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We generalize Dijkstra’s algorithm for finding shortest paths in digraphs with non-negative
integral edge lengths. Instead of labeling individual vertices we label subgraphs which
partition the given graph. We can achieve much better running times if the number of
involved subgraphs is small compared to the order of the original graph and the shortest
path problems restricted to these subgraphs is computationally easy.
As an application we consider the VLSI routing problem, where we need to find millions
of shortest paths in partial grid graphs with billions of vertices. Here, our algorithm can be
applied twice, once in a coarse abstraction (where the labeled subgraphs are rectangles),
and once in a detailed model (where the labeled subgraphs are intervals). Using the result
of the first algorithm to speed up the second one via goal-oriented techniques leads to
considerably reduced running time. We illustrate this with a state-of-the-art routing tool
on leading-edge industrial chips.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The shortest path problem is one of the most elementary, important and well-studied algorithmical problems [6,13]. It
appears in countless practical applications. The basic strategy for solving it in digraphs G = (V (G), E(G)) with non-negative
edge lengths is Dijkstra’s algorithm [10]. In its fastest strongly polynomial implementation using Fibonacci heaps [12] it has
a running time of O (|V (G)| log |V (G)| + |E(G)|).

Various techniques have been proposed for speeding up Dijkstra’s original labeling procedure. For undirected graphs
a linear running time can be achieved for integral lengths [38] or on average in a randomized setting [14,31]. For many
instances that arise in practice, the graphs have some underlying geometric structure which can also be exploited to
speed up shortest path computations [27,37,40]. Similarly, instances might allow a natural hierarchical decomposition or
pre-processing might reveal local information which shortest path computations can use [2,25,32,35,36]. Goal-oriented
techniques which use estimates or lower bounds such as the A∗ algorithm have first been described as heuristics in the
artificial-intelligence setting [11,16] and were later discussed as exact algorithms in the general context and in combina-
tion with other techniques [4,5,15,24,33]. There has been tremendous experimental effort to evaluate combinations of these
techniques [9,21]. See [41] for a comprehensive overview on speed-up techniques published during the last years.

The motivation for the research presented here originates from the routing problem in VLSI design where the time
needed to complete the full design process is one of the most crucial issues to be addressed. In present day instances of
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this application millions of shortest paths have to be found in graphs with billions of vertices. Therefore, no algorithm which
does not heavily exploit the specific instance structure can lead to an acceptable running time.

A simplified view of the VLSI routing problem is as follows. In a subgraph of a three-dimensional grid we look for
vertex-disjoint Steiner trees connecting given terminal sets (nets). There are additional complications due to non-uniform
wire widths and distance rules, pins (terminals) that are sets of (off-grid) shapes rather than single grid nodes, and extra
rules for special nets. As these have little impact on the algorithmic core which is the subject of this paper, we do not
discuss them here in detail (though our implementation within BonnRoute, a program that is used for routing many of the
most complex industrial chips [26], takes all such constraints into account).

The standard approach is to compute a global routing [1,22,39] first, i.e. packing Steiner trees in a condensed grid subject
to edge capacities. In a second step the detailed routing determines the actual layout, essentially by sequentially computing
shortest paths, each connecting two components, within the global routing corridors. Heuristics like ripup-and-reroute allow
to revise earlier decisions if one gets stuck. Some routers have an intermediate step (track assignment [3], congestion-driven
wire planning [7]) between global and detailed routing or more than two coarsening levels [8], but we do not.

The core problem of essentially all detailed routers is to find a shortest wiring connection between two metal com-
ponents that must be connected electrically. This can be modeled as a shortest path problem in a partial grid graph (see
Section 3 for details). In contrast to many other applications in practice (e.g. finding shortest paths in road networks), where
an expensive pre-processing of a fixed static graph is a reasonable and powerful approach to reduce the actual query time,
the instance graph in the context of VLSI routing is different for each single path search.

While traditional routers use a very simple version of Dijkstra’s algorithm (known as maze running or Lee’s algorithm
[28,20]), several speed-up techniques are used routinely today. Some give up to find a shortest path (line search [19], line
expansion [18], tile expansion [30]), but as longer paths waste space and are worse in terms of timing and power consump-
tion, we do not consider this relaxation. Note that detours of the routing paths which are necessary due to congestion and
capacity constraints and allowable due to sufficient timing margin are determined during global routing and are encoded in
the global routing corridors. During global routing it is actually assumed that the final paths will be close to shortest paths
within their corridor.

Among exact speed-up approaches, goal-oriented techniques [34] are widely used and have been proven to be very
efficient. Hetzel [17] proposed to represent the partial grid graph by a set of intervals of adjacent vertices and to label
these intervals rather than individual vertices in his goal-oriented version of Dijkstra’s algorithm. Part of our work is a
generalization of Hetzel’s algorithm. Cong et al. [7] and Li et al. [29] construct a connection graph, which is part of the
Hanan grid induced by all obstacles. Xing and Kao [42] consider a similar graph but propagate piecewise linear functions
on the edges of this graph. Our algorithm is also a generalization of this approach.

One of our main ideas is to introduce three levels of hierarchy. The vertices of the graph are the elements of the lowest
and most detailed level. The middle level is a partition of the vertex set. Therefore, the elements of the middle level
correspond to sets of vertices. Instead of labeling individual vertices as in the original version of Dijkstra’s algorithm, we
label the elements of this middle level. Finally, the top level is a partition of the middle level, i.e. several of the vertex
sets of the middle level are associated. The role of the top level of the hierarchy is that it allows to delay certain labeling
operations. We perform labeling operations between elements of the middle level that are contained in the same element of
the top level instantly whereas all other labeling operations will be delayed. Depending on the structure of the underlying
graph, the well-adapted choice of the hierarchy and the implementation of the labeling operations, we can achieve running
time reductions both in theory and in practice.

