
before it is used. Let S be a loop-free flowchart of rank (n, m) over 
(9, B, ~4). Let p= (in, O,, s,, 02, . . . . Ok, out) be a path in S, and let u be 
a variable and i E (0, . . . . k}. One says that u is defined at si (with s0 =in, 
sk = out) iff 

- either u E a,,, 
- or u E 9, u 9, and u is in the left-hand side of some assignment 0, 

with j 5 i or in the actual output parameter list of some procedure call Sj 
with j I i. 

A variable u is needed at si iff 

- either i = k (i.e., si = out) and u E a,,, 
- or i< k and Oi, , is a guard in which u occurs, or Oi+ , is an 

assignment and u occurs in its right-hand side, or Q,, I is a procedure call 
and u occurs in its actual input parameter list. 

A flowchart is well-formed if for every p in Paths(S), and every node s in 
p, every variable which is needed at s is defined at this node. This condition 
can easily be tested for each path and hence for S (since S is loop-free, it 
has finitely many paths). In the sequel, all flowcharts will be assumed loop- 
free and well-formed. 
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(2.3) Operational Semantics via Attribute Grammars 

(2.3.1) The tree of calls of a procedure evaluation. Let us consider a 
loop-free (and well-formed) system 

.E= (A(x;z)=S,/AE&) 

Remark first that Paths(S,) is finite for all A. 
Let P = U { Paths(S,)/A E &‘} (one first ensures that Paths(S,) n 

Paths(S,) = 121 if A # B by tagging with A the paths of S,). One turns P 
into an d-signature by letting o(p) = A if p E Paths(S, ) and a(p) = 

A,Az . . . A, where this word is the list of procedure names called in p 
(formally ifp= (in, 01, sl, . . . . Q,, out) then a(p)= ala2 “.clk with ai = A if 
0; is call A(u; v) for some u, v and ai = E (the empty word) otherwise). 

We say that a tree in M(P), is a tree of calls of A. Such a tree defines the 
structure of recursive calls in some computation. The variables will be con- 
sidered as attributes associated with procedure names, and appropriate 
semantic rules derived fom C will represent their changes of value during 
the computation. Furthermore, local variables will disappear; they will be 
symbolically evaluated into terms depending on input variables. 

(2.3.2) donstruction of a conditional attribute grammar. For A in d of 
rank (n, m) we let Inh(A) = { x1, x2, . . . . x,> (its set of formal input 
parameters), Syn(A) = {z,, z2, . . . . zm} (its set of formal output parameters), 
and Attr(A) = Inh(A) u Syn(A). Let us also assume that (y,, . . . . y,} is the 
set of local variables of S,. 

We now define Qp for each p in Paths(S,). This formula will be a con- 
junction of a set of boolean conditions and of a set of equations r, follow- 
ing the usual restrictions concerning the definitions of attributes, so that we 
shall obtain a conditional attribute grammar. 

Let p = (so, 0,) s,, . . . . @k, Sk)E Paths(S,) with s0 =in and sk =out. Let 
rl, r2, . . . . rl be the list of indices i such that Oi is a call. Let this call be of 
the form call A,(u,; vi). Hence a(p) = A, AZ ... A, and o(p) = A. (We assume 
that 1 < rl < rz < ... < r, <k.) 

In order to define Qj, we need a preliminary construction. This construc- 
tion will use the set W(p) of attribute occurrences associated with p and 
Attr as defined above. 

For each i= 0, . . . . k, each variable y in Y = {x1, . . . . x,, y,, . . . . y,, 
21, . . . . =m } we construct a term t(y, i) E M(5, W(p)) u {I } representing , 
the formal value of y at the node si on any computation sequence following 
the path p. The symbol I is a constant standing for undefined. 

Here is the definition of t: 

0, 4 = ~(0) forall yin {xi ,..., x,},alli. 
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We now assume that y E ( y, , . . . . y,, z,, . . . . zm}: 

t(y, i+ 1) = t(y, i) if &I,+, = null or Oi+ I is a guard. 

Let us now assume that 0, + 1 is an assignment u t (t,, . . . . t,) with u = 
(u r, . . . . u,). Then t( y, i + 1) = t( y, i) if y $ II and t( y, i + 1) = lj[ t( y, i)/y E Y] 
if y=uj. 

Let us now assume that Oi+, is call B(u; v) with u= (u,, . . . . u,,) and 
v = (Ul) . ..) u,,,,). Then 

t(y, i+ l)=t(y, i) if y&v 

and 
t(y, i+ l)=z,(h) if y=u,and i+l=r, 

where Oi+ , is the hth procedure call on the path p; note that z,(h) is an 
attribute occurrence. 

Note that if y is defined at s,, then t(y, i) does not contain I (more 
precisely t(y, i) E M(9, W(p))), otherwise t(y, i) = I (because of well- 
formedness); this can be shown by induction on i. 

We now define Qp as AND C, and AND r, where C, and r, are two 
(finite) sets of formulas defined as follows. 

For every i= 1, . . . . k such that Qi is a guard, say R(u, , . . . . u,), (or 
not(R(u,,..., u,))), one puts in C, the condition R(t(u,, i), t(u,, i), . . . . t(~,, i)) 
(or the condition not (R(t(u,, i), . . . . t(ur, i)))). 

We now define J’,. For defining the synthesized attributes “at the robt 
of p” (see the figures of example (2.3.4)), we put in r, the semantic rules 

z;(O) = t(z,, k) 

for all i = 1, . . . . m. 
For defining the inherited attributes “at the successors of the root of p,” 

we put in r, the semantic rules 

xi(j) = t(ui, rj) 

for all j= 1, . . . . I (recall that IX(P) = A, A, . . . A,), all i = 1, . . . . nj where the 
rank of A, is (nj, m,) and ui is the ith actual input parameter in the 
corresponding procedure call, i.e., 0,. 

Note that these semantic rules assign to formal input parameters the 
values of the corresponding actual input parameters. This definition makes 
very clear the parameter passing rule that is considered. Note also that the 
local variables have disappeared; they have been replaced by terms 
denoting their values. Examples are given below ((2.3.4) (2.4.2)). 
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Let Gs be the conditional attribute grammar associated in this way with 
a loop-free system C of recursive definitions. It is not difficult to verify that 
the underlying attribute grammar is of type L (See Engelfriet (1984) for a 
precise definition). 

(2.3.3) THEOREM. Let C be a loop-free system of recursive definitions. For 
every A in &’ of rank (n, m), for every structure I= (D, (f,),-, *, (R,)REcP), 
for every d in D”, and every d’ ED”, then (d, d’) E A, iff there exists a tree t 
in M(P), such that (d, d’) E R,., in G,. 

Sketch of the prooj Observe first that there is a one-to-one correspon- 
dence between M(P), and P, = lJ {Paths,(T)/A -+ * T} (cf. the notations 
of (2.2)). Roughly speaking (A, P) is the abstract context-free grammar 
underlying a context-free grammar generating the set P, from start symbol 
A. (This is not exactly so due to the renaming and the substitutions of 
variables at procedure evaluation.) 

Let n, be the corresponding mapping, associating a path in P, with a 
tree in M( P)A. The result follows then from: 

Claim. For all t in M(P),, all (d, d’) in D”+“, (d, d’)E R,,, iff 
(4 d’) E n,(t),. 

This claim can be proved by structural induction on t (simultaneously 
for all A in &‘). 

(2.3.4) EXAMPLE. Consider the following sorting algorithm which 
modifies a sequence u (say of integers) so as to sort it (say by increasing 
order): 

sort (u; u’): 
begin if length(u) > 1 then 

begin new variable v, w, v’, w’ of type sequence of integers 
(v; w) 4- split (u) 
sort( 0; v’) 
sort( w; w’) 
u’ t merge (v’; w’) 
end 

end 

This program uses an auxiliary procedure split (u), which divides u into 
two parts (as equal as possible), and produces a pair of sequences. The 
base function merge forms a unique sorted sequence by interleaving the 
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two sorted sequences it takes as arguments. We can translate this program 
into a conditional attribute grammar with two rules shown in Fig. 5, where 
the effect of split is described functionally by u= si(u) and w  = s*(u). 

(2.4) Relation to Recursive Applicative Procedures 

Recursive applicative procedures have been investigated in many works 
(let us only quote Cadiou (1972), Greibach (1975), Vuillemin (1974, 1975), 
Guessarian (198 1)). 

