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Abstract

We develop a multiscale thermomechanical model to analyze martensitic phase transformations from a cubic crys-
talline lattice to a tetragonal crystalline lattice. The model is intended for simulating the thermomechanical response of
single-crystal grains of austenite. Based on the geometrically nonlinear theory of martensitic transformations, we incor-
porate microstructural effects from several subgrain length scales. The effective stiffness tensor at the grain level is
obtained through an averaging scheme, and preserves crystallographic information from the lattice scale as well as
the influence of volumetric changes due to the transformation. The model further incorporates a transformation crite-
rion that includes a surface energy term, which takes into account the creation of interfaces between martensite and
austenite. These effects, which are often neglected in martensitic transformation models, thus appear explicitly in the
expression of the transformation driving force that controls the onset and evolution of the transformation. In the der-
ivation of the transformation driving force, we clarify the relations between different combinations of thermodynamic
potentials and state variables. The predictions of the model are illustrated by analyzing the response of a phase-chang-
ing material subjected to various types of deformations. Although the model is developed for cubic to tetragonal trans-
formations, it can be adapted to simulate martensitic transformations for other crystalline structures.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Driven by the technological necessity to create efficient structural designs, there is a constant need to
develop materials with enhanced structural and functional properties. Among the physical phenomena that
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can be exploited to improve the performance of materials, solid-state martensitic transformations in steels
and metal alloys occupy a prominent position. Martensitic transformations play a role in the thermal pro-
cessing of these materials (e.g., dual phase steels and maraging steels) as well as during their forming and
operation (e.g., austenitic alloys such as Fe–Ni–C and Fe–Mn–C and multiphase steels assisted by trans-
formation-induced plasticity). The transformation of austenite into martensite in multiphase carbon steels
is the underlying mechanism for improving their overall yield strength and ductility. Martensitic transfor-
mations are also relevant for functional materials, such as shape memory alloys, where the pseudoelasticity
and shape memory effects are related to a reversible phase change. Although the current market for shape
memory alloys is limited to a few specialized applications, their potential large-scale use remains nonethe-
less significant. A thorough understanding of martensitic transformations is therefore important, particu-
larly in view of devising a systematic way to improve mechanical and functional characteristics of steels and
metal alloys.

Various constitutive models for reversible and irreversible martensitic transformations have been pro-
posed in the literature (see, e.g., Olson and Cohen, 1975; Leblond et al., 1986a,b; Stringfellow et al.,
1992; Bhattacharyya and Weng, 1994; Marketz and Fischer, 1994, 1995; Diani and Parks, 1998; Huang
and Brinson, 1999; Idesman et al., 1999; Levitas et al., 1999; Govindjee and Miehe, 2001; Thamburaja
and Anand, 2001; Anand and Gurtin, 2003). Some of these models have a strongly phenomenological nat-
ure, whereas other models incorporate microstructural information through the use of averaging tech-
niques. The present model falls within the latter category, where microstructural information is included
by introducing a hierarchical series of length scales connected to relevant substructures that govern the sta-
bility of austenite. We take explicitly into account the orientation of the austenitic and martensitic crystal
lattices with respect to the local stress field, as well as their anisotropic elastic properties. To this end, we use
the theory of martensitic transformations originally proposed by Wechsler et al. (1953) and further refined
by Ball and James (1987) (see also Bhattacharya, 1993; Hane and Shield, 1998, 1999; James and Hane,
2000). We employ this information within an averaging scheme in order to estimate the effective elasticity
tensor at the grain level. The effective stiffness tensor thus preserves crystallographic characteristics from
lower length scales as well as the influence of volumetric changes due to the transformation. For estimating
the effective mechanical properties, the present model assumes that the austenitic phase is cubic and the
martensitic phase is tetragonal. Nonetheless, most of the analysis carries over for other types of crystalline
structures.

The transformation criterion in the model is based on a thermodynamically-consistent approach similar
to the one employed by Fischer et al. (1998) for TRIP-assisted steels and by Anand and Gurtin (2003) and
Jannetti et al. (2004) for shape memory alloys. Through the incorporation of the small scale kinematic char-
acteristics by means of an averaging scheme, we circumvent the need of additional balance principles, as
proposed by Anand and Gurtin (2003). Moreover, the present model incorporates the effect of the energy
stored in austenite-martensite interfaces and its corresponding contribution to the transformation driving
force. In the derivation of the transformation driving force, we study the relations between the internal,
Helmholtz and Gibbs energies in terms of state variables that characterize the transformation process.