The new algorithm which we call GeneralizedDijkstra provides a speed-up technique for Dijkstra’s algorithm in two
ways. First, it can directly be applied to propagate distance labels through a graph. The main difference to other techniques
is that our approach labels sets of vertices instead of individual vertices. It is beneficial if vertices can be grouped such
that their distances can be expressed by a relatively simple distance function and updating neighboring sets works fast. In
our VLSI application, the vertex sets are one-dimensional intervals of the three-dimensional grid. A second application of
GeneralizedDijkstra is the goal-oriented search. In the last few years, three main techniques to determine a good lower
bound have been discussed in the literature: metric dependent distances, distances obtained by landmarks and distances
from graph condensation [41]. The approach proposed in this paper is another method to compute lower bounds: It com-
putes shortest distances from the target to all vertices in a supergraph G ′ of the reverse graph of the input graph. Here, G ′
must be chosen such that it approximately reflects the original distances and allows a partition of the vertex set in order
to perform a fast propagation of distance labels. In our VLSI application, G ′ is the subgraph respresenting the global routing
corridor, which is the union of only few rectangles.

In Section 2 we present a generic version of our algorithm. Section 3 is devoted to two applications of our strategy
which lead to significant speed-ups for the described VLSI application. In Section 3.1 we show how to apply the algorithm
in the case where the elements of the middle level induce two-dimensional rectangles in an underlying three-dimensional
grid graph. In Section 3.2 we explain how our generic framework can be applied to detailed routing, generalizing a pro-
cedure proposed by Hetzel [17]. This time the elements of the middle level correspond to one-dimensional intervals. The
experimental results in Section 4 show that we can reduce the overall running time of VLSI routing significantly.
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2. Generalizing Dijkstra’s algorithm

Throughout this section let G = (V (G), E(G)) be a digraph with non-negative integral edge lengths c : E(G) → Z�0. For
vertices u, v ∈ V (G) we denote by dist(G,c)(u, v) the minimum total length of a path in G from u to v with respect to c, or
∞ if v is not reachable from u. For a given non-empty source set S ⊆ V (G) we define a function d : V (G) → Z�0 ∪ {∞} by

d(v) := dist(G,c)(S, v) := min
{

dist(G,c)(s, v)
∣∣ s ∈ S

}
for v ∈ V (G). If we are given a target set T ⊆ V (G) we want to compute the distance

d(T ) := dist(G,c)(S, T ) := min
{

d(t)
∣∣ t ∈ T

}
from S to T in G with respect to c, or ∞ if T is not reachable from S .

Instead of labeling individual vertices with distance-related values, we label subgraphs of G induced by subsets of ver-
tices with distance-related functions. Therefore, we assume to be given a set V of disjoint subsets of V (G) and subsets S
and T of V such that

V (G) =
⋃.

U∈V
U , S =

⋃.

U∈S
U and T =

⋃.

U∈T
U .

We require that the graph G with V (G) := V and

E(G) := {
(U , U ′)

∣∣ ∃u ∈ U , u′ ∈ U ′, (u, u′) ∈ E(G) with c
(
(u, u′)

) = 0
}

is acyclic. (Note that we do not need to assume this for G . Moreover, one can always get this property by contracting
strongly connected components of V (G), {e ∈ E(G): c(e) = 0}.) Therefore, there is a topological order V 1, V 2, . . . , V |V | of V
with i < j if (V i, V j) ∈ E(G). For U ∈ V we define the index of U to be I(U ) = i iff U = V i .

Throughout the execution of the algorithm and for every U ∈ V we maintain a function dU : U → Z�0 ∪ {∞} which is an
upper bound on d, i.e.

dU (v) � d(v) for all v ∈ U , (1)

and a feasible potential on G[U ], i.e.

dU (v) � dU (u) + c
(
(u, v)

)
for all (u, v) ∈ E

(
G[U ]), (2)

where G[U ] denotes the subgraph of G induced by U .
Initially, we set

dU (v) :=
{

0 for v ∈ U ∈ S,

∞ for v ∈ U ∈ V \ S.

We want to make use of a specific structure of the graph G and distinguish between two different labeling operations. For
this, we additionally require a partition of V into N � 1 sets V1, . . . , VN , called blocks, and a function B : V → {V1, . . . , VN }
such that

∀1 � i � N: ∅ �= Vi ⊆ V,

∀U ∈ V : U ∈ B(U ),

∀1 � i < j � N: Vi ∩ V j = ∅.

Clearly, V = ⋃. N
i=1 Vi and V (G) = ⋃. N

i=1
⋃.

U∈Vi
U by the definition of blocks.

A central idea of our algorithm GeneralizedDijkstra is the following: We distinguish between two operations for a
vertex set U ∈ V which is chosen to label its neighbors: U directly updates the neighboring sets within the same block
and registers labeling operations to vertex sets in different blocks for a later use. This approach has two advantages: First,
many registered labeling operations may never have to be performed if a target vertex is reached before the registered
operations would be processed. Second, if sets in V typically have few of their neighboring sets within the same block,
update operations between blocks may be much more efficient when performed at once instead of one after another. For a
schematic illustration of our algorithm see Fig. 1. Two more examples are given in Section 3.

Our algorithm maintains a function key : V → Z�0 ∪ {∞} and a queue Q = {U ∈ V | key(U ) < ∞}, allowing operations
to insert an element, to decrease the key of an element and to delete an element of minimum key. At any stage in the
algorithm, for each U ∈ V , key(U ) is the minimum distance label of any vertex in U that was decreased after the last time
that U was deleted from Q. After U has updated its neighbors or registered a labeling operation, key(U ) is set to infinity. It
can be reset to a value smaller than infinity, as soon a d(u) is reduced for a vertex of u ∈ U by an update operation onto U .
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Fig. 1. Schematic view of vertex sets V i (circles) and blocks Vi (ellipses). The left-to-right order of the vertex sets is a topological order of G . The arcs
show update operations. If Vk and B(Vk) are selected in step 7 of Generalized Diskstra, then key(V i) > λ and R(V i , λ) = ∅ for i = 1, . . . ,k − 1, and this
property is maintained. Then first all registered updates onto block B(Vk) are performed (Project_Registered, thin arcs), then the elements of B(Vk) with
key λ are scanned in their order (we show Vk only), updates within the block are performed directly (Update, bold arcs), and updates to other blocks are
registered (Register, dashed arcs). Each Vk is chosen at most once in phase λ.