The basic examples are the factorial function, the Ackermann function, 
and the reversal of a list. We shall not give formal definitions. The follow- 
ing result is well-known (see (Greibach, 1975, Theorem 7.17)). 

(2.4.1) PROPOSITION. For every recursive applicative program scheme one 
can construct a recursive imperative loop-free scheme equivalent for call-by- 
value evaluation to the given one. 

It actually extends to non-deterministic recursive applicative procedures 
evaluated with call-by-value as shown by Example (2.4.2) below. Through 
this translation, the notion of a tree of calls and the construction of 
GE given above extend immediately to non-deterministic call-by-value 
recursive procedures. 

(2.4.2) EXAMPLE. Here is a non-deterministic variation on the classical 
Ackermann function. Let f be the non-deterministic function defined as 

f(x, y) = if x = 0 then y + 1 
else if y=O thenf(x- 1, 1) 
elsef(x- l,f(x, y-1)) orfb- 1, y)+f(x, Y- 1) 

It can be translated into the following recursive imperative program 
Ffx, y; z), the effect of which being to let z take the possible values of 
fk Y). 

V-S,(U) 

w=S2(u) 

FIGURE 5 
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m, y; z) 
begin 

ifx=Othenzty+l 
else if y=O then x’+x- 1; y’+- 1; 

call F(x’, y’; z’); z t z’ 
else (y’c y- 1; 

call F(x, y’; y”); 
x’tx- 1; 
call F(x’, y”; z)} 
or (x’ c x - 1; 

y’ t y - 1; 
call F(x’, y; 24); 
call F(x, y’; 24’); 
zcu+u’} 

end 

The corresponding conditional attribute grammar is shown in Fig. 6. 

(2.4.3) Call-by-name procedures. It is well-known that for a recursive 
applicative program scheme Y and an interpretation Z, the function Y,.., 
computed by Y in Z under the call-by-value evaluation mechanism is ‘in 
general less defined than the function Y,,name computed by the call-by-name 
one. 

The classical example (Cadiou, 1972) is 

Y(x, y) = if x = 0 then 0 else Y(x - 1, Y(x, y)), 

X(l) - X(O)-1 

FIGURE 6 
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FIGURE 7 

where ~l,name( l,O) = 0, y,.,,d l,O) is undefined due to the sequence of 
recursive calls: 

Y(l,O)+ Y(0, Y(l,O))+ !P(O, !P(O, Y(l,O)))+ ‘... 

Let us consider the relational attribute grammar associated with this 
recursive definition by the construction of (2.3.2). It is shown in Fig. 7. The 
call-by-name computation of !P,( 1, 0) yielding 0 can be represented by the 
“partial” tree with undefined (I) attribute occurrences z( 1) and y(2) of 
Fig. 8. This is not a tree in M( { p, , pz} ); it corresponds to an incomplete 
derivation, due to the fact that vl(0, !P(l, 0)) evaluates to 0 without 
needing to evaluate the inner call (to @P( 1, 0)). The classical I-trick can be 
used to handle this case. 

(2.4.4) PROPOSITION. Every call-by-name deterministic recursive 
applicative procedure can be simulated by a non-deterministic call-by-value 
one. 

Sketch of proof Every domain D is augmented with a constant I 
standing for “undefined.” A new constant 52 is introduced to denote 1. We 
assume for simplicity that one has a unique recursive definition: 

cp(x, ) . ..) x,) = t. 

Then one defines the new, non-deterministic definition: 

(P’(x,, . . . . x,) = t’ or 0, 

FIGURE 8 
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p3: 
x Y  w 2 

pI""I 

Z(0) = I 

FIGURE 9 

where t’ is obtained from t by the substitution of 40’ for sp. Then it can be 
shown that for d, d,, . . . . d, ED, 

if and only if 

de &add, 1 ..-, 4). 

(2.4.5) EXAMPLE. Again we use the example of Cadiou: 

Y(x, y) = if x = 0 then 0 else Y(x - 1, Y(x, y)). 

It can be simulated by 

Y’(x, y)= [if x=0 then 0 else Y’(x- 1, !P’(x, y))] or Q. 

This recursive definition can be represented by the conditional attribute 
grammar consisting of pr and pz of Fig. 7 together with the production p, 
shown in Fig. 9. The call-by-name computation of Y can be represented by 
the tree of calls p2(p3, p,) shown with its valid assignment in Fig. 10. 

(2.4.6) Remarks. Here is an example showing that the computation of 
Y ,,name(d) by means of an attribute grammar avoids certain duplications, 
and hence is shorter than its evaluation by call-by-name. The reason is that 
the evaluation by means of attributes corresponds to a certain sharing of 
duplicated subexpressions. Consequently, this construction fails for call-by- 
name computations of non-deterministic schemes. 

Let C be the equation 

Y(x, y) = if qx then f(y, y) else Y(hx, Y( gx, hy)). 

FIGURE 10 
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In a call-by-name computation of the form 

Y(d, d’) + Y(hd, Y( gd, hi’)) 

+ f( y’(g4 hd’), Y&d, ho) 

the two occurrences of Y’(gd, hd’) are computed separately. 
In the computation by attributes one evaluates the tree shown in Fig. 11 

where t’ corresponds to the evaluation of !P(gd, Ad’). This tree t’ is nor 
duplicated as was Y(gd, hd’) in the call-by-name computation. In other 
words, the computation by attributes corresponds to an implementation 
of recursivity by sharing as in (Vuillemin, 1975). If now the definition 
of !P(x, y) is augmented by some alternative cases making it non- 
deterministic, the two occurrences of Y(gd, hd’) may be evaluated into 
two distinct values and this cannot be handled by means of the attribute 
grammar. 

(2.5) Relation to Logic Programming 

We recall from Deransart and Maluszynski (1985) some results on the 
translation of a definite clause program into a relational attribute grammar. 
The semantics of logic programs can be formalized by means of proof trees 
which in turn can be viewed as trees decorated by attributes. We illustrate 
the definitions and constructions using a logical version of Example (2.3.4). 

(2.5.1) DEFINITIONS. The idea of logic programming concerns com- 
puting relations specified by logic formulas. The formulas are restricted to 

~(1) = h ~(0) 

FIGURE 11 
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definite clauses. A definite clause is a pair consisting of an atomic formula 
A and a finite set of atomic formulas {B, , . . . . B,}, q 2 0, written as 

A c= B,, . . . . B, (and also A (- in case q = 0). 

The atomic formulae are constructed, as usual, from predicate letters and 
(one-sorted) terms: A is an atomic formula iff it is of the form p(tl, . . . . t,) 
where p is an n-ary predicate and t 1, . . . . t, are terms. 

A definite clause of the form described above can be represented in the 
standard logic notation as the formula 

vx, . ..Vx/JB. A ... A B,=wI), 

where x1 ... xk are all variables occurring in the clause. 
A definite clause program (DCP) is a triple W = (M, 8, S) where N is 

a finite set of predicates letters with assigned ranks, 5 is a set of function 
symbols with assigned ranks, B is a finite set of definite clauses constructed 
with JV and 8, and 9 is a denumerable set of variables. 

EXAMPLE. The logical version of the sorting program (2.3.4) is the 
following (we use the same names prefixed by p- recalling that the names of 
the functions are translated into predicate names). Lists are dotted as 
usual: 

N = (p-sort, p-split, p-merge) 

9 = {nil, .} 

P= 

1. p-sort (nil, nil) t 

2. p-sort (A nil, A . nil) ti 

3. p-sort (A . B . L, S) S= p-split (A . B: L, Ll, L2), 

p-sort (Ll, S2), 

p-sort (L2, S2), 

p-merge (Sl, S2, S) 

p-split and p-merge are not described here; variables begin with upper- 
case letters. 

The meaning of each predicate is the same as in (2.3.4) provided that 
p-f (a,, . . . . a,) is equivalent to a, = f (a,, . . . . a,- 1). 

Usually a DCP is considered as a specification of its least Herbrand 
model (see, e.g, (Apt, 1982)). It was shown in (Clark, 1979; Ferrand, 1987) 
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that one can deal instead with the set of all atomic formulas (not 
necessarily the ground ones) which are logical consequences of the clauses 
of the DCP. This set is called its denotation in (Ferrand, 1987). Each 
element of this set can be obtained by constructing a proof tree. For the 
purposes of this paper it is convenient to consider a DCP to be the 
specification of the set of all proof trees (thus the denotation is the set of all 
the proof tree roots). 