As a general scheme of notation, scalars are written as lightface italic letters (e.g., a, b), vectors as
boldface lowercase letters (e.g., a, b), second-order tensors as boldface uppercase letters (e.g., A, B) and
fourth-order tensors as blackboard bold capital letters (e.g., A; B). For vectors and tensors, Cartesian
components are denoted as ai, Aij and Aijkl. The action of a second-order tensor on a vector is denoted
as Ba (in components Bijaj, with implicit summation on repeated indices) and the action of a fourth-order
tensor on a second-order tensor is denoted as BA (i.e., BijklAkl). Composition of two second-order tensors is
denoted as AB (i.e., AijBjk). The tensor product between two vectors is denoted as a � b (i.e., aibj). All inner
products are denoted with a single dot between the quantities, i.e., a Æ b for vectors and A Æ B for tensors (in
components, aibi and AijBij respectively). A material time derivative is denoted by a superimposed dot.
Additional notation is introduced where required.
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The paper is organized as follows: The various length scales as well as the kinematic analysis are devel-
oped in Section 2. Based on taking successive averages across length scales, we derive an expression for the
mesoscale effective stiffness tensor in Section 3. In Section 4 we explore the restrictions imposed by the sec-
ond law of thermodynamics in order to identify the transformation driving force. We construct a particular
form of the Helmholtz energy and derive an expression for the driving force in Section 5. In addition, we
specify the transformation kinetics and summarize the main equations of the model. The response of a
phase-changing material under basic loading conditions is illustrated in Section 6. Some closing remarks
are provided in Section 7.
2. Kinematics for martensitic transformations

The martensitic transformation model presented here is intended for a single crystal of austenite, which
can be found in a fully-austenitic alloy or in an isolated austenitic grain in a multiphase steel, see Figs. 1a
and b, respectively. Upon application of mechanical and/or thermal loadings, the austenite can transform
into martensite. Martensitic transformations are classified as displacive, i.e., they are characterized by a dif-
fusionless, coordinated rearrangement of the crystalline lattices. To analyze this transformation, we first
describe the kinematics. This description is done at different length scales that are connected to each other
through sequential averaging procedures.

2.1. Scales of observation and kinematic assumptions

In the present model we focus attention on thin-plate twinned martensite as a product phase. Thin-plate
martensite has straight interfaces with the adjacent austenite and has a very uniform twinned substructure,
where the twins extend across the plate thickness. This type of martensite is commonly observed in shape
memory alloys (James and Hane, 2000) as well as in multiphase carbon steels with a local carbon concen-
tration above 1.4 wt.% and a martensitic transformation temperature (Ms) below room temperature (Rao
and Rashid, 1997; Sugimoto et al., 1997).

The substructures in thin-plate martensite are shown schematically in Fig. 2. Fig. 2a, which corresponds
to the internal structure shown in Fig. 1, is often on the order of a few microns. In addition, we distinguish
three finer scales of interest. For future reference, the four scales are called the mesoscale, the upper micro-

scale, the lower microscale and the lattice scale. As a result of mechanical loading, regions of martensite may
appear inside the austenitic island shown in Fig. 2a (mesoscale). At a smaller scale of observation, these
martensitic regions often emerge as plates with specific orientations, see Fig. 2b (upper microscale). Further
magnification of a martensitic plate reveals a layered structure, as shown in Fig. 2c (lower microscale). This
layered structure consists of tetragonal martensite,1 which is shown at the lattice scale in Fig. 2d. We for-
mally treat the deformation inside an isolated grain of austenite as thermoelastic. The model is thus in-
tended for stress-assisted martensitic transformations, rather than for the so-called strain-induced
martensitic transformations that are characterized by plastic deformations in the austenitic parent phase.

2.2. Transformation kinematics: from lattice to lower microscale

At the lattice scale, martensite is found as one out of three possible tetragonal variants.2 The word
‘‘variant’’ is used here according to notions of group theory, see e.g., James and Hane (2000). The Bain
1 In a cubic to tetragonal transformation.
2 Since the point group of a cubic lattice of austenite is composed of 24 rotations and the point group of a tetragonal lattice of

martensite contains 8 rotations, it follows that there are 24/8 = 3 distinct variants of tetragonal martensite.
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correspondence model is illustrated in Fig. 3 for the case of a face-centered cubic (FCC) austenitic lattice
and a body-centered tetragonal (BCT) martensitic lattice. The transformation is interpreted, according to
Bain�s model, as a stretch along a direction perpendicular to a face of the cubic unit cell and an equibiaxial
stretch in a plane parallel to that face. The transformation from austenite into one variant of martensite is
illustrated in the inset of Fig. 3. The cubic lattice parameter (austenite) is denoted as aA and the tetragonal
lattice parameters (martensite) are denoted as aM and cM. Adopting the Cauchy–Born hypothesis (see, e.g.,
Zanzotto, 1996) to relate the deformation of a discrete lattice to the kinematics of a continuum, the prin-
cipal stretches atr and btr for the austenite to martensite transformation can be obtained as
atr ¼
ffiffiffi
2
p aM

aA
; btr ¼

cM

aA
; ð1Þ
as shown schematically in the inset of Fig. 3.
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Fig. 3. Martensitic variants, lattice parameters and basis vectors. The three tetragonal variants are shown in the original cubic lattice
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lattices are shown).
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For the lattice of austenite, we use an orthonormal basis feA
i g