For two sets U , U ′ ⊆ V and a queue Q ⊆ V we use the following update operation which clearly maintains (1) and (2):

Update(U → U ′, Q)

1 for all U ′ ∈ U ′
do:

2 for all v ∈ U ′
do:

3 Set δ := minU∈U minu∈U {dU (u) + dist(G[{u}∪U ′],c)(u, v)}}.
4 if δ < dU ′ (v) then

5 Set dU ′ (v) := δ.
6 Set key(U ′) := min{key(U ′), δ}.
7 Set Q := Q ∪ {U ′}.

The actual labeling operation is done by Update. For each vertex set U ′ ∈ U ′ and each vertex v ∈ U ′ it computes the
minimum distance in the subgraph determined by U ′ and all neighboring vertices in vertex sets of U . If the distance label
at v can be decreased, the label of v and the key of U ′ will be updated. If U ′ is not in the queue, it will enter it. Of
course, this is not done sequentially for each single vertex. Here, the advantage of our algorithm becomes apparent: Instead
of performing the labeling steps on a vertex by vertex basis, it rather updates the distance function of neighboring vertex
sets in one step. The more carefully a partition of V is chosen and the simpler dU becomes, the faster Update can work. In
our main algorithm, Update is called for a single vertex set U := {U } updating its neighbors in B(U ), and for a set of vertex
sets with registered labels updating their neighbors in one block.

The second operation is the registration of labeling operations to be postponed. For this, we define a set R(U , λ) for each
block U ∈ {V1, . . . , VN } and λ ∈ Z�0, which consists of all vertex sets which might cause a label of value λ in some vertex
set in U . This set is filled by the following routine, where EG(U , U ′) := {(u, u′) ∈ E(G) | u ∈ U , u′ ∈ U ′} and min ∅ := ∞:

Register(U → U ′, R)

1 Set λ′ := minU ′∈U ′ min{δ | δ = dU (u) + c((u, v)) < dU ′ (v), (u, v) ∈ EG(U , U ′)}.
2 if λ′ �= ∞ then:
3 Set R(U ′, λ′) := R(U ′, λ′) ∪ {U }.

Register is called for a vertex set U and some block U ′ �= B(U ). It computes the minimum label λ′ which improves a label
of at least one vertex in a neighboring vertex set of U in U ′ and registers U in R(U ′, λ′). If no label can be decreased, U
will not be registered.

Given a block U and a key λ, we apply two major subroutines: First, all labeling operations of registered vertex sets
of U at value λ will be performed onto block U in Project_Registered. Afterwards, all vertex sets in U containing ver-
tices with key λ update their neighbors within the same block and register labeling operations in different blocks in
Project_FromBlock. We will use the notation Qλ := {U ∈ Q | key(U ) = λ} for λ ∈ Z�0.
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Project_Registered(U , λ, Q, R)

1 if R(U , λ) �= ∅ then:
2 Update(R(U , λ) → U , Q).
3 Set R(U , λ) := ∅.

Project_FromBlock(U , λ, Q, R)

1 While there is an element U ∈ Qλ ∩ U do:
2 Choose U ∈ Qλ with minimum index.
3 Set Q := Q \ {U } and key(U ) := ∞.
4 if U ∈ T then:
5 return λ.
6 for all U ′ ∈ {B(U ′) | U ′ ∈ V \ {U } with EG(U , U ′) �= ∅} do:
7 if U ′ = U then:
8 Set JU := {U ′ ∈ U \ {U } | EG(U , U ′) �= ∅}.
9 Update({U } → JU , Q).

10 else

11 Register(U → U ′, R).

Project_Registered makes up for all postponed labeling steps onto block U at label λ. After this, R(U , λ) is empty.
Project_FromBlock goes over all vertex sets U ∈ U in the queue whose key equals the current label λ according to their
topological order. If a target vertex set is the minimum element in the queue, the overall algorithm stops. Otherwise, all
neighboring vertex sets in the same block are directly labeled by Update whereas labeling operations to neighbors in dif-
ferent blocks are registered by Register.

Finally, we can formulate the overall algorithm. It performs labeling operations as long as no set in T has received its
final label and there are still labeling operations which need to be executed. It runs in so-called phases where in the phase
at key λ all vertices with distance λ will receive their final label. In phase with key λ, the block U is chosen which includes
a vertex set of minimum index containing a vertex with key λ. If no such vertex exists, a block U with postponed labels
of value λ is taken. For U , Project_Registered and Project_FromBlock are called in that order. Project_Registered must
be called before labeling steps from vertices in vertex sets of U are performed within U in order to update vertices at
label λ by neighbors of different blocks. Otherwise, Project_FromBlock might be not operate efficiently because a vertex
might get a label λ at a later time in the algorithm which again requires an update operation for neighbors in U . This
loop at key λ is done as long as their is still a vertex to be scanned or a block with postponed labels. The algorithm
stops as soon as a vertex in

⋃
T receive its final label and returns it, or it returns infinity to indicate that

⋃
T is not

reachable.

GeneralizedDijkstra(G, c, V , B, S, T )

1 Set key(U ) := 0 and dU (v) := 0 for U ∈ S and v ∈ U .
2 Set key(U ) := ∞ and dU (v) := ∞ for U ∈ V \ S and v ∈ U .
3 Set R(U , λ) := ∅ for U ∈ {V1, . . . , VN} and λ ∈ Z�0.
4 Set Q := S and λ := 0.
5 while Q �= ∅ or R(U , λ′) �= ∅ for some λ′ � λ and some U ∈ {V1, . . . , VN } do:
6 while Qλ �= ∅ or R(U , λ) �= ∅ for some U ∈ {V1, . . . , VN } do:
7 Choose U ∈ {V1, . . . , VN } s.t. arg min{I(U ) | U ∈ Qλ or R(U , λ) �= ∅} ∈ U .
8 Project_Registered(U , λ, Q, R).
9 Project_FromBlock(U , λ, Q, R).

10 Set λ := min{μ: Qμ �= ∅ or R(U ,μ) �= ∅ for some U ∈ {V1, . . . , VN }}.
11 return ∞.

Theorem 1. The algorithm GeneralizedDijkstra calculates the correct distance from S := ⋃
S to T := ⋃

T . If there is no path from
S to T , the algorithm computes the minimum distance from S to all reachable vertices in G and returns ∞.