We introduce now some auxiliary notions and the notion of proof tree. A 
substitution is an operation on expressions (terms or formulas), which 
replaces all occurrences of a variable in an expression by a term. The result 
is called an instance of the expression. A substitution can be seen as a term- 
assignment. 

A proof tree is an ordered labelled tree whose labels are atomic formulas 
(possibly including variables) or are empty. The set of proof trees of a 
given DCP V is defined as follows: 

1. If A e is an instance of a clause of % then the tree consisting of 
two vertices whose root is labelled A and whose only leaf has the empty 
label (E) is a proof tree. 

2. If T,, . . . . T, for some q > 0 are proof trees with roots labeled 
B , , . . . . B, and if A * B,, . . . . B, is an instance of a clause of %?, then the tree 
consisting of the root labeled with A and the subtrees T,, . . . . T, is a proof 
tree. 

By a partial proof tree we mean any finite tree constructed by “pasting 
together” instances of clauses. Thus a proof tree is a partial proof tree 
whose leaves all have empty labels. 

An example of partial proof tree is shown in Fig. 12. 

(2.5.2) Transformation of DCPs into relational attribute grammars. We 
outline from Deransart and Maluszynski (1985) the construction, without 
formal description, illustrating it by some examples. The idea is the 
following: 

- The set of clauses can be viewed as an abstract context-free gram- 
mar, if we forget all term arguments of the predicates. 

FIGURE 12 
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- Each argument can be viewed as an attribute (denoted pi for the 
ith argument of predicate p). 

- Each relation cBP associated to every grammatical rule can be 
defined using a canonical interpretation defined as follows: to every clause 
c (and thus every grammatical rule) is associated a relational symbol rr of 
rank n which is equal to the number of all attribute occurrences in the rule 
(all argument occurrences in the clause), whose interpretation is the set of 
all instances of the atom rr (a,, . . . . a,) where aj, 1 I is n, is the term 
appearing in the corresponding place in the clause. 

EXAMPLE. Relational attribute grammar corresponding to the sorting 
program (see Fig. 13): 

N = {p-sort, p-split, p-merge} 

P= (~1, p2: (E, p-sort), p3: (p-split p-sort 

p-sort p-merge, p-sort ) } 

Attr(p-sort) = { p-sortl, p-sort2) 

Attr(p-split) = {p-splitl, p-split2, p-split31 etc. 

a 

p1 : rp.sort 7 

rt(p-sortl(o), P-so~I~(o)) 

b 

p3 : 

r3 (p-sortl(o), p-sort2(0), p-splitl(l), p-splitl(2), 
p-splitl(3). p-sort1 (2). p-sport2(2). p-sort1 (3). 
p-sort2(3), p-mergel(4), p-merga2(4). p-merge3(4)) 

FIGURE 13 
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D is {rl(nil, nil), 

r2(A . nil, A nil), 

r3(A . B. L, S, A . B. L, Ll, L2, Ll, Sl, L2, S2, Sl, S2) 

for any A, B, L, S, Ll, L2, Sl, S2 replaced by terms of M(F, a)}. 

In order to simplify this notation, it will be shortened by avoiding to 
denote explicitly the relational symbols and by replacing the attribute 
names, which are obvious if the attribute places are ordered, by the 
corresponding term in the clause. The relational attribute grammar is 
shown on Fig. 14. 

(2.5.3) Main result on the transformation. The following theorem is 
proved in Deransart and Maluszynski, (1985): 

THEOREM. Let V= (N, 9,9) be a DCP and let G, = 
(N, P, Attr, @, ID) be the relational attiibute grammar obtained by the out- 
lined construction. Then the set of proof trees of %? is isomorphic to the set of 
trees with valid assignments of G,. 

This theorem states that results obtained in one representation can be 
transposed into the other representation. Thus all the results obtained 
using the representation by a relational attribute grammar yield results on 
the proof trees. 

P, 

I 

P3 

-@@-@ 

FIGURE 14 
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(3) FIX-POINT INDUCTION FOR ATTRIBUTE GRAMMARS 

We introduce specifications for attribute grammars, and the c0rrectne.s.r 
of an attribute grammar w.r.t a specification which is akin to the partial 
correctness of programs. 

We introduce a proof method making possible to establish the 
correctness of an attribute grammar w.r.t. a specification. This method is 
sound. It is complete in an abstract sense, i.e., if one uses the “maximum” 
logical language where every relation on the domain of interpretation can 
be represented by a formula. This completeness result is analogous to the 
theorem of De Bakker and Meertens (1975) stating the completeness of the 
inductive assertion method for flowcharts. But the incompleteness result of 
Wand (1978) extends to our proof method, when one restricts formulas to 
first-order logic. 

(3.1) Speczjkations 

(3.1.1) DEFINITION. Given a relational attribute grammar G = 
(N, P, Attr, @, D), a specification for G consists in a family 0 = {OX},,, 
of formulas belonging to some logical language 5?’ including Y (9 is the 
language where @ is defined). 

Each formula has its free variables in the set Attr(X). We shall also write 
O”(a,, . . . . a,) to recall this, where {ul, . . . . a,} =Attr(X). 

We say that G is correct w.r.t. the specification 0 or satisfies 0, or that 0 
is ualidfor G if, for every tree t in M(P) and for every valid t-assignment v, 

D /= OX(v(a,(0), . ..) v(a,(O))) (i.e., (D, v’) k OX where v’(q) = v’(ai(0))), 

where X = a(t). 
In a practical situation, 0’ is given where S is some initial non-terminal 

and G must be found to satisfy (0’, true, . . . . true). But for the purpose of a 
theoretical investigation we shall prefer to start from G and investigate the 
set of specifications which G satisfies. For this reason we shall use the 
upside-down terminology “0 is valid for G.” 

The following proposition says that the validity of Ox holds not only at 
the root of a tree, but also at all nodes, if 0 is valid. 

(3.1.2) PROPOSITION. Zf 0 is valid for G then, for all tree t in M(P), for 
all valid t-assignment v, 

D k @X(v(a,(u)), . . . . v(a,(u))) 

for every u in Node(t) where X=cr,(u) and {a,, . . . . a,> =Attr(X). 
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Proof Let t, v, u be given as in the statement. Let t’ = t/u; then the 
assignment v’: W(t’)+D such that v’(a(u’))=v(a(uu’)) for all a(u’) in 
W(t’) is a valid t’-assignment. Whence the result by Definition (3.1.1). 

(3.1.3) Remark. Saying that G satisfies 0 corresponds to the partial 
V-correctness of a program w.r.t. a specification, as defined by Gallier 
(1981). 

Other notions, in particular the total correctness, are of obvious interest. 
In particular, one could define the total Scorrectness of G w.r.t. 0 by 
requiring the existence of at least one tree t in M(P),, at least one valid 
t-assignment v such that v(bi(0)) = di for every I-tuple (d,, . . . . d,) satisfying 
some “input condition” $X(d,, . . . . d,), (where {b,, . . . . b,} is a subset of 
Attr(X)) and satisfying 0. See (Deransart, 1984) for the investigation of 
such a concept. 

(3.1.4) DEFINITION. Let 0 and 0’ be two specifications for the same 
relational attribute grammar G. One says that 0 is weaker than 0’ (0’ is 
stronger than Q), denoted by 0’ =z- 0, if for all X, 

D t= (cYX*QX). 

Note that 0 and 0’ can be written in different logical languages. If 0’ is 
valid for G and 0’ =z. 0 then 0 is valid for G. 

The specification TRUE (every formula of which is identical to true) is 
always valid for G in a trivial way. It is the weakest valid specification 
for G. 

There exists a strongest valid specification for G, belonging to the 
“language” JZn of all relations on D. Let us denote it by 8, and define it as 
follows (with Attr(X) = (al, ..,, a,)): (D, dl, . . . . d,,,) t= Qs(al, . . . . a,) if and 
only if there exists t in M(P),, a valid t-assignment v such that v(a,(O)) = di 
for all i= 1, . . . . m. (In the first formula di is assigned to ai for all i = 1, . . . . m.) 

In a more intuitive way, Qg is defined as U { R,,/t E M(P),). It should 
be noted that Qi is not necessarily expressible in first-order logic (see (3.3) 
below). From the definition, it is clear that a specification 8 is valid for G 
iff it is weaker than 8, (i.e., QG Z 0). 

