Three Hundred Million Points Suffice

Joel Spencer
S.U.N.Y. at Stony Brook, Stony Brook, New York 11794
Communicated by the Managing Editors
Received February 3, 1987

Abstract

There is a graph G with $300,000,000$ vertices and no clique on four points, such that if its edges are two colored these must be a monochromatic triangle. © 1988 Academic Press, Inc.

History and Summary

In the late 1960s Paul Erdös asked what graphs G, other than K_{6}, had the property that $G \rightarrow\left(K_{3}\right)$. We use the Rado arrow notation: $G \rightarrow(H)$ is the statement that if the edges of G are two colored there exists a monochormatic H and, more generally, $G \rightarrow(H)_{r}$ is the statement that if the edges of G are r-colored there exists a monochromatic H. In particular, Erdös asked if there is a graph G satisfying

$$
\begin{align*}
G & \rightarrow\left(K_{3}\right) \tag{*}\\
\omega(G) & =3 .
\end{align*}
$$

A proof of the existence of such a G was first given by Jon Folkman [2]. This supremely ingenious proof had two drawbacks. First, the graph G given was extremely large. Second, the proof did not generalize to give for all r a graph G with $\omega(G)=3$ and $G \rightarrow\left(K_{3}\right)_{r}$. At the Combinatorial Conference in Kesthely, Hungary 1973 this problem was given to the Czechoslovakian mathematician Jarik Nesetril and his young student Vojtech Rodl. They [4] found a completely different argument that for all r graphs G exist with $\omega(G)=3$ and $G \rightarrow\left(K_{3}\right)_{r}$. Those of us at that meeting (see [5] for an anecdotal account) recall the sense of excitement accompanying that discovery and I feel it played a critical role in the development of modern Ramsey Theory. The graphs given by the Nesetril-Rodl methods were still extremely large and Erdös offered a reward for the discovery of a G satisfying $\left({ }^{*}\right)$ having less than 10^{10} vertices. Here we claim this reward.

The method used has been known for seveal years to Szemeredi, Nesetril, Rodl, Frankl, and others. Frankl and Rodl [3] calculated that a graph G datisfying (*) with roughly 7×10^{11} vertices exists. Our note may be considered a case study in the application of asymptotic methods to give precise bounds. The method is extremely case specific. It does not give, for example, graphs G of moderate size satisfying $\omega(G)=3$ and $G \rightarrow\left(K_{3}\right)_{3}$. This remains an intriguing open problem.

1. The Method

Let $G=G(n, p)$ be the random graph on n vertices with edge probability p. For each K_{4} in G randomly select an edge. Delete these edges from G, giving G^{*}. We show that for appropriate $n, p\left(^{*}\right)$ is satisfied by G^{*} with positive probability. It shal be convenient to write $p=c n^{-1 / 2}$. In the end we will minimize n by taking c roughly 6 , and n roughly 3 E8. Set

$$
\begin{aligned}
U & =\{(x, x y z): x y z \text { is a triangle of } G\} \\
U^{*} & =\left\{(x, x y z): x y z \text { is a triangle of } G^{*}\right\} .
\end{aligned}
$$

Note. $x y, x y z$ shall denote the sets $\{x, y\},\{x, y, z\}$ throughout. For each vertex x set

$$
N(x)=\{y: x y \in G\}
$$

and

$$
\begin{aligned}
A(x)= & \text { maximum over all partitions } N(x)=T \cup B \text { of the } \\
& \text { number of edges } y z \in G \text { with } y \in T \text { and } z \in B .
\end{aligned}
$$