Proof. We first show that for every λ ∈ Z�0

⋃
U∈V

{
v ∈ U

∣∣ dU (v) = λ
} =

⋃
U∈V

{
v ∈ U

∣∣ d(v) = λ
}

(3)

holds after execution of phase λ which ends when λ is increased in line 10 of GeneralizedDijkstra. For contradiction,
assume that there is a λ for which Eq. (3) does not hold. Choose λ minimum possible. By (1), λ = d(v) < dU (v) for some
U ∈ V and v ∈ U . We choose U ∈ V with I(U ) minimum possible, and v ∈ U and a shortest path P from S to v such that
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|E(P )| is minimum. Let u be the predecessor of v on P . Hence, λ′ := d(u) � λ and, by the choice of v , dU ′ (u) = λ′ for U ′ ∈ V
with u ∈ U ′ . We will show

dU (v) � dU ′(u) + c
(
(u, v)

)
. (4)

It directly follows for U = U ′ by (2).
For U �= U ′ , let U := B(U ) and U ′ := B′(U ). If λ′ < λ, then U must have been updated directly from U ′ (if U = U ′) or

registered in Project_FromBlock(U ′, λ′, Q, R) (if U �= U ′) in phase λ′ . In the latter case, dU is updated by
Update(R(U , λ) → U , Q) in Project_Registered(U , λ, Q, R). If λ′ = λ, then c((u, v)) = 0. In this case, I(U ′) < I(U ) and
U ′ must have been removed from Q before U (line 2 of Project_FromBlock). Consequently, U has been directly updated
by U ′ in Project_FromBlock(U ′, λ, Q, R) (if U = U ′), or U ′ was registered in R(U , λ) and has updated its neighbored
vertex set U in Project_Registered(U , λ, Q, R). For λ′ < λ as well as for λ′ = λ, we conclude

dU (v) � dU ′(u) + dist(G[{u}∪U ′],c)(u, v) � dU ′(u) + c
(
(u, v)

)
,

proving inequality (4) for U �= U ′ . By (4) and our assumption on v and u,

dU (v) � dU ′(u) + c
(
(u, v)

) = d(u) + c
(
(u, v)

) = d(v) < dU (v),

which is a contradiction. This concludes the proof of (3).
All phases with key less than λ have been finished already when phase λ is being processed. By (3), a vertex v ∈ U with

d(v) < λ cannot get a distance label dU (v) = λ after phase λ − 1.
It follows that{

v ∈ U : dU (v) = λ
} ⊆ {

v ∈ U : d(v) = λ
}

(5)

holds after a vertex set U has been removed from Q at key λ.
Therefore, an element T ∈ T will be removed from the queue at minimum distance λ = d(T ) if T is reachable from S .

Otherwise, GeneralizedDijkstra stops and returns ∞ as soon as Q is empty and there are no labeling registrations left
in R. By (3), the distance from S to any vertex v ∈ V (G) that is reachable from S is given by dU (v) for v ∈ U ∈ V . �

In addition to the computed distance from S to T or from S to all vertices one is often also interested in shortest paths.
These can be derived easily from the output of GeneralizedDijkstra. Alternatively, one could store predecessor information
during the shortest path computation encapsulated in Update.

The theoretical running time of GeneralizedDijkstra as well as its performance in practice depends on the structure of
the underlying graph G and its partition into vertex sets and blocks. In the special case of N = 1, the running time reduces
to

O
(
(Λ + 1)

(|V| log |V| + φ
∣∣E(G)

∣∣)),
where Λ is the length of a shortest path from S to T and φ is the running time of lines 2 and 3 of Update. If N = 1 and
all vertex sets are singletons, GeneralizedDijkstra equals Dijkstra’s algorithm with a running time of O (|V (G)| log |V (G)| +
|E(G)|). The essential difference is that, for general vertex sets, an element of the queue can enter the queue again if it
contains more than one vertex. Consequently, there are at most Λ + 1 many queries for the smallest element of the queue.
Both time bounds assume that Q is implemented by a Fibonacci heap [12].

GeneralizedDijkstra is primarily suitable for graphs with a regular structure, for which the ground set V can be parti-
tioned into a set V of vertex sets with easily computable functions dU for all U ∈ V , e.g. linear functions. In the following
section we will describe two applications of GeneralizedDijkstra in VLSI routing where the algorithm is particularly effi-
cient.

3. Applications in VLSI routing

The graph typically used for modeling the search space for VLSI routing is a three-dimensional grid graph. The routing
is realized in a small number of different layers, i.e. the number of different z-coordinates is very small (∼ 10 presently)
compared to the extension of the x–y-layers (∼ 105 × 105 presently). Each x–y-layer is assigned a preference direction (x or
y) and consecutive layers have different preference directions.

Let G0 := (V (G0), E(G0)) be the infinite three-dimensional grid graph with vertex set V (G0) := Z
3, in which two vertices

(x, y, z) ∈ V (G0) and (x′, y′, z′) ∈ V (G0) are joined by a pair of oppositely directed edges of equal length if and only if
|x − x′| + |y − y′| + |z − z′| = 1. Wires running orthogonally to the preference direction within one layer may block many
wires in preference direction and should therefore be largely avoided. Moreover, vias (edges connecting adjacent layers)
are undesired for several reasons, including their high electrical resistance and impact to the manufacturing yield. This is
typically modeled by edge lengths c : E(G0) → Z�0 that prefer edges within one layer in preference direction: for each layer
z ∈ Z there are constants cz,1, cz,2, cz ∈ Z>0 such that
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Fig. 2. The source vertex (green) on the lower right corner and the target vertices (red) on the lower left corner of the picture are connected by a shortest
path (blue) of length 153. The corridor determined by global routing (yellow) runs over four different layers in this example. The costs of edges running in
and orthogonal to the preference direction are 1 and 4, resp., the cost of a via is 13. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

c
((

(x, y, z), (x + 1, y, z)
)) = cz,1,

c
((

(x, y, z), (x, y + 1, z)
)) = cz,2, and

c
((

(x, y, z), (x, y, z + 1)
)) = cz

for all x, y ∈ Z. Typical values used in practice and throughout this paper are 1 and 4 for edges within one layer in and
orthogonal to the preference direction and 13 for vias. Fig. 2 shows an instance of the detailed routing problem and its
solution.