(3.2) How to Establish the Correctness of an Attribute Grammar with 
Respect to a Specification 

(3.2.1) DEFINITION. Let G be a relational attribute grammar (N, P, 
Attr, @, ICb) and 0 be a specification for G. One says that 0 is inductive if, 
for all p in P, 

D k @,andQ;YlandQp... and Q~-Q~, 
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where (X, . . . X,, X0) is the profile of p and for every formula 4 in 
Y(Attr), tii denotes the formula q5[a(i)laEAttr] that belongs to 
.P({a(i)la~Attr, in N}). 

(3.2.2) PROPOSITION. If0 is inductive then 0 is validfor G. 

Proof One can prove by structural induction the validity of the 
proposition, 

VXE iv, vt E M(P),, D k @, =a ox. 

(3.2.3) Remark. A specification may be valid without being inductive 
as shown by the following example: 

N= (X, Y} 

p= lP94) with p: ( Y, X) and q: (E, Y) 

Attr(X) = {u} 

Attr( Y) = (6) 

q@), b( 1)) * u(0) = b( 1) 

q@(O)) 0 b(0) = 0 

D=N. 

Let 0 be the specification such that 

QX(u)ou=O 

0 *(b) 0 true. 

It is clearly valid but not inductive since the following does not hold in N: 

Vu(O), b( 1) [u(O) = b( 1) and true =S u(O) = 01. 

(3.2.4) PROPOSITION. The strongest valid specification for G, namely O,, 
is inductive. 

Proof. Let P E PCx,. ..x~,X,,>. Let 0 = 0,. Let v be any assignment: 
W(p) --t D. We must verify that 

(D, v) k Qp and Of’1 and . . . and 02 =B 02. 

Let us assume that the left part of the implication is true. By definition of 
8 ( = 0,) there is a tree ti for each i= 1, . . . . n and a valid t,-assignment vi 
such that v,(u(O)) = v(u(i)) for all a in Attr(Xi). Let t = p(tl, . . . . t,) and v’ be 
the t-assignment such that v’(u(O))= v(u(0)) for a in Attr(X,,) and 
v’(u(iu)) = v,(u(u)) for all u(u) in FV(ti). Since v satisfies QP, v’ satisfies @, 
and hence v’ (and v) satisfy @,x0 by the definition of 8,. 
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(3.2.5) THEOREM. Let G be a relational attribute grammar. A specifi- 
cation 8 for G is valid ifs it is weaker than some inductive specification 0’. 

Proof and remarks. The “if” part follows from Proposition (3.2.2). It 
corresponds to the soundness of the proof method consisting in the follow- 
ing steps: 

(1) defining a specification 0’ 

(2) proving that 0’ is inductive 

(3) proving that 0’ 3 0. 

The “only if’ part follows from Proposition (3.2.4). It corresponds to a 
completeness theorem w.r.t. the language of all relations on D. One does not 
have the completeness if one restricts assertions to some logical language 
like first-order logic. See (3.3) below. 

(3.2.6) EXAMPLES. Coming back to Examples (1.5.1) and (1.4.3), it is 
not difficult to prove the correctness of Katayama-Hoshino’s example with 
respect to the inductive specification such that: 

Oso3n,k=4*n 

In the same way it is not difficult to prove the equivalence of the two 
attribute definitions given in Example (1.4.3), using the following inductive 
specification (note that both have the same underlying abstract context-free 
grammar), 

0’0 (baword(x) or bword(x)) and x = y 

GA o (bword( y) or baword( y)) 

and(bword(u) =P x = uy) and (baword(u) *x = u). 

Note that this specification may appear relatively complicated and the 
proof even if not difficult needs to be well-organized in order to remain 
sufficiently clear. The method presented in (4) can be viewed as an aid to 
make clearer demonstrations. 

(3.3) Wand’s Incompleteneness Result 

We show an example of a relational attribute grammar and a valid 
specification 8 for which no inductive specification 8’ written in first-order 
logic can be found to prove it (i.e., such that 8’ = 8). 

Our example is a straightforward translation of an example of Wand 
(1978) showing the incompleteness of Hoare’s logic when invariant asser- 
tions are written in first-order logic. 
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Let p, q, r be unary predicates, f be a unary function symbol, and x, y be 
variables. Let D be the first-order structure such that its domain D is 
{a,/n>O} u {b,/n20}, and: 

f (a,) = a,, f(bo) = bo, 

f(%J=L,, f(b,)=bn-, for ~221, 

p(x) = true iff x=uo 

q(x) = true iff x=b, 

r(x) = true iff x = a, for some n of the form k(k + 1)/2. 

It is shown in (Wand, 1978, Theorem 2) that there is no first-order 
formula q5 with one free variable x in such that, for d in D, (D, d) t= $ iff 
de (qJn 20). 

Let G be the following relational attribute grammar: 

N= {A, X> 

P<X;A> = b>, P<x,x> = V+ P<E.X> = Ccl 

Attr(A) = Attr(X) = {x, y} 

c&, is the formula r(x(0)) and x(0) = x( 1) and y(0) = y( 1) 

Qb is the formula not (~(-40))) and (noM-W)N 

andx(l)=f(x(O))and y(O)=y(l) 

@, is the formula (p(x(O)) or MO))) and x(O) = y(0). 

Let D be the above-defined interpretation. 

It is easy to see that the strongest specification 8, is the following: 

Qik Y) iff (x~{u,/n~0}andy=u,) 

or (xE{b,/n20}andy=b,) 

%3X? Y) iff (XE {u,/n=k(k+ 1)/2forsomekrOj 

and ~=a,). 

Let 0 be the valid specification such that: 

QX(x, y) is true 

Q% Y) is P(Y). 

Assume there is an inductive specification 8’ such that 8’ =S 8. It must 
satisfy the following conditions (Definition (3.2.1)): 
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(1) Q’% Y)*P(Y) (i.e., 0’ * 8) 

(2) Wx(x, y) and T(X) Z- WA(x, y) 

(3) @‘x(f(x), Y) and (not (PC-~1)) and (not (q(x)))=@‘x(x, y) 

(4) (p(x) or q(x)) and x = y =z- O’*(x, y). 

Let now 4 be the formula Vy[6YA(x, y) * p(y)]. 

Claim. (Ul, d) k 4 iff de { a,/n 2 O}. 

We first note some facts. From (4) the following holds: 

(5) @‘Vo, b,). 

From (5) and (3) the following holds: 

(6) O’X(b,, b,) for all n 2 0. 

If WX(a,, d’) holds then OfX(a,, d’) holds for all m 2 n (by (3)). Let us 
choose m 2 n of the form k(k + 1)/2; then efA(am, d’) holds by (2); hence 
p(d’) holds by (1). This shows that (ID, d) k 4 for all d in {a,,/n 2 01. 

Now let d= b, for any n. Then @‘*(b,, 6,) holds by (6); since p(b,) does 
not hold, (D, d) /= q5 does not hold. 

The claim is proved. But 4 (hence 0’) cannot be first-order formulas. 

(3.4) Application to the Partial Correctness of Imperative Schemes 

Let (& A) be a scheme over (9, W, s-&‘) of rank (n, m). Let d(x) and 
Ij/(x, z) be formulas of some logical language $P constructed over 9 and 9’. 

Let Z be an interpretation with domain D. We say that A is partially 
correct w.r.t. (q5, $) in Z for all d in D”, all d’ in D”, if qS(d) holds, if 
(d, d’)E A,, then Il/(d, d’) holds. 4(d) holds means (Z, d) /= 4(x) and 
similarly t,b(d, d’) holds means (Z, d, d’) + $( y, z). This property is called 
V-partial correctness in (Gallier, 198 1) where other correctness conditions 
were considered. 

Given (t; A) and (4, I,+), we define a specification 0 for Gz, the con- 
ditional attribute grammar defined in (2.3.2), by letting: 

@A:4(x)*$(x,z) 
0% true 

for all B in s&‘, B # A. 
For any interpretation Z, it is clear from Theorem (2.3.3) that (C, A) is 

partially correct w.r.t. (4, $) iff 8 is valid for G,. 
Hence the proof method derived from Theorem (3.2.5) can be applied to 

GE and 8 and yields a sound and complete method for establishing the 
partial correctness of (z, A) w.r.t. (4, +), which is nothing else than the 
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classical fix-point induction extended in (Gallier, 1981) in order to deal 
with non-loop-free systems. 