Theorem. If

$$
\begin{equation*}
\sum_{x} A(x)<\frac{2}{3}\left|U^{*}\right| \tag{}
\end{equation*}
$$

then G^{*} satisfies (${ }^{*}$).
Proof. Clearly G^{*} has no K_{4}; suppose there is a coloring χ with no monochromatic triangle. We count pairs $(x, x y z)$ such that $x y z$ is a triangle of G^{*} and $\chi(x y) \neq \chi(x z)$. For each triangle $x y z$ the coloring is essentially unique (two red edges and a blue edge or vice versa) and there are two choices of x so that $(x, x y z)$ is counted so the number of pairs is precisely $\frac{2}{3}\left|U^{*}\right|$. (The unique nature of two colorings of K_{3} is unusual and does not seem to generalize to the case of more colors.) For each x let $B(x)=$
$\{y \in N(x): \chi(x y)=$ blue $\}, T(x)=N(x)-B(x)$. Then the number of $(x, x y z)$ counted is precisely the number of edges $y z \in G^{*}$ with $y \in T(x), z \in B(x)$. Replacing G^{*} by the larger G can only increase this number, and replacing the partition $T(x), B(x)$ by the optimal partition T, B can only increase this number so that the number of $(x, x y z)$ is at most $A(x)$ and the total number of such pairs is at most $\sum A(x)$ which would contradict (${ }^{* *}$).

We shall show for appropriate n, p that $\left({ }^{* *}\right)$ holds with positive probability.

2. The Calculation Ignoring Variance

Let
$T=$ number of triangles in G
$Q=$ number of K_{4} in G
$R=$ number of $(x y, u v, a)$ with x, y, u, v, a distinct, $a x, a y \in G, x y u v$ forming a K_{4} in $G, x y$ selected from $x y u v$ to be removed from F^{*}.

Clearly $|U|=3 T$. Also $\left|U-U^{*}\right| \leqslant 2 Q+R$. For suppose $(a, a x y) \in U-U^{*}$. Then $x y$ was in a K_{4} of G and was deleted and $a x, a y \in G$. If the K_{4} does not contain a it is counted in R; those ($a, a x y$), where the K_{4} contains a are at most $2 Q$ in number, since each $K_{4} a b x y$ chooses one edge $x y$ and contributes $a x y, b x y$ to $U-U^{*}$. Together,

$$
\left|U^{*}\right|>3 T-2 Q-R
$$

We find expectations

$$
\begin{align*}
& E(T)=\binom{n}{3} p^{3} \sim\left(c^{3} / 6\right) n^{3 / 2} \tag{1}\\
& E(Q)=\binom{n}{4} p^{6} \sim\left(c^{6} / 24\right) n \tag{2}\\
& E(R)=30\binom{n}{5} p^{8} / 6 \sim\left(c^{8} / 24\right) n \tag{3}
\end{align*}
$$

so that

$$
\begin{equation*}
E\left(\left|U^{*}\right|\right)>\frac{1}{2} c^{3} n^{3 / 2}-\left(c^{6} / 12+c^{8} / 24\right) n \tag{4}
\end{equation*}
$$

In the next section we examine variances and show that $\left|U^{*}\right|$ is "very often" "very close" to its expectation.

Now we examine $A(x)$. Set

$$
\begin{aligned}
& d=d(x)=|N(x)| \\
& e=e(x)=\text { number of edges of } G \text { in } N(x) .
\end{aligned}
$$

Conditioning on values $d, e, N(x)$ becomes a random graph H with d vertices and e edges.

For a partition $N(x)=T \cup B$ let X_{T} be the number of edges of H from T to B. Assume $|T|=|B|=d / 2$, that being the extreme case. Then X_{T} has basically binomial distribution $B\left(e, \frac{1}{2}\right)$ as e edges are selected and each has probability $\frac{1}{2}$ of "crossing." Employing the basic Chernoff bound

$$
\begin{equation*}
\operatorname{Pr}\left[X_{T}>\frac{1}{2} e+\frac{1}{2} e^{1 / 2} s\right]<\exp \left(-s^{2} / 2\right) \tag{5}
\end{equation*}
$$

We set $s=(2 d \ln 2)^{1 / 2}(1.01)$ so that this probability is $\ll 2^{-d}$. But $A(x)=$ $\max X_{T}$, over 2^{d} possible T, so

$$
\begin{equation*}
\operatorname{Pr}\left[A(x)>\frac{1}{2} e+\frac{1}{2} e^{1 / 2} s\right] \ll 2^{d} 2^{-d} \ll 1 . \tag{6}
\end{equation*}
$$