3.1. Labeling rectangles

For speeding up the computation of a shortest path in a subgraph of G0 using a goal-oriented approach one can use
a good lower bound on the distances. In order to determine this lower bound, we consider just the corridor computed by
global routing and neglect obstacles and previously determined paths intersecting it. Since these corridors are produced
by global routing as a union of relatively few rectangles GeneralizedDijkstra computes distances efficiently. In this first
application we use only one block, i.e. N = 1. Consequently, there are no registrations and Project_Registered will not be
called.

Let G = (V (G), E(G)) be a subgraph of the infinite graph G0 induced by a set V of rectangles, where a rectangle is a set
of the form

[x1, x2] × [y1, y2] × {z1} := {
(x, y, z) ∈ Z

3
∣∣ x1 � x � x2, y1 � y � y2, z = z1

}
for integers x1 � x2, y1 � y2 and z1. Note that x1 = x2 or y1 = y2 is allowed, in which case the rectangles are intervals or
just single points. Two rectangles R and R ′ are said to be adjacent if G0[R ∪ R ′] is connected.

We assume that V satisfies the following condition which can always be ensured by iteratively splitting rectangles
without creating many new rectangles for typical VLSI instances: For every two rectangles R, R ′ ∈ V with R = [x1, x2] ×
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Fig. 3. The corridor of the global routing for the instance depicted in Fig. 2 is partitioned into rectangles to propagate distance functions. As an example,
the function dR of the rectangle R containing all target vertices at its boundary is given by min(4(x − x1),−4(x − x1) + (y − y1) + 16). The function dR ′ of
the adjacent rectangle R ′ is min(4(x − x′

1) + (y − y′
1),−4(x − x′

1) + (y − y′
1) + 20), where x′

1 = x1 and y′
1 = y1 + 4.

[y1, y2] × {z1} and R ′ = [x′
1, x′

2] × [y′
1, y′

2] × {z′
1} we have that either x1 > x′

2 or x2 < x′
1 or (x1, x2) = (x′

1, x′
2), and similarly,

either y1 > y′
2 or y2 < y′

1 or (y1, y2) = (y′
1, y′

2). Clearly, this condition implies that each rectangle has at most six adjacent
rectangles. As an example, Fig. 3 shows the partition of the routing area of the instance in Fig. 2 into rectangles.

The set Z := {z ∈ Z | ∃x, y ∈ Z with (x, y, z) ∈ V (G)} contains all relevant z-coordinates, and the sets Ci := {0} ∪ {c ∈ Z |
|c| = cz,i for some z ∈ Z} contain all relevant edge lengths in x-direction (i = 1) and y-direction (i = 2), respectively. Let
ki := |Ci | for i = 1,2.

Due to the bounded number of different edge lengths, it is possible to store the function dR corresponding to the function
dU of Section 2 implicitly as a minimum over k1k2 linear functions assigned to each rectangle R:

dR
(
(x, y, z)

) := min
{

d(R,c1,c2)(x, y)
∣∣ (c1, c2) ∈ C1 × C2

}
,

where with (c1, c2) ∈ C1 × C2 we associate a linear function d(R,c1,c2) : Z
2 → Z�0 ∪ {∞} of the form

d(R,c1,c2)(x, y) = c1(x − x1) + c2(y − y1) + δ(R,c1,c2).

See Fig. 3 for examples.
All information about d(R,c1,c2) is contained in the offset value δ(R,c1,c2) . Initially,

δ(R,c1,c2) :=
{

0 for (R, c1, c2) ∈ S × {0} × {0},
∞ for (R, c1, c2) ∈ (V \ S) × {0} × {0}.

During the execution of the algorithm these values will be updated as follows: Let (R, c1, c2) ∈ V × C1 × C2, and let R ′ ∈
V \ {R} be adjacent to R . For (x′, y′, z′) ∈ R ′ let

d((R,c1,c2)→R ′)(x′, y′) := min
{

d(R,c1,c2)(x, y) + dist(G0[R∪R ′],c)
(
(x, y, z), (x′, y′, z′)

) ∣∣ (x, y, z) ∈ R
}
.

The main observation established by the next lemma is that the function d((R,c1,c2)→R ′) is of the same form as d(R ′,c′
1,c′

2) for
appropriate values of c′ and c′ .
1 2
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Lemma 2. If R ∈ V and R ′ = [x′
1, x′

2] × [y′
1, y′

2] × {z′} ∈ V are adjacent, and (c1, c2) ∈ C1 × C2 , then there are c′
1 ∈ C1 , c′

2 ∈ C2 and
δ′ ∈ Z�0 such that

d((R,c1,c2)→R ′)(x′, y′) = c′
1

(
x′ − x′

1

) + c′
2

(
y′ − y′

1

) + δ′

for all (x′, y′, z′) ∈ R ′ .

Proof. We give details for just one case, since the remaining cases can be proved using similar arguments. Therefore, we
assume that R = [x1, x2] × [y1, y2] × {z} and R ′ = [x2 + 1, x3] × [y1, y2] × {z}. For (x, y, z) ∈ R and (x′, y′, z) ∈ R ′ we have

dist(G0[R∪R ′],c)
(
(x, y, z), (x′, y′, z)

) = cz,1|x − x′| + cz,2|y − y′|.
Since x < x′ , this simplifies to cz,1(x′ − x) + cz,2(y′ − y) for y � y′ and cz,1(x′ − x) − cz,2(y′ − y) for y � y′ . Hence, by
definition, d((R,c1,c2)→R ′)(x′, y′) equals

min
{

min
x1�x�x2

min
y1�y�y′

(
cz,1(x′ − x) + cz,2(y′ − y) + c1(x − x1) + c2(y − y1) + δ(R,c1,c2)

)
,

min
x1�x�x2

min
y′�y�y2

(
cz,1(x′ − x) − cz,2(y′ − y) + c1(x − x1) + c2(y − y1) + δ(R,c1,c2)

)}
.