(3.4.1) EXAMPLE. Let A(x; z) = S, be a recursive definition such that S, 
is the flowchart shown in Fig. 15. The interpretation is the domain of 
integers with the usual operations. 

We shall prove the partial correctness of A with respect to (d(x), I,!I(x, z)) 
where 4(x) is “x20”, and $(x, z) is “~2 1 and r(x+ 1)/21 divides z” 
(where rvl denotes the least integer y’ such that y’ 2 y). 

Since A(x; z) defines z = x! whenever x 2 0, its partial correctness follows 
from an easy arithmetical argument (r(x + 1)/215 x). Gallier’s method 
consists in finding predicates dA(x), tiA(x, z), and qa(x, JI,) such that, for 
all x9 Y,, Y,, 

(1) 4(x)*$,(x) 

(2) 4Ax) and x=O*~..&, 1) 

(3) dA(x) and x>Oaq,(x, x- 1) and tiA(x- 1) 

(4) qak IQ) and hblT Y~+~(x~ Y, 4 

(5) 46) and ~,&,z)=Wz). 

FIGURE 15 
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Intuitively dA is an input predicate and *A is an input-output predicate 
for A such that A is partially correct w.r.t. dA, Ic/A. The predicate qa(x, yl) 
is a relation that is satisfied for every computation fom in to c1 in S, (by 
(3)) and is sufficient to ensure the validity (with respect to Ic/A) of every 
computation in SA from tl to out (by (4)). 

Conditions (1) and (5) say that (dA, $A) is stronger than (4, $). 
Condition (2) states the correctness w.r.t. (dA, tiA) of the computations of 
S, following the right-most path (see Fig. 15). Conditions (3) and (4) state 
the same thing for the computations following the left-most path, if one 
assumes the correctness of the call to A on this path, and by using q as an 
intermediate predicate. 

Note that q, can be eliminated between (3) and (4), i.e., that the 
conjunction of (3’) and (4’) is sufficient to establish the partial correctness 
of A w.r.t. (4, IL): 

(3’) 4A(x) and x>O*#,(x- 1) 

(4’) #A(~) and x > 0 and $Jx- 1, y2) * (x, y2 ex). 

The completeness theorem of Gallier (1981) shows that one can take for 
#A the predicate true and for $A the input-output relation defined by A, 
i.e., $Jx, z) iff x20 and z= x!. 

The following formula being false (in Z), 

V-x, y  [x, y  > 0 and rx/2] divides y * r(x + 1)/2] divides x . y] (* ) 

(it suffices to take x = 12, y = 6), one cannot simply take $ instead of eA. 
This is an example of the frequent situation where for doing a proof by 
induction, one needs an inductive assertion which is stronger than the one 
to be established. 

Let us now do this proof of partial correctness in terms of attribute 
grammars. The relational attribute grammar associated with A consists of 
two “productions.” The first is p, with profile (A, A). The associated 
relation GP, is 

x(O)>0 and x(1)=x(O)- 1 and z(O)=z(l).x(O). 

The second is pz of profile (E, A) with relation QP2, 

x(0) = 0 and z(0) = 1. 

The specification (4, +) is now written as a unique formula 4 *II/ that we 
denote by 0 and is 

x2o*z2 1 and r (x + 1)/21 divides z. 
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Since (*) is false in h so is 

@,,, and O[x( 1)/x, z( 1 )/z] * @[x(0)/x, z(O)/zl. 

Hence 0 is not inductive. 
The completeness theorem (3.2.5) shows that in order to prove the 

validity of the relational attribute w.r.t. 0 (hence the partial correctness of 
A w.r.t. (4, $)), it suffices to prove 0, + 0 were OO is the strongest valid 
specification, which is nothing else by Theorem (2.3.3) than the input- 
output relation of A. 

It follows that 0, coincides with $A =z $A where #A, J/,, follow from 
Gallier’s completeness proof. 

The inductivity of 0, is equivalent to the conjunction of (2), (3’), (4’). 

(3.5) Application to Logic Programming 

As shown by Theorem (2.5.4) the inductive and complete proof method 
depicted in this section can be applied to the correctness of definite clause 
programs. 

A specijkation is given by a family offormulas (expressed in some logical 
language which can be a higher level than the program’s logic or informally 
expressed properties if a formal proof is not required), one formula 
associated with each predicate name. It is valid if it holds at all proof tree 
roots (all terms in the atomic formulas of the denotation make the 
specification valid, i.e., all possible answers satisfy the specification), thus a 
DCP will be said to be partially correct w.r.t. the (valid) specification. 

The associated attribute grammar obtained by the construction (2.5.2) 
uses the canonical termal interpretation. Now we are interested in inter- 
preting the axioms in some non termal structure D of the specification’s 
language. The proof method for attribute grammars can thus be applied 
directly by showing that some specification is inductive, that is in every rule 
c the formula (3.2.1) holds, in which the free variables of Op(i2 0) are sub- 
stituted by the corresponding terms in the clause c and the remaining 
variables are all universally quantified. It is easy to see that every logical 
consequence in D of an inductive specification is valid in the sense defined 
above. 

For example, consider the following program (list permutations): 

(1) perm( nil, nil) * 

(2) perm(A . L, B. M) = extract(,4 . L, B, N), perm(N, M) 

(3) extract(A . L, A, L) c= 

(4) extract(A . L, B, A . M) F extract( L, B, M) 



38 COURCELLE AND DERANSART 

It can be proved partially correct with regard to the specification 

Operm(p,, pz): list p, => (list p2 A pz is a permutation of p,), 

where p1 and pz denote respectively the first and the second arguments of 
the relation “perm,” and 

8 extract 
(e,, ez, ej): list e, 3 3L,, L,(e, = L, . (e2 .L3) A e3 = L, . L,), 

where . denotes list concatenation. The specification {OF’“, OextraCt} is 
inductive. 

The formulas to be proved are: 

(1) list(ni1) * (list(nil) A nil is a permutation of nil) 

(2) list(N) =- (list(M) A M is a permutation of N) 

A list(A.L)~3L,,L3(A.L=L,.(B.nil).L3)~\=L,.L3 

* [list(A . L) * (list(B . M) A B . M is a permutation of A I L)] 

(3) ~~~~(A.L)*(~L,,L,(A.L=L,.(A.~~I).L,)AL=L,.L,) 

(4) [list(L)*@L,, L,(L=Ll .(B.nil).L,) A M=L,.L,)] 

* [list(A.L)~(3L;,L;(A.L=L;.(B.nil).L;)AA.M=L’,.L;)] 

Now we consider the usual Peano’s axioms for the addition on the 
natural integers N defined with 

Y= {c&s}, 

9 = plus(0, x, x) t 

plus(s.? y, =I t pwx, Y, z) 

Its translation into a relational attribute grammar is 

N= {plus} 

P= {pl: (E, plus), p2: (plus, plus)) 

Attr(plus) = (plusl, plus2, plus3). 

See Fig. 16. 
The following specification is inductive: 

Ol;iUS: (ground plus1 A ground plus2) 3 ground plus3. 

In order to shorten this kind of specification we use arrows 1 (to 
indicate that some argument is ground by hypothesis-input argument) 
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p2 : 

FIGURE 16 
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and t (to indicate that some argument is ground; this the conclusion- 
output argument). Hence @Pius can be shortly written as i. 1 t . 

It is very easy to prove that the following specifications are inductive 
also: 

O~*uS means that for every atomic goal of the form plus (X, Y, S~O) in 2 

which the third argument is given, all answer substitutions (if any) are 
ground. 

This kind of specification called “mode” in PROLOG’s folklore is useful 
for methodological and optimization purposes (see (Deransart and 
Maluszynski, 1984, 1985) for more details). It is not always inductive as 
shown by the following example: 

(3.51) EXAMPLE (Deransart, 1984). 

q(X Y, a. b, Y) -e 

q(X, Y,‘X, a.b)-c= 

In this program, a and b are constants and “.” is a binary operator. 
All the proof tree roots of this program are such that p2 is ground. As 

such it could be a part of a bigger logic program. 
It is partially correct w.r.t. the specification 8 where BP is 1 t and eq is 

1 1 t t, but this specification is not inductive. Denoting by pl, p2 (resp. 
ql ... 44) the arguments of p (resp. q), it is easy to show that the following 
specification is inductive: 
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Of : ground p2. 

