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Three Hundred Million Points Suffice
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There is a graph G with 300,000,000 vertices and no clique on four points, such
that if its edges are two colored these must be a monochromatic triangle.  © 1988
Academic Press, Inc.

HISTORY AND SUMMARY

In the late 1960s Paul Erdos asked what graphs G, other than K, had
the property that G — (K;). We use the Rado arrow notation: G — (H) is
the statement that if the edges of G are two colored there exists a
monochormatic H and, more generally, G — (H), is the statement that if
the edges of G are r-colored there exists a monochromatic H. In particular,
Erdos asked if there is a graph G satisfying

G- (K;)

*
w(G)=13. )
A proof of the existence of such a G was first given by Jon Folkman [2].
This supremely ingenious proof had two drawbacks. First, the graph G
given was extremely large. Second, the proof did not generalize to give
for all r a graph G with w(G)=3 and G — (K;),. At the Combinatorial
Conference in Kesthely, Hungary 1973 this problem was given to the
Czechoslovakian mathematician Jarik Nesetril and his young student
Vojtech Rodl. They [4] found a completely different argument that for all
r graphs G exist with w(G)=3 and G > (K,),. Those of us at that meeting
(see [5] for an anecdotal account) recall the sense of excitement accom-
panying that discovery and I feel it played a critical role in the develop-
ment of modern Ramsey Theory. The graphs given by the Nesetril-Rodl
methods were still extremely large and Erdds offered a reward for the
discovery of a G satisfying (*) having less than 10'° vertices. Here we claim
this reward.
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The method used has been known for seveal years to Szemeredi,
Nesetril, Rodl, Frankl, and others. Frankl and Rod! [3] calculated that a
graph G datisfying (*) with roughly 7 x 10"! vertices exists. Our note may
be considered a case study in the application of asymptotic methods to give
precise bounds. The method is extremely case specific. It does not give, for
example, graphs G of moderate size satisfying w(G)=3 and G - (Kj;);.
This remains an intriguing open problem.

1. THE METHOD

Let G = G(n, p) be the random graph on n vertices with edge probability
p. For each K, in G randomly select an edge. Delete these edges from G,
giving G*. We show that for appropriate »n, p (*) is satisfied by G* with
positive probability. It shal be convenient to write p =cn~"2 In the end we
will minimize »n by taking ¢ roughly 6, and n roughly 3E8. Set

U={(x ): xyz is a triangle of G }
U*= {(x, xyz): xyz is a triangle of G* }.

Note. xy, xyz shall denote the sets {x, y}, {x, y,z} throughout. For
each vertex x set

Nx)={y:xyeG}
and

A(x)=maximum over all partitions N(x)= T'u B of the
number of edges yze G with ye Tand ze B.

THEOREM. If
Z A | U* ( * *k )

then G * satisfies (*)

Proof. Clearly G* has no K,; suppose there is a coloring y with no
monochromatic triangle. We count pairs (x, xyz) such that xyz is a triangle
of G* and x(xy)# x(xz). For each triangle xyz the coloring is essentially
unique (two red edges and a blue edge or vice versa) and there are two
choices of x so that (x, xyz) is counted so the number of pairs is precisely
2|U*|. (The unique nature of two colorings of K, is unusual and does not
seem to generalize to the case of more colors.) For each x let B(x)=
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{y€ N(x): x(xy) =blue}, T(x) = N(x)— B(x). Then the number of (x, xyz)
counted is precisely the number of edges yze G* with ye T(x), z <€ B(x).
Replacing G * by the larger G can only increase this number, and replacing
the partition T(x), B(x) by the optimal partition 7, B can only increase this
number so that the number of (x, xyz) is at most A(x) and the total
number of such pairs is at most 3 4(x) which would contradict (**). |

We shall show for appropriate n, p that (**) holds with positive
probability.

2. THE CALCULATION IGNORING VARIANCE

Let

T =number of triangles in G
Q =number of K, in G
R=number of (xy,uv, a) with x, y, u, v, a distinct, ax, aye G, xyuv

forming a K, in G, xy selected from xyuv to be removed from F*.

Clearly |U] =3T. Also |U—U*|<20Q + R. For suppose (a, axy)e U—U*.
Then xy was in a K, of G and was deleted and ax, aye G. If the K, does
not contain a it is counted in R; those (a, axy), where the K, contains a are
at most 2Q in number, since each K, abxy chooses one edge xy and
contributes axy, bxy to U — U*. Together,

|U*| >3T—-2Q —R.

We find expectations

B0 = ;) ~ (o (1)
Q)= (Z) Po~ (520 2)
B(R)=30) Y6~ (Y24 (3)
so that
E(IU*|)>§C3n3/2—(c°/12+c8/24)n. (4)

In the next section we examine variances and show that |U*| is “very
often” “very close” to its expectation.
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Now we examine A(x). Set
d=d(x)=|N(x)|
e = e¢(x) =number of edges of G in N(x).

Conditioning on values d, e, N(x) becomes a random graph H with d
vertices and e edges.