Depending on the signs of (c1 − cz,1), (c2 − cz,2) and (c2 + cz,2), this minimum is attained — independently of the specific
value of (x′, y′) — by setting

x :=
{

x1 if c1 − cz,1 � 0,

x2 if c1 − cz,1 < 0
and

y :=
⎧⎨
⎩

y1 if c2 − cz,2 � 0,

y′ if c2 − cz,2 < 0 and c2 + cz,2 � 0,

y2 if c2 + cz,2 < 0

and the desired result follows. �
This lemma shows that we can store dR implicitly as a vector with k1k2 entries δ(R,c1,c2) and that a labeling operation

from one rectangle R to another R ′ can be done by manipulating the entries of the vector corresponding to dR ′ . This can be
done in constant time regardless of the cardinalities of R and R ′ .

We can now apply GeneralizedDijkstra implementing Update with the following operation:

Project_Rectangle(R → U ′, Q)

1 for all R ′ ∈ U ′
do:

2 for all c1 ∈ C1 and c2 ∈ C2 do:
3 Compute c′

1, c′
2, δ

′ with d((R,c1,c2)→R ′)(x′, y′) = c′
1(x′ − x′

1) + c′
2(x′ − x′

2) + δ′ .
4 if δ′ < δ(R ′,c′

1,c′
2) then:

5 Set δ(R ′,c′
1,c′

2) := δ′ .
6 Set key(R ′) := min{key(R ′), δ′}.
7 Set Q := Q ∪ {R ′}.

Theorem 3. If d(R,c1,c2) for (R, c1, c2) ∈ V × C1 × C2 are the functions produced at termination by GeneralizedDijkstra(G, c, V , S)

implementing Update with Project_Rectangle, then d((x, y, z)) = dR((x, y, z)) for all (x, y, z) ∈ V (G). The corresponding running
time of GeneralizedDijkstra is O (k2

1k2
2|V | log |V |).

Proof. By Lemma 2, Project_Rectangle takes O (k1k2) time. The number of deletions of elements from the queue is
bounded by the total number of updates from any rectangle to any adjacent one, which is at most 6k1k2|V |. �

In our implementation, we improved the running time by applying Project_Rectangle to triples (R, c1, c2) ∈ V × C1 × C2
instead of rectangles, where the current key is attained by d(R,c1,c2) . Here, Project_Rectangle takes constant time and the
number of updates from any rectangle to any adjacent one is still bounded by O (k1k2|V |). This leads to an overall running
time of O (k1k2|V | log(k1k2|V |)).

As mentioned before, in a typical VLSI instance k1 and k2 can be as small as 5; see experimental results in Section 4.

3.2. Labeling intervals

As a second application of GeneralizedDijkstra we consider the core routine in detailed routing. Its task is to find
a shortest path connecting two vertex sets S and T in an induced subgraph G of G0 with respect to costs c : E(G) →
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Fig. 4. The intervals of the detailed routing for the instance depicted in Fig. 2. For each layer, all intervals are sets of adjacent vertices according to the
preference wiring direction of the layer. A block in this example is the set of intervals belonging to the same shaped area.

Z�0, where we can assume c((u, v)) = c((v, u)) for every edge (u, v) ∈ E(G). We use the variant of GeneralizedDijkstra

as described in Section 3.1 to compute distances π(w) from T to each w ∈ V (G) in a supergraph G ′ of G where G ′ is
determined by the corresponding global routing corridor. Hence, π(w) is a lower bound for the distance of each w ∈ V (G)

to T in G with respect to c, π(t) = 0 for all t ∈ T , and π(u) � π(v) + c((u, v)) for all (u, v) ∈ E(G). We call π(w) the
future cost of vertex w . The function π will be used to define reduced costs cπ ((u, v)) := c((u, v)) − π(u) + π(v) � 0 for
all (u, v) ∈ E(G). We will apply GeneralizedDijkstra to find a path P from s ∈ S to t ∈ T in G for which

∑
e∈E(P ) c(e) =

π(s) + ∑
e∈E(P ) cπ (e) is minimum by setting dU (v) := π(v) for v ∈ U ∈ S in line 1 and using cπ instead of c.

We generalize Hetzel’s algorithm [17] by using a more sophisticated future cost function π as described in the previous
subsection. Note that Hetzel’s algorithm strongly relies on the fact that π(v) is the l1-distance between v and T for all
v ∈ V (G).

As most wires use the cheap edges in preference direction, it is natural to represent the subgraph of G induced by a
layer z by a set of intervals in preference direction. Horizontal intervals are rectangles of the form [x1, x2] × {y} × {z}, and
vertical intervals are rectangles of the form {x} × [y1, y2] × {z}. Typically, the number of intervals is approximately 25 times
smaller than the number of vertices. Hetzel [17] showed how to make Dijkstra’s algorithm work on such intervals, but his
algorithm only works for reduced costs defined with respect to l1-distances. Clearly, the l1-distance is often a poor lower
bound. Therefore, our generalization allows for significant speed-ups. (In the example in Fig. 3 the l1-distance is 36, our
lower bound is 130, and the actual distance is 153. The improved lower bound of 130 includes 78 units for six vias, and 16
units for the necessary detours in x- and y-direction.)

We again apply GeneralizedDijkstra. The vertex sets in V will be these intervals. Fig. 4 illustrates the set of intervals
for the example in Fig. 2. In rare cases some intervals have to be split in advance to guarantee that π is monotone on an
interval. A tag will be a triple ( J , v, δ), where J is a subinterval of U , v ∈ J , and δ ∈ Z�0. At any stage we will have a set
of tags on each interval.

A tag ( J , v, δ) on U ∈ V represents the distance function d( J ,v,δ) : U → Z�0 ∪ {∞}, defined as follows: Assume that
U = [x1, x5] × {y} × {z} is a horizontal interval, J = [x2, x4] × {y} × {z}, and v = (x3, y, z) with x1 � x2 � x3 � x4 � x5. Then
d( J ,v,δ)((x, y, z)) := δ + dist(G[ J ],cπ )(v, (x, y, z)) for x2 � x � x4 and d( J ,v,δ)((x, y, z)) := ∞ for x /∈ [x2, x4]. Similar for vertical
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intervals. For v ∈ U we define dU (v) to be the minimum of the d( J ,v,δ)(v) over all tags ( J , v, δ) on U . However, this function
dU will not be stored explicitly.