07: [(ground ql aground 43) A ground q4] 

v [(ground q2 * ground 44) A ground q3]. 

And the following formulas hold also: 

0g=S0p 

@Y ==t- @Y. 

(These results hold in any interpretation). Hence 0 is valid by 
Theorem (3.25). 

Note that the difficulty in this example comes from the form of the 
inductive specification which is not obvious and thus difficult to find. The 
method presented in (4) can be viewed as an aid to find a demonstration 
and the results obtained in Section (5) as a way to find a stronger inductive 
specification. Automatization of the proof and automatic detection of 
modes have been considered in (Deransart and Maluszynski, 1984, 1985). 

(4) ANNOTATIONS 

The practical usability of the proof method of Theorem (3.2.5) suffers 
from its theoretical simplicity: the inductive specification 0’ to be found to 
prove the validity of some given specification 0 will need complex formulas 
@lx since there is only one for each X in N. 

In what follows, we want to describe at a syntactical and abstract level 
a method to break such complex formulas into boolean combinations of 
simpler ones. 

Roughly speaking, we shall write a formula OX as AND A * AND B 
where A and B are finite sets of formulas. The formulas in A will be con- 
sidered as inherited attributes and those in B as synthesized ones within a 
certain attribute dependency scheme. The truth of Af%JD A =c- AND B 
corresponds to the fact that synthesized attributes depend on inherited ones 
(via the subtree issued from the node). And the non-circularity of the 
attribute dependency scheme will ensure the non-circularity of the proof of 
AND A + AND B and hence its truth. 

This method will be well-suited to (usual) attribute grammars where, at 
each node of the tree, some attribute occurrences wO are defined (in a uni- 
que way) in terms of neighbour attribute occurrences w,, . . . . wk. In this 
case, AN D B will contain some information concerning wo, and AN D A 
will contain some information concerning the values of wi, . . . . wk (the 
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attribute occurrences at this node, upon which w0 depends, via the subtree 
or the context). 

In other words, the design of the formulas Ox can be made in connection 
with the structure of the dependencies between attribute occurrences. 
Certain restrictions defining subclasses of attribute grammars (strongly 
non-circular, e-ordered etc.) certainly yield specific types of formulas 0’ 
(but we shall not explore this aspect here). 

Such an approach has been taken by Katayama and Hoshino (1981) for 
a class of attribute grammars closely connected with the class of benign 
attribute grammars of Mayoh (1981). 

(4.1) Definition 

Let G = (N, P, Attr, @, II9 ) be a relational attribute grammar. 
An annotation of G is a mapping A assigning to every X in N a finite 

set A(X) of formulas of Y(Attr(X)) where 2” is some logical language 
containing Y. 

The set A(X) is partitioned into two sets IA(X) (the set of inherited asser- 
tions of X) and SA(X) (the set of synthesized assertions of X). 

The specification 0, associated with A is the one such that Oj is the 
formula 

AND IA(X)* AND SA(X). 

We say that A is valid (resp. inductive) if 0, has the same property. 
It is clear that every specification 0 can be seen as the annotation A, 

such that SAJX) = (ex} and IA,(X)= {true} and that @,, coincides 
with 0. 

We shall now give sufficient conditions ensuring the validity of an 
annotation. 

The intuition behind these conditions is to formalize a new way to make 
proofs, different from the inductive method, but which can be viewed as a 
special case of it. Instead of a unique inductive proof scheme, one now has 
local proof schemes associated to each production, using the annotation A. 
These schemes are formalized by the so-called logical dependency schemes. 
They indicate which hypotheses can be used locally to prove all the 
annotations in output positions. These schemes are locally valid ones, that 
do not ensure that 0, is also valid. One needs one more condition which 
corresponds to the non-circularity of the corresponding logical dependency 
scheme. This means intuitively that there is no circularity in the proof. 

Hence 0, is a valid specification if the logical dependency scheme 
associated with A is sound (local validity) and non-circular. 

The inductive specification method is clearly a special case of this 
method since the annotation is reduced to a single formula associated with 
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each non-terminal and the logical dependency scheme is then purely 
synthesized. 

(4.2) Attribute Dependency Schemes 

We have introduced attribute grammars without dependencies (1.4, 1.5, 
1.6). We now introduce attribute grammars with pure dependencies 
between attributes and no semantics. These new formal objects are called 
attribute dependency schemes. 

Let us begin with some definitions and notations concerning binary 
relations and graphs. 

(4.2.1) Relations and graphs. By a graph we mean a finite directed 
graph formally defined as a pair D = (A, R) consisting of a finite set of ver- 
tices A and a binary relation R c A x A. If (a, b) E R this means that there 
exists an arc from a to b. When A is known from the context we shall iden- 
tify D with R (and write D for (A, D)). We denote by D’ the graph 
(A, R+ ) where R+ is the transitive closure of R. By the union of a family of 
graphs (Di)ic, with Di =(Ai, Ri) we mean the graph D=(U(A$EZ}, 
U{Ri/iEZ)). 

(4.2.2) DEFINITION. An attribute dependency scheme (ADS) is a 4-tuple 
(N, P, Attr, D) such that: 

(i) (N, P) is an abstract context-free grammar, 

(ii) Attr is a finite set of attributes as in Definition (1.4.1) (but sorts 
are irrelevant here), 

(iii) D is a mapping associating with every p in P a binary relation 
D(p) c W(p) x W(p) (where W(p) is as in (1.4.1)). It is also considered as 
a graph with set of vertices W(p). This graph will be denoted by D(p) and 
will be called the local dependency graph of p. 

We now define D(t), the global dependency graph of some t in M(P), 
built by “pasting” together the D(p)% at all nodes of t. 

(4.2.3) DEFINITION: DEPENDENCY GRAPHS. Let tE M(P). We denote by 
D(t) the graph with set of vertices W(t) (same notation as in (1.4.2)) and 
call it the dependency graph of t: 

D(t)=U{w.D(p)/wENode(t), p=lab,(w)), 

where 

w. D(P) = (w. f+‘(p), +w,Jr 

w. W(P)= {a(w~)Ia(~)~ WP)>~ 
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and 

a(wu) - m, P b( wu’) iff (a(u), b(4) ED(p). 

We say that an ADS as above is non-circular if, for all I in M(P), D(t) 
has no cycle (and circular otherwise). 

Deciding whether an ADS is non-circular is a trivial extension of the 
usual non-circularity test for attribute grammars. See (Deransart, Jourdan, 
and Lorho, 1984) for practical methods and references on circularity tests. 

The study of the o(t)‘s necessitates further notations. 

(4.2.4) Notations. We denote by D’(t) the transitive closure of D(t), 
by D,+(t) the restriction of D’(t) to We(t). Since W,(t) is in bijection with 
Attr(o(t)) (by a(O) H a) we shall consider D,+(t) as a binary relation on 
Attr(a(t)), i.e., on the attributes of the root of t. 

Letz=p~x,...xn.xo~. Let ri E Attr(Xi) x Attr(X,) for i = 1, . . . . n. We denote 
by D(p)Cr,, . . . . r,] the graph D(p)u 1 .rl u ... un.r, where i.ri is the 
graph with set of vertices {a(i)/a E Attr(X,)} and set of arcs 
((a(i), b(i))/(a, b)E ri}. We denote by Do+(p)[rl, . . . . r,,] the restriction to 
W,,(p)= {a(O)/aEAttr(X,,)} of (D(p)[r,, . . . . r,])+. Through the bijection 
at-* a(0) of Attr(X,,) + W,(p) we consider D:(p)[r,, . . . . r,] as a binary 
relation on Attr(X,). 

(4.3) Soundness of an Annotation 

Let G and A be as above. Let D be mapping associating with p in 

P<Xl...X”,XO> a graph D(p) with set of nodes 

J’(p)={d(i) 1 OSi<n,ti~A(Xi)} 

(i.e., V(p) is defined w.r.t A as W(p) is w.r.t. Attr) such that the target of 
every arc belongs to 

Vconcl(p)= {#(i)E V(p) 1 ~~ESA(X,,) and i=O or ~EZA(X,) and lliln}. 

Letting _d denote IJ{A(X)/XE N) this means that (N, P, LI, D) is an 
attribute dependency scheme; let us call it a logical dependency scheme 
(LDS). We shall be interested in non-circular logical dependency schemes. 