For a partition N(x)=Tu B let X, be the number of edges of H from T
to B. Assume |T|=|B| =d/2, that being the extreme case. Then X, has
basically binomial distribution B(e, 1) as e edges are selected and each has
probability { of “crossing.” Employing the basic Chernoff bound

Pr[X;>de+Le'?s] <exp(—s%/2). (5)

We set s=(2d In 2)"*(1.01) so that this probability is < 2% But A(x)=
max X, over 24 possible 7T, so

PrlA(x)>le+ie'’s] <22 9«1, (6)
That is, “almost always,” all

A(x) < Se(x) +d(x)"" e(x)*(L 1n 2)2(1.01). (7)
Now ¥, e(x)=3T ~4c*n?, all d(x)~np, all e(x)~ 1c*n'? so

Y | A(x)] < >n®/4 + n(np)2(c*n"2/2)V2(In 2/2)'". (8)

Combining (4), (8), (**) holds if
cn*?/4 4+ n(en'*)V2(*n'?/2)2(In 2/2)'2
<3 — [c%/18 + ¢¥/36]n; (9)

c® e/ An )Y\ T?
() 5)] = (10

where the LHS must have positive denominator. We take ¢ ~ 6 to minimize
this inequality so that n~ 2.7 x 108, We allow ourselves a little room and
set ¢ =6, n=23x 10® in the next section. We know that (**) holds “almost
always”—i.e., with probability approaching unity as » approaches
infinity—but our object is to show that with these particular values (**)
holds with positive probability.

ie., if
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3. THE CALCULATION

Set c=6, n=23E8, p=cn "2 We find (to three significant decimals)

E(E)=187E14  Var(T)<S5El6 (11)
E(Q)=583E1l  Var(Q)<EI2 (12)
E(R)=2.10E13  Var(R)<6E16. (13)

The variance calculations are cumbersome though elementary exercises. We
employ Chebyschev’s inequality in the form

Pr[|X — E(X)| > tE(X)] <t 2 Var(X)/E(X)* (14)

Taking r=10""* with X=7, @, and R above we find

Pr[1.88E14> T> 1.86E14]>0.999 - (15)
Pr[Q < 5.84E11]>0.999 (16)
Pr[R < 2.11E13]> 0.999. (17)

Let BAD(x) be the event, setting e =e(x), d=d(x) given by
BAD(x): A(x) > le(d/(d—1))+e"*d"*({1n 2)"*(1.01) (18)

and let BAD be the disjunction of the events BAD(x) over all vertices x.
We show
Pr[BAD} <001, (19)

for which it suffices to show
Pr[BAD(x)] <3E—10. (20)

The degree d(x) has distribution B(n — 1, p) which has mean (n—1)p=
1.04ES5 and variance (n— 1) p(1 — p) = 1.04E5. We use the Chernoff bounds
(see, e.g., [6; or 1, sect. 1.3])

Pr[B(m, p) <mp —a] <exp[ —a*/2pm] (a>0) (21)
Pr[B(m, p)>mp+a] <exp[ —a*/2pm+a*/2(pm)*]  (a>0). (22)

First, quite roughly, take a = E4 and note
Pr[d(x) <0.9E5] <exp[ —10%/2p(n—1)] < 10~'%. (23)

To show (20) it suffices to show
Pr[BAD(x)|d(x)=d, e(x)=e]<3x 10" 10— 10'® (24)
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for every d, e with d = 0.9ES. Conditioning on d, e we may consider N{x) as
a random graph H = (V(H), E(H)) with d vertices and e edges. For each
ScV(H) let Yg be the number of yze E(H) with ye S, z¢S. Let
HYP[N, M, r] denote the hypergeometric distribution of the number of
red balls from an urn of M red and (N— M) nonred balls selected in r
trials without replacement. Letting |S| =s, Y has precisely the distribution
HYP[(9), s(d—s), e]. Set

b=1ie(d/(d—1))+e"” d"*(1n2)"?(1.01), (25)

for convenience. Clearly Pr[ Y >b] is maximized when s(d—s) is
maximized, i.e., at s= [d/2]. Setting

¢ = [d/2)(d - [d/2])/ (Z) (26)

for convenience,

PeLvy> b1 <pr| e (5).0'(3) ¢ | > (27)

W. Uhlmann [7] has made a systematic comparison between HYP[N,
Ng, r] and the corresponding binomial B(r, ¢}—the distribution given by
electing balls with replacement. For our values,

Pr |:HYP [(Z), q (Z), e] > b:l < Pr[Ble,q')>b]

<Pr[B(e, q)> b1, (28)

setting g = 1(d/(d — 1)), a convenient upper bound on ¢'. We use the bound
(again see, e.g., [6 or 1])

Pr[B(e, q) > eq + a] < exp(—2a’/e) (a>0), (29)
valid for all e, g. Then
Pr[Ys>b] <exp[ —2(1.01)? d(In 2)/2] < 2~ 4102), (30)
Hence
Pr[BAD(x)|d(x)=d, e(x)=e] <) Pr[Ys] <2424
=2 7002 1800 (31)

giving (24) with “plenty of room.”
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Application of (21), (22) with precise values give
Pr[d(x)>1.06E5] <0.2/n (32)
Pr{d(x) <1.01E5] <0.1/n, (33)
so that, with room to spare,
Pr[1.01E5 < d(x)< 1.06ES for all x]>0.7. (34)

Combining (15)-(17), (19), (34) we have that, with probability at least
0.65, the pair G, G * satisfy

1.86E14 < T < 1.88E14
Q < 5.84E11
R<211E13 (35)
A(x)< b, all x
101000 < d(x) < 106000, all x.

Let G, G* be a specific graph pair satisfying the above. Then

Y A(x)=14(1.00001) ¥ e(x)+ (1.01)(31n 2)2 Y e(x)"? d(x)".  (36)

We note 3 e(x)=3T and bound

Y e(x)'? d(x)* < (106000)"/2 ¥ e(x)'?
< (106000)'(3Tn)"? (37)
as, in general’ yY2+ ... + pY2(y, + -+ + y,)"’n"* Plugging in values
) A(x)<2.83E14. (38)
On the other side,
21U*|/322T—(2/3)(2Q0 + R) > 3.57E14, (39)
so that, indeed, the conditions of the theorem hold and G* — (K;).
There was plenty of room in our variance arguments. But even if all

variances were zero without further argumentation we could not improve
on the value ¢ =6.0157 and a graph G with 266, 930, 400 vertices.
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