At any stage, we have the following properties:

• If (x, y, z), (x + 1, y, z), (x + 2, y, z) ∈ J for some tag ( J , v, δ), then cπ (((x, y, z), (x + 1, y, z))) = cπ (((x + 1, y, z),
(x + 2, y, z))) and cπ (((x + 2, y, z), (x + 1, y, z))) = cπ (((x + 1, y, z), (x, y, z))).

• The tags on an interval U are stored in a search tree and in a doubly-linked list for U , both sorted by keys, where the
key of a tag ( J , v, δ) is the coordinate of v which corresponds to the preference direction.

• If there are two tags ( J , v, δ), ( J ′, v ′, δ′) on an interval U , then
– v �= v ′ .
– J ∩ J ′ = ∅.
– d( J ,v,δ)(v ′) > δ′ .

The last condition says that no redundant tags are stored. If there are k tags on U , the search tree allows us to compute
dU (v) for any v ∈ U in O (log k) time.

We can also insert another tag in O (log k) time and remove redundant tags in time proportional to the number of
removed tags. As every inserted tag is removed at most once, the time for inserting tags dominates the time for removing
redundant tags.

For a fixed layer z let V z(G ′) be the set of vertices of the supergraph G ′ in layer z. Then G ′[V z(G ′)] can be decomposed
into a set of maximally connected subgraphs which will become the blocks in GeneralizedDijkstra (Fig. 4). Obviously, this
fulfills the requirements of blocks given in Section 2. It is easy to see that the topological order of the intervals in V can be
chosen according to non-ascending future cost values min{π(v) | v ∈ U }.

The priority queue Q works with buckets Bδ,W ,I with key δ ∈ Z�0, block W ∈ {V1, . . . , VN } and index I ∈ {1, . . . , |V |}.
An element U ∈ Q ∩ W is contained in bucket Bkey(U ),W ,I(U ) . The nonempty buckets are stored in a heap and processed in
lexicographical order. This ensures that an interval is removed from Q only once per key.

The main difficulty is that an interval can have many neighbors, particularly on an adjacent layer with orthogonal wiring
direction. Although a single Update operation is fast, we cannot afford to perform all these operations separately. Fortu-
nately, there is a better way.

For neighbored intervals in the same layer we need to insert at most one tag. This is due to the monotonicity of the
function π on an interval. We can register labeling operations on intervals in adjacent layers in constant time by updating
R. Finally, Project_Registered is performed in a single step for all intervals in U which were registered at key λ. Set
R := R(U , λ) for short. We maintain a sweepline to process the elements in R which costs O (|R| log |R|) time. Hetzel
[17] showed that each interval in U needs to be updated by at most one interval in R . Adding the time for searching
neighbored intervals in R and for the labeling operation, the overall running time for Project_Registered applied to block
U is O (|R| log |R| + |U |(log |R| + log |U | + log�U )), where �U is the maximum number of tags in an interval in U . Since
�U can be bounded by the number of intervals in U [17], we get the following theorem:

Theorem 4. If GeneralizedDijkstra is applied to a set V of intervals partitioning the node set V (G) of a detailed routing instance
(G, c, S, T ) and reduced costs cπ with respect to a feasible potential π , then its running time is

O
(
min

{
(Λ + 1)|V| log |V|, ∣∣V (G)

∣∣ log
∣∣V (G)

∣∣}),
where Λ is the length of a shortest path from S to T with respect to cπ .

4. Experimental results

We will analyze two applications of GeneralizedDijkstra as presented in Section 3 implemented in the detailed path
search of BonnRoute which is a state-of-the-art routing tool used by IBM. Our experiments were made on an AMD-Opteron
machine with 64 GB memory and four processors running at 2.6 GHz.

We have run our algorithm on 10 industrial VLSI designs from IBM. Table 1 gives an overview on our testbed which
consists of seven 130 nm and three 90 nm chips of different size and of different number |Z | of layers. Here, the distance
between adjacent tracks of a chip is usually the minimum width of a wire plus the minimum distance of two wires. We
have tested our algorithm on about 15.5 million path searches in total. We used the standard costs with which BonnRoute
is applied with in practice. These are 1 and 4, resp., for edges running in and orthogonal to the preference direction, and 13
for a via.

Columns 6–9 give the sum over all instances for each chip. The number of grid nodes of all detailed routing instances
sums up to 2.4 trillion. The seventh column of Table 1 shows that the number |V | of intervals is by a factor of about 25
smaller than the number |V | of individual vertices. This confirms observations by Hetzel [17].

In Table 2 we compare a node-based (“classical”) and interval-based (“old”) path search, both goal-oriented using l1-
distances as future cost (thus “classical” corresponds to Rubin’s [34] algorithm and “old” to Hetzel’s [17]). The interval-based
implementation of Dijkstra’s algorithm decreases the number of labels by a factor of about 9, while the running time is
improved by a factor of 13 on average. All running times include the time for performing initialization routines for future
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Table 1
Our testbed.

Chip Tech Chip area in 1000 tracks |Z | #Paths ×1000 |V | × 106 |V| × 106 |R| × 106 |Rhyb| × 106

Dieter 130 nm 19 × 19 6 150 21 194 862 329 11
Paul 90 nm 24 × 24 7 153 19 603 785 395 12
Lotti 130 nm 14 × 14 6 219 25 746 1229 316 16
Hannelore 90 nm 36 × 33 7 265 40 524 1622 904 24
Elena 130 nm 19 × 19 6 906 127 063 5565 1709 79
Heidi 130 nm 23 × 23 7 1558 232 548 8918 3177 179
Garry 130 nm 26 × 26 7 1834 306 343 10 820 3893 239
Edgar 90 nm 40 × 40 7 1893 264 988 10 538 3850 238
Ralf 130 nm 26 × 26 7 2941 476 217 18 616 9852 246
Hermann 130 nm 46 × 46 7 5582 903 919 38 577 12 435 632

All 15 501 2 418 144 97 533 36 860 1750

Table 2
Comparison of the node-based (classical) and interval-based (old) path search.