We say that A is D-sound if for all p in P (of profile (X, . . . X,, X0 )), for 
all 4(i) in V,,,,,(p), the following condition holds, 

(where the mapping I,& H $j is as in Definition (3.2.1)). 



44 COURCELLEANDDERANSART 

(4.4) The Use of Annotations for Correctness Proofs 

We shall prove that if A is D-sound and the associated LDS is not 
circular then 0, is valid. We give here a direct proof of this fact as in 
(Deransart, 1983). In Section 5 we will give another proof of this result 
after comparing annotations and fix-point induction. 

(4.4.1) THEOREM. Given an annotation A of a relational grammar 
(N, P, Attr, @, D ) and a logical dependency scheme LDS, = (N, P, A, D), 
if A is D-sound and LDS, is non-circular, then 0, is valid. 

Proof The theorem is proved by induction, following the sketch given 
in (Deransart, 1983) for logical attribute grammars. 

We prove that in every tree t of M(P),, if AFJD{cp,,/cp EZA(X)} holds, 
then all formulas qo,, u E Node(t), cp c A(lab,(u)) also hold; hence 
AfUD{cpO/cp E SA(X)} holds. It follows that 0: is valid in D for all X in N; 
hence 0, is a valid specification. 

If LDS, is non-circular, then the relation D(t) is a partial order 
(antisymetry holds since D(t) has no cycle). The induction follows this 
partial order. By the construction of D(t), its minimal elements are the for- 
mulas (pO, cp E IA( or cpU which are instances of some formula in 
V,,,,,(p) for some production p. As A is D-sound, these formulas are valid 
in D since they are instances of local proof schemes valid in [ID. 

Now consider any other formula in D(t). By construction it is an 
instance of a formula of V conc,(()) for some p. By construction, all formulas 
that it depends on in D(t) are instances of formulas in V(p). By induction 
hypothesis, all the formulas that it depends on hold in D. As A is D-sound 
it holds also. Hence all formulas hold in D(t). 

(4.4.2) EXAMPLES. Continuing Examples (1.5.1) and (1.4.3) we recon- 
sider the three given examples using the new method. 

The Katayama-Hoshino example (1981) has been introduced to show 
the feasibility of such a method. They show the validity of the specification 

0 defined as: 3n k=4*n 

using the same kind of method but requiring restrictions on the attribute 
grammar and the specification. We get here the same result without any 
specific hypothesis by using a sound and non-circular logical dependency 
scheme. 

Consider the same annotation as in (Katayama and Hoshino, 1981) that 
is given by 
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A = (a, P, Y, 6) 

IA(S) = 4, SA(S) = (6) 

IA(A) = {P>, W))= (a, r) 

CfA: 3n,g=f+2*n 

A. 
/3 . h=2*f+g 

A. 
Y ’ k=f+2*g 

as: 3n,k=4*n. 

The logical dependency scheme is (N, P, d, D) (see Fig. i7). 
The proofs given in (Katayama and Hoshino, 1981) show the soundness 

of LDS,. As it is obviously non-circular, 0, is valid, and hence Ss and 
p”=E-u” A y A hold. 

This latter specification (@,A) does not seem very natural and the 
associated inductive stronger specification (as it is shown in Section 5, it is 
ozA and (/?” + yA)) is not a natural one either. The other (and stronger) one 
given at (3.2.6) seems to be more natural. 

The second example illustrates the way a proof can be modularized 
in order to be made clearer. The inductive 0 (of (3.2.6)) can be broken into 
shorter formulas: 

0’: 0; and 9; 

with 

0;: baword(xs) or bword(xs) 

0;: xLy = g 

QA : 0: and O,A and 0: 
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0: : baword(#) or bword(#) 

f?,A : baword(uA) = xA = Z/ 

0: : bword(&) + xA = zP#. 

Hence it can be easily observed that the proof of OS in the first production 
can be split into separate proofs of 0: and of Of, each of them using some 
properties of OA (i.e., some hypothesis tI:, et, or 0:). For example, the 
implication Qp, and 0: * 0; holds trivially. Thus there is a new way to 
present such a proof by giving the logical dependency schemes associated 
with each production and proving their soundness and non-circularity. 
After giving the following logical dependency scheme, the proof becomes a 
sequence of very short and independent proofs (see Fig. 1, 2, and 18). 

A = {e,, e,, e3,e4, e,} 

IA = 4 

sm= {e,, e,}, SAO)= {e,, e,, e,j. 

The associated LDS is trivially non-circular since it is a purely synthesized 
one. 

a 

FIGURE 18 
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Let us consider again the logic program of Example (3.5.1) given in an 
attribute grammar style (see Fig. 19). Let us analyse locally what is 
necessary in order to prove that some argument is ground. For example, in 
production 1, A .X (first argument of q) is ground if A and B. X are, or 
in production 2 the fourth argument of q is ground if the second is. We 
consider only the necessary hypotheses. 

Now we are able to build an annotation, recalling that the purpose of 
such a proof is to establish the validity of the mode J t of p and 1 1 t t 
of 4, 

A = 1 gl PI &, glq, g% & & 1 

ZA(P) = (glp) MP) = Wd 

IA(q) = Wq, &z) Wq) = {gk dqj, 

where gir means “the ith argument of r is ground.” 
Thus it is easy to build in each production a sound LDS (see Fig. 20). It 

remains to show the non-circularity of the LDS to achieve the validity 
proof of A, and hence of the modes. 

It is worth to noting that whether the formulas “g” are inherited or syn- 
thesized has no connection with the non-oriented “attributes” of the logic 
program. No orientation has been supposed concerning the predicate 
arguments. The fact that the same number of formulas is associated with 

p1: 

p2: r---@-7 
p3: r”‘“l 

FIGURE 19 
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p1: 

p2: F'%p 

p3: 

FIGURE 20 

each grammatical sort comes from the fact that they are properties of one 
argument only. 

Remark finally that a direct proof of validity of the modes is difficult 
since the corresponding inductive specification (O,, see (3.5.1)) is not easy 
to formulate. In general the main difficulty is to prove the non-circularity 
of the LDS, which is decidable and can be performed automatically 
(Deransart, Jourdan, and Lorho, 1984). 

(5) COMPARING ANNOTATIONS AND FIX-POINT INDUCTION 

We shall show that if A is D-sound and LDS, is non-circular, then there 
exists an inductive specification, say Q’, stronger than @,, i.e., such that 
D + O’*O,, and that is written in the logical language where A is 
defined (provided this language is closed under the propositional connec- 
tives and, or, not). 

This strengthens Theorem (4.4.1) and proves that the two methods of 
Sections 3 and 4 are equally powerful. 

Dependency indicators will be introduced now to analyse properties of 
ADS’s (and hence of LDS’s). They are a way to summarize the possible 
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dependencies between attributes of a given non-terminal coming from the 
possible subtrees. As the number of possible relations is finite, they are 
finite sets of relations. However, this number can be very large (it is in fact 
of exponential size). It has been proved (see (Deransart, Jourdan, and 
Lorho, 1985) for references) that simpler sets can be used to decide specific 
properties of attribute dependency schemes. We present here another way 
to establish the above results, which will be useful to show the relationships 
between annotations and fix-point induction. 

We suppose an ADS of the form (N, P, Attr, D ) is given. 

(5.1.1) DEFINITION. We now introduce mappings $3 such that $3(X) 
represents (or approximates in some sense) the set of D,+ (t)‘s for all t in 
M(P),, i.e., the set of possible dependencies at the root of trees in M(P),. 

Let ~3 be a mapping associating with every X in N a finite set g(X) of 
binary relations on Attr(X). Such a mapping is called a dependency 
indicator. 

We say that $3 is non-circular iff, for all p in P,,, ...X~,X,,j, all rl in 
ax, 1, . . . . r,, in Wx,J, D(p)Cr,, . . . . r,] has no cycle. It is closed if for every 
such p, rl, . . . . rn, there exists rO in 9(X,) such that D,+(p)[r,, . . . . r,] cr,. 

We shall compare two dependency indicators 9 and 9’ by letting 
C3 2 9’ iff for every X in N, r in $3(X) there exists r’ in g’(X) such that 
r E rf. 

Let us denote by gO the dependency indicator such that go(X)= 
PWP E M(P),). 

(5.1.2) PROPOSITION. Given an ADS of the form A = (N, P, Attr, D), 

(1) c&, is closed. If $8 is any closed dependency indicator, then c&, I 9. 