That is, "almost always," all

$$
\begin{equation*}
A(x)<\frac{1}{2} e(x)+d(x)^{1 / 2} e(x)^{1 / 2}\left(\frac{1}{2} \ln 2\right)^{1 / 2}(1.01) \tag{7}
\end{equation*}
$$

Now $\sum_{x} e(x)=3 T \sim \frac{1}{2} c^{3} n^{3 / 2}$, all $d(x) \sim n p$, all $e(x) \sim \frac{1}{2} c^{3} n^{1 / 2}$ so

$$
\begin{equation*}
\sum|A(x)|<c^{3} n^{3 / 2} / 4+n(n p)^{1 / 2}\left(c^{3} n^{1 / 2} / 2\right)^{1 / 2}(\ln 2 / 2)^{1 / 2} \tag{8}
\end{equation*}
$$

Combining (4), (8), $\left(^{* *}\right.$) holds if

$$
\begin{align*}
c^{3} n^{3 / 2} / 4 & +n\left(c n^{1 / 2}\right)^{1 / 2}\left(c^{3} n^{1 / 2} / 2\right)^{1 / 2}(\ln 2 / 2)^{1 / 2} \\
& <c^{3} n^{3 / 2} / 3-\left[c^{6} / 18+c^{8} / 36\right] n \tag{9}
\end{align*}
$$

i.e., if

$$
\begin{equation*}
\left[\frac{c^{6}}{18}\left(1+\frac{c^{2}}{2}\right) /\left(\frac{c^{3}}{12}-\frac{c^{2}(\ln 2)^{1 / 2}}{2}\right)\right]^{2}<n \tag{10}
\end{equation*}
$$

where the LHS must have positive denominator. We take $c \sim 6$ to minimize this inequality so that $n \sim 2.7 \times 10^{8}$. We allow ourselves a little room and set $c=6, n=3 \times 10^{8}$ in the next section. We know that (**) holds "almost always"-i.e., with probability approaching unity as n approaches infinity-but our object is to show that with these particular values (**) holds with positive probability.

3. The Calculation

Set $c=6, n=3 \mathrm{E} 8, p=c n^{-1 / 2}$. We find (to three significant decimals)

$$
\begin{array}{ll}
E(E)=1.87 \mathrm{E} 14 & \operatorname{Var}(T)<5 \mathrm{E} 16 \\
E(Q)=5.83 \mathrm{E} 11 & \operatorname{Var}(Q)<\mathrm{E} 12 \\
E(R)=2.10 \mathrm{E} 13 & \operatorname{Var}(R)<6 \mathrm{E} 16 \tag{13}
\end{array}
$$

The variance calculations are cumbersome though elementary exercises. We employ Chebyschev's inequality in the form

$$
\begin{equation*}
\operatorname{Pr}[|X-E(X)|>t E(X)]<t^{-2} \operatorname{Var}(X) / E(X)^{2} \tag{14}
\end{equation*}
$$

Taking $t=10^{-3}$ with $X=T, Q$, and R above we find

$$
\begin{array}{r}
\operatorname{Pr}[1.88 \mathrm{E} 14>T>1.86 \mathrm{E} 14]>0.999 \\
\operatorname{Pr}[Q<5.84 \mathrm{E} 11]>0.999 \\
\operatorname{Pr}[R<2.11 \mathrm{E} 13]>0.999 . \tag{17}
\end{array}
$$

Let $\operatorname{BAD}(x)$ be the event, setting $e=e(x), d=d(x)$ given by

$$
\begin{equation*}
\operatorname{BAD}(x): A(x)>\frac{1}{2} e(d /(d-1))+e^{1 / 2} d^{1 / 2}\left(\frac{1}{2} \ln 2\right)^{1 / 2}(1.01) \tag{18}
\end{equation*}
$$

and let BAD be the disjunction of the events $\operatorname{BAD}(x)$ over all vertices x. We show

$$
\begin{equation*}
\operatorname{Pr}[\mathrm{BAD}]<0.01 \tag{19}
\end{equation*}
$$

for which it suffices to show

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{BAD}(x)]<3 E-10 \tag{20}
\end{equation*}
$$