Chip Number of labels (×106) Running time (sec)

classical old classical old

Dieter 7257 741 9661 607
Paul 6144 643 8008 580
Lotti 6585 739 9057 827
Hannelore 19 719 2045 26 849 1546
Elena 34 932 4481 53 776 4604
Heidi 53 314 6529 73 156 6160
Garry 85 194 10 571 121 189 9715
Edgar 139 871 13 464 193 642 12 020
Ralf 82 971 10 980 123 421 11 651
Hermann 381 437 39 289 661 441 51 190

All 817 424 89 482 1 280 200 98 900

cost queries. These numbers confirm that it is absolutely necessary to apply an interval-based path search in order to get
an acceptable running time.

Second, we will compare the performance of the detailed path search in BonnRoute based on different future cost
computations: Hetzel’s original path search using l1-distances for future cost values [17], and a new version as described in
Section 3.1.

The number |R| of rectangles used to perform GeneralizedDijkstra on rectangles as described in Section 3.1 is given
in the second to last column of Table 1. As this number is only by a factor of 2.6 smaller than the number of intervals,
and applying GeneralizedDijkstra on rectangles can take a significant running time, it is not worthwhile to perform this
pre-processing on all instances. Rather we would like to apply our new approach only to those instances where the gain
in running time of the core path search routine is larger than the time spent in pre-processing. As we cannot know this
a priori, we need to set up a good heuristic criterion when this effort is expected to pay off. While in one of our test
scenarios (“new”) we run Generalized Dijkstra on rectangles for each path search to obtain a better future cost, the second
scenario (“hybrid”) does this only if all of the following three conditions hold:

• the global routing corridor is the union of at least three three-dimensional cuboids,
• the number of target shapes is at most 20, and
• the l1-distance of source and target is at least 50.

Otherwise the l1-distance is used as future cost. We compared this to a third scenario (“old”) where the l1-distance is used
always (as proposed in [17]). All scenarios run GeneralizedDijkstra on intervals as described in Section 3.2. The last column
of Table 1 (|Rhyb|) lists the number of rectangles of the pre-processing step for the hybrid scenario, where we account for
one rectangle if the old l1-based approach is applied. This shows that the instance size of GeneralizedDijkstra on rectangles
in the hybrid scenario is significantly smaller than that of the actual interval-based path search.

In Table 3 we compare the number of labels and the length of detours, again summed up over all instances, for each
chip of our testbed. The detour of a path is given by the length of the path minus the future cost value of the source. For
each chip, the sum of all path lengths, given in the last column of Table 3, was about the same for all three scenarios. (They
all guarantee to find shortest paths, but they may find different shortest paths occasionally, leading to different instances
subsequently.)

The number of labels clearly decreases by applying the new approach. In the hybrid and new scenario, the total number
of labels can be reduced by 42% and 53%, respectively. The total length of detours decreases by 37% and 62%, respectively.
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Table 3
Number of labels, length of detours and paths for the interval-based path search in three different scenarios.

Chip Number of labels (×106) Length of detours (×103) Length of paths (×103)

old hybrid new old hybrid new

Dieter 741 469 361 5596 4184 2663 36 702
Paul 643 373 273 5688 4363 2838 38 544
Lotti 739 455 298 7475 5861 3330 49 023
Hannelore 2045 844 704 9443 5659 3748 113 392
Elena 4481 2909 2267 37 443 24 922 14 853 248 355
Heidi 6529 4062 2888 58 608 40 979 22 903 404 564
Garry 10 571 6171 4856 77 874 48 461 30 325 605 396
Edgar 13 464 6390 5218 76 813 47 205 26 718 809 167
Ralf 10 980 6657 4771 112 238 78 915 47 280 661 519
Hermann 39 289 23 621 20 329 266 446 155 044 97 189 2 314 273

All 89 482 51 951 41 965 657 624 415 593 251 847 5 280 935

Table 4
Running time (in sec) for the interval-based path search in three different scenarios.

Chip Old Hybrid Init New Init

Dieter 607 481 20 1479 1047
Paul 580 459 25 1590 1187
Lotti 827 688 35 1379 815
Hannelore 1546 1031 48 4355 3370
Elena 4604 3811 169 8191 4833
Heidi 6160 5077 382 14 571 10 199
Garry 9715 8142 529 20 552 13 247
Edgar 12 020 8627 555 19 898 12 215
Ralf 11 651 9599 544 42 862 33 944
Hermann 51 190 39 568 1450 83 235 43 248

All 98 900 77 483 3757 198 112 124 105

In Table 4 we present the main result of our study.
All running times for old, hybrid and new include the time for performing initialization routines for future cost queries.

For the hybrid and new scenario we also give the time spent in the pre-processing routine of the new approach, which
contains initializing the corresponding graph and performing GeneralizedDijkstra on rectangles. Although 4.8% of the run-
ning time of hybrid is spent in the initialization step, we obtain a total improvement of 21.7% in comparison to the old
scenario. The best result of 33.3% was obtained on Hannelore, the worst of 17.2% on Elena. Only a carefully chosen heuristic
enables us to identify those instances for which it is worthwhile to spend time on the more expensive computation of a
better future cost. In the hybrid scenario the new approach is called for about 23% of the path searches, which, however,
take most of the running time. We would get a theoretical improvement of 25.2% if we ran the new scenario and did not
take initialization time into account. This shows that our criteria in the hybrid scenario are close to optimal.

The combination of both techniques — the interval-based path search and the usage of improved future cost values —
substantially speed-up the core routine of detailed routing, one of the most time-consuming steps in the layout process.
Thus, a significant reductions of the overall turn-around-time from couple of days to a few hours can be achieved.

Note added

Recently, Humpola [23] implemented the algorithm described in Section 3.2 for more general grid graphs with different sets of
coordinates of wires in preference direction in each layer. He obtained a generalization of Theorem 4.
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