(2) The ADS A is non-circular iff 5@,, is non-circular ijjf there exists a 
closed and non-circular dependency indicator for it. 

ProoJ (1) That @, is closed is an easy consequence of the definition. It 
is easy to prove by induction on the structure of t that, for all t in M(P), 
there exists r in SS(o(t)) such that D,+(t) c r. 

(2) Remark first that A is circular iff there exist p, t,, . . . . t,, such that 
D(p)[D,f (tI), . . . . D,+ (t,)] has cycles. Hence A is non-circular iff QO is iff 
there exists for A some non-circular and closed dependency indicator, since 
if 9 is such then go 5 9 whence & is noncircular. (This corresponds to 
the standard non-circularity test for attribute grammars-see (Deransart, 
Jourdan, and Lorho, 1984)). 

To every conditional attribute grammar G corresponds an attribute 
dependency scheme ADS, = (N, P, Attr, D) where D(p) is the local 
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dependency graph defined as usual (see (Courcelle and Franchi-Zannet- 
tacci, 1982)). 

Certain known subclasses of attribute grammars can be characterized in 
terms of the properties of the corresponding dependency indicators. 

(51.3) PROPOSITION. An attribute dependency scheme is strongly non- 
circular (Courcelle and Franchi-Zannettacci, 1982) zff there exists a closed 
and non-circular dependency indicator 9 such that 9(X) is singleton for all 
X in N. 

It follows from the definition of the dependency indicator and 
Definition 3.12 of Courcelle and Franchi-Zannettacci (1982). 

Another example is the class of attribute grammars in normal form such 
that the dependency indicator GS1 such that Q,(X) = {Inh(X) x Syn(X)} 
(which is necessarily closed by the normal form hypothesis) is non-circular. 
This coincides with the class of one-visit attribute grammars (Engelfriet 
and File, 1981) also called one-sweep in (Engelfriet and File, 1982a, b, 
1984). 

(51.4) PROPOSITION. (Courcelle, 1984): An attribute dependency scheme 
in normal form is one-sweep (equivalently one-visit) tff the dependency 
indicator 9, is non-circular. 

(5.2) The Use of Annotations for Correctness Proofs 

We shall prove that if A is D-sound and LDS, is non-circular then 8, is 
valid, since it is weaker than an inductive specification. 

To do the proof we shall associate with A another specification 8 which 
is inductive and stronger than 0,. This is the purpose of the following 
definition. 

(5.2.1) Dependency indicators and specflcations. Let G, A be as above, 
and D also. Let 9 be a dependency indicator. Let 0, be the specification 
associated with 9 as follows: 

where 

and 

0,X is AND {Q$/$ESA(X)}, 
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(5.2.2) PROPOSITION. (1) If 59 < 9’ then 0, 3 O,,. 

(2) If9 is closed and non-circular then 0, is inductive. 

Proof: (1) If r c r’ then ~9:~ * OT,,; hence 0,X * 0”. Since 9 I 9’, if 
9(X)= {r,, . . . . rk} there exists a subset A = {r;, . . . . r;,} of 9’(X) such that 
for all i = 1, . . . . k there existsj in 1, . . . . k’ such that ri G r,f. Hence 

O~=F-OR (@$/l<j<k)=@$.. 

Hence we have shown that 0, Z-O,, . 

(2) We must show that for p in I’,,, ...Xm,X,,) the following formula 
holds (i.e., is valid in D; this terminology will be used in the sequel of the 
proof): 

It suffices to show that for all r, in 9(X,), . . . . r, in 9(X,) there exists r,, 
in 9(X,,) such that the formula 

holds. We show this by taking some r0 such that D,+(p)[r,, . . . . r,] c r0 
(since 9 is closed). We need only show that for all 4 in Sd(X,), the 
formula 

Qp and Ott, and.. . and Scn ana Am {hI(h d)Erol =A 

holds. Let us abbreviate into $ the left-hand side of this implication. 
Let H=D(p)[r,, . . . . r,]. Let K be the set of vertices of H consisting of 

4(O) and all its predecessors in H (i.e., the vertices of H from which there is 
a path to d(O)). 

We want to show that 

for all q(k) in K. 
Since H has no cycle, it suffices to show that (*) holds, provided it holds 

for the immediate predecessors of q(k) in H. 
We do this by considering several cases: 

Case 1. v(k) E vconcd~). 

The result follow from the hypothesis that A is D-sound (see Definition 
(4.3)). 

Case 2. q(k) 4 V,,,,,(p), k = 0. Hence q E ZA(X,). 
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In this case (q(O), d(O)) E H+ implies (~4) E r,; then cc/ * q0 holds in a 
trivial way since II/ is of the form $J’ and I/I~ with $0 = ylo. 

Case 3. v(k)+ V,,,,,(p), 1 I kin. Hence q EsA(x~). 

The immediate predecessors of q(k) are the t&k)% such that ($, 7) E rk. 
The result follows from the fact that ti is of the form 

(5.2.3) THEOREM (Reformulation of Theorem (4.4.1)). Let G be a 
relational attribute grammar. If an annotation A of G is D-sound for some 
non-circular logical dependency scheme LDS,, it is valid for G. 

Prooj: Let 9 be any closed and non-circular dependency indicator for 
LDS, (there exists some since LDS, is non-circular, in particular the 
canonical one go, and possibly other simpler ones). By Proposition 
(5.2.2)-2 the specification O,, is inductive, hence valid. 

The specification 0, is clearly equivalent to OS,, associated with the 
dependency indicator 9, of Proposition (5.1.4). Then by Proposition 
(5.2.2)-l and since go < 9,) O*,, = 0, and hence 0, is valid (since O,, is 
inductive and valid). 

(5.2.4) Remark. The proof of Theorem (5.2.3) shows how an inductive 
specification 0, can be used instead of a D-sound annotation (where D is 
non-circular), to prove some valid specification. 

The specification OB, is quite complex. Relatively simple specifications 
0, are obtained if a(X) is a singleton for all X. This is the case if the LDS 
is strongly non-circular (see Proposition (5.1.3), or if the LDS is one-sweep 
(5.1.4) and in this last case the inductive specification Q,, coincides 
with 0,. 

Note that since 9 is not a singleton in general, the inductive assertions 
of 0, can have a size which is exponential in the size of A, counted as 
,E(Card(A(X))/XEN}. Hence the complete inductive proof on G is of 
“exponential complexity” whenever the verification of the soundness of A is 
of “linear complexity” in the size of (N, P, 4, 0). This shows precisely 
how the introduction of annotations decreases the complexity of the 
correctness proof. 

(5.2.5) EXAMPLE. We define a relational attribute grammar, an 
annotation A which is D-sound but such that 0, is not inductive. In fact 
we only define D and display it as a set of dependency graphs in a classical 
way (see for instance (Courcelle and Franchi-Zannettacci, 1982)), 
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N= {X Y>, p= {P, 4, r>, PEP<~,~), 4, rEPc,,yj 

WX)= {a}, S-4X)= (PI, MY)= {Y, 4, MY)= (4% 81. 
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D(p), D(q), D(r) are shown in Fig. 21. 
The corresponding attribute dependency scheme is non-circular but not 

strongly non-circular. 
We assume that A is D-sound, i.e., that the following formulas are valid: 

(1) Qp and S*g 

(2) @,andccandb*y 

(3) Qp and yl=v 

(4) @y ==-? 
(5) QD, and p * 6 

(6) @,*6 

(7) @, and y Z- q. 

The specification 0 = 0, is valid but not inductive. Its formulas are 

Saying that 0, is inductive would mean that the following holds: 

(8) cDp and (y and p=z-yl and 6)=>(a=e-/?) 

(9) Q4 *(y and pay] and 6) 

(10) @, * (y and p * r] and 6). 

FIGURE 21 
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Whereas (9) and (IO) easily follow from (4), (5), (6), and (7), (8) does 
not follow from (1 k(7). 

It suffices to take aP, c(, q, p equal to the constant boolean value true 
and Qy, @,, /?, y, 6 equal to false to verify this fact. 

Here is the specification &I’= Qg,,, 

0”: (q and (p - 6)) or (6 and (y * q)), 

which is both inductive and stronger than 0. 
The reader will have noted that this example is isomorphic to the proof 

of the logic program in Example (4.4.2); hence the form of the inductive 
specification 0, in Example (3.5.1). 
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