The degree $d(x)$ has distribution $B(n-1, p)$ which has mean $(n-1) p=$ 1.04 E 5 and variance $(n-1) p(1-p)=1.04 \mathrm{E} 5$. We use the Chernoff bounds (see, e.g., [6; or 1, sect. I.3])

$$
\begin{array}{ll}
\operatorname{Pr}[B(m, p)<m p-a]<\exp \left[-a^{2} / 2 p m\right] & (a>0) \\
\operatorname{Pr}[B(m, p)>m p+a]<\exp \left[-a^{2} / 2 p m+a^{3} / 2(p m)^{2}\right] & (a>0) \tag{22}
\end{array}
$$

First, quite roughly, take $a=\mathrm{E} 4$ and note

$$
\begin{equation*}
\operatorname{Pr}[d(x)<0.9 \mathrm{E} 5]<\exp \left[-10^{8} / 2 p(n-1)\right]<10^{-100} \tag{23}
\end{equation*}
$$

To show (20) it suffices to show

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{BAD}(x) \mid d(x)=d, e(x)=e]<3 \times 10^{-10}-10^{-100} \tag{24}
\end{equation*}
$$

for every d, e with $d \geqslant 0.9 \mathrm{E} 5$. Conditioning on d, e we may consider $N(x)$ as a random graph $H=(V(H), E(H))$ with d vertices and e edges. For each $S \subset V(H)$ let Y_{S} be the number of $y z \in E(H)$ with $y \in S, z \notin S$. Let $\operatorname{HYP}[N, M, r]$ denote the hypergeometric distribution of the number of red balls from an urn of M red and ($N-M$) nonred balls selected in r trials without replacement. Letting $|S|=s, Y_{S}$ has precisely the distribution HYP $\left[\left(\frac{d}{2}\right), s(d-s), e\right]$. Set

$$
\begin{equation*}
b=\frac{1}{2} e(d /(d-1))+e^{1 / 2} d^{1 / 2}\left(\frac{1}{2} \ln 2\right)^{1 / 2}(1.01), \tag{25}
\end{equation*}
$$

for convenience. Clearly $\operatorname{Pr}\left[Y_{s}>b\right]$ is maximized when $s(d-s)$ is maximized, i.e., at $s=[d / 2]$. Setting

$$
\begin{equation*}
q^{\prime}=[d / 2](d-[d / 2]) /\binom{d}{2} \tag{26}
\end{equation*}
$$

for convenience,

$$
\begin{equation*}
\operatorname{Pr}\left[Y_{S}>b\right] \leqslant \operatorname{Pr}\left[\operatorname{HYP}\left[\binom{d}{2}, q^{\prime}\binom{d}{2}, e\right]>b\right] \tag{27}
\end{equation*}
$$

W. Uhlmann [7] has made a systematic comparison between HYP[N, $N q, r]$ and the corresponding binomial $B(r, q)$-the distribution given by electing balls with replacement. For our values,

$$
\begin{align*}
\operatorname{Pr}\left[\operatorname{HYP}\left[\binom{d}{2}, q^{\prime}\binom{d}{2}, e\right]>b\right] & \leqslant \operatorname{Pr}\left[B\left(e, q^{\prime}\right)>b\right] \\
& \leqslant \operatorname{Pr}[B(e, q)>b] \tag{28}
\end{align*}
$$

setting $q=\frac{1}{2}(d /(d-1))$, a convenient upper bound on q^{\prime}. We use the bound (again see, e.g., [6 or 1])

$$
\begin{equation*}
\operatorname{Pr}[\mathrm{B}(e, q)>e q+a]<\exp \left(-2 a^{2} / e\right) \quad(a>0), \tag{29}
\end{equation*}
$$

valid for all e, q. Then

$$
\begin{equation*}
\operatorname{Pr}\left[Y_{S}>b\right]<\exp \left[-2(1.01)^{2} d(\ln 2) / 2\right]<2^{-d(1.02)} . \tag{30}
\end{equation*}
$$

Hence

$$
\begin{align*}
\operatorname{Pr}[\operatorname{BAD}(x) \mid d(x)=d, e(x)=e]< & \sum \operatorname{Pr}\left[Y_{S}\right]<2^{d} 2^{-d(1.02)} \\
& =2^{-0.02 d}<2^{-1800}, \tag{31}
\end{align*}
$$

giving (24) with "plenty of room."

Application of (21), (22) with precise values give

$$
\begin{align*}
& \operatorname{Pr}[d(x)>1.06 \mathrm{E} 5]<0.2 / n \tag{32}\\
& \operatorname{Pr}[d(x)<1.01 \mathrm{E} 5]<0.1 / n \tag{33}
\end{align*}
$$

so that, with room to spare,

$$
\begin{equation*}
\operatorname{Pr}[1.01 \mathrm{E} 5 \leqslant d(x) \leqslant 1.06 \mathrm{E} 5 \text { for all } x]>0.7 \tag{34}
\end{equation*}
$$

Combining (15)-(17), (19), (34) we have that, with probability at least 0.65 , the pair G, G^{*} satisfy

$$
\begin{align*}
1.86 \mathrm{E} 14 & <T<1.88 \mathrm{E} 14 \\
Q & <5.84 \mathrm{E} 11 \\
R & <2.11 \mathrm{E} 13 \tag{35}\\
A(x) & <b, \quad \text { all } x \\
101000 & \leqslant d(x) \leqslant 106000, \quad \text { all } x .
\end{align*}
$$

Let G, G^{*} be a specific graph pair satisfying the above. Then

$$
\begin{equation*}
\sum A(x)=\frac{1}{2}(1.00001) \sum e(x)+(1.01)\left(\frac{1}{2} \ln 2\right)^{1 / 2} \sum e(x)^{1 / 2} d(x)^{1 / 2} \tag{36}
\end{equation*}
$$

We note $\sum e(x)=3 T$ and bound

$$
\begin{align*}
\sum e(x)^{1 / 2} d(x)^{1 / 2} & \leqslant(106000)^{1 / 2} \sum e(x)^{1 / 2} \\
& \leqslant(106000)^{1 / 2}(3 T n)^{1 / 2} \tag{37}
\end{align*}
$$

as, in general ${ }^{\bullet} y_{1}^{1 / 2}+\cdots+y_{n}^{1 / 2} \leqslant\left(y_{1}+\cdots+y_{n}\right)^{1 / 2} n^{1 / 2}$. Plugging in values

$$
\begin{equation*}
\sum A(x)<2.83 \mathrm{E} 14 \tag{38}
\end{equation*}
$$

On the other side,

$$
\begin{equation*}
2\left|U^{*}\right| / 3 \geqslant 2 T-(2 / 3)(2 Q+R)>3.57 \mathrm{E} 14 \tag{39}
\end{equation*}
$$

so that, indeed, the conditions of the theorem hold and $G^{*} \rightarrow\left(K_{3}\right)$.
There was plenty of room in our variance arguments. But even if all variances were zero without further argumentation we could not improve on the value $c=6.0157$ and a graph G with $266,930,400$ vertices.

References

1. B. Bollobas, "Random Graphs," Academic Press, New York/London, 1985.
2. J. Folkman, Graphs with monochromatic complete subgraphs in eveery edge coloring. SIAM J. Appl. Math. 18 (1970), 19-29.
3. P. Frankl and V. Rodl, Large triangle-free subgraphs in graphs without K_{4}, Graphs and Combinatorics 2 (1986), 135-144.
4. J. Nesetril and V. Rodl, Type theory of partition properties of graphs, in "Recent Advances in Graph Theory," pp. 405-412, Academia, Prague, 1975.
5. J. Spencer, Ramsey theory and Ramsey theoreticians, J. Graph Theory 7 (1983), 15-23.
6. J. Spencer, Probabilistic methods, in "Handbook of Combinatorics," North-Holland, Amsterdam, in press.
7. W. Uhlmann, Vergleich der hypergeometrischen mit der Binomial Verteilung, Metrika 10 (1966). 145-158.