3
i¼1 aligned with the cubic axes of the

untransformed austenite. Introduce for each of the three variants a basis feðbÞi g
3
i¼1 (b = 1, 2, 3) and define

three rotation tensors RðbÞ� such that
e
ðbÞ
i ¼ RðbÞ� eA

i . ð2Þ

The components of the rotations RðbÞ� , in the austenite tensor basis feA

i � eA
j g

3
i;j¼1, are given by
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� �
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. ð3Þ
The stretch tensors U(b) that characterize the transformation from austenite to variant b = 1, 2, 3 of mar-
tensite are
U ðbÞ ¼ atrI þ ðbtr � atrÞeðbÞb � e
ðbÞ
b ð4Þ
with I the identity tensor. As can be seen from the spectral decomposition of the stretch tensor given by (4),
the basis vectors feðbÞi g

3
i¼1 also correspond to the eigenvectors of U(b). The ordering of the eigenvectors is

chosen such that e
ðbÞ
b corresponds to the eigenvalue btr. The two other eigenvectors can be chosen arbitrarily

in the plane perpendicular to e
ðbÞ
b . A specific choice is given by Eqs. (2) and (3). It can be observed from

Fig. 3 that e
ðbÞ
b ¼ eA

b . Combining this relation with (4) leads to the following expression for the transforma-
tion stretch tensor of variant b:
U ðbÞ ¼ atrI þ ðbtr � atrÞeA
b � eA

b . ð5Þ
Although at the lattice scale martensite appears as one of the three variants shown in Fig. 3, at larger length
scales, the basic variants are often arranged in specific twinned structures, which are discussed in the next
subsection.
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2.3. Transformation kinematics: from lower to upper microscale

Coherent interfaces between martensite and austenite are often achieved via specific pairwise arrange-
ments of twin-related variants of martensite (i.e., twinned martensite). Each such special arrangement of
twinned martensite will be referred to as a transformation system. In cubic to tetragonal transformations
there are 24 distinct transformation systems (Hane and Shield, 1998) that will be henceforth enumerated
with the index a = 1, . . . ,N, where N = 24. Each transformation system consists of two variants of martens-
ite in specific proportions and orientations. An example of a transformation system is shown in Fig. 4,
which has been constructed using the theory of martensitic transformations (Wechsler et al., 1953; Ball
and James, 1987). It is important to point out that, in this theory, all phases (sufficiently away from inter-
faces) are assumed to be stress free. As a working assumption, we will consider that the main characteristics
of the twins persist under the presence of an applied stress (e.g., we neglect effects such as detwinning during
loading).

Consider a transformation system a where on one side of the interface there is austenite and on the other
side there is twinned martensite composed of variants b1 and b2, layered in volumetric proportions kða;b1Þ

and kða;b2Þ, with kða;b1Þ þ kða;b2Þ ¼ 1. If one assumes a stress-free state, the deformation gradient for austenite
is FA

tr ¼ I and the deformation gradients for the two martensitic variants are
Fig. 4.
The ve
compu
F
ða;b1Þ
tr ¼ Qða;b1ÞU ðb1Þ; F

ða;b2Þ
tr ¼ Qða;b2ÞU ðb2Þ; ð6Þ
where U ðb1Þ and U ðb2Þ are the transformation stretch tensors introduced in (4) and Qða;b1Þ and Qða;b2Þ are rota-
tions of the variants with respect to the lattice of austenite. The average deformation gradient F

ðaÞ
tr of the

transformation system a is given by
F
ðaÞ
tr ¼ kða;b1ÞF

ða;b1Þ
tr þ kða;b2ÞF

ða;b2Þ
tr . ð7Þ
A condition that needs to be satisfied by a coherent interface is that the difference between the deformation
gradients on each side of the interface has to be a rank-one tensor. This is the Hadamard jump condition
Twinned martensite and austenite. The small spheres correspond to the corner locations of the cubic and tetragonal lattices.
ctor m is normal to the habit plane and the vector b represents the average shape strain. The locations of the lattice corners were
ted following the theory of Ball and James (1987).
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for deformation gradients which, for an austenite/twinned martensite interface, leads to the habit plane

equation expressed as (James and Hane, 2000)
F
ðaÞ
tr � FA

tr ¼ �R
ðaÞ

kða;b1ÞRðaÞU ðb1Þ þ kða;b2ÞU ðb2Þ
� �

� I ¼ bðaÞ �mðaÞ. ð8Þ
In (8), m(a) is the unit vector normal to the habit plane (interface between austenite and twinned martensite),
b(a) is the (average) shape strain vector and the rotations R(a) and �R

ðaÞ
are defined as
RðaÞ :¼ ðQða;b2ÞÞTQða;b1Þ; �R
ðaÞ

:¼ Qða;b2Þ. ð9Þ

As can be noted from (8), the stress-free twinned martensite in the transformation system a has an average
deformation gradient equal to
F
ðaÞ
tr ¼ I þ cðaÞ; ð10Þ
where
cðaÞ :¼ cTb̂
ðaÞ �mðaÞ. ð11Þ
In (11) the shape strain magnitude is cT := k b(a)k and the normalized shape strain vector is b̂
ðaÞ

:¼ bðaÞ=cT.
One can show that for all transformation systems a the shape strain magnitude is the same.

The procedure to compute the deformation gradient F
ðaÞ
tr is as follows: the principal stretches atr and btr

are calculated from (1) and the transformation stretch tensors in the lattice basis of austenite are obtained
from (5). Subsequently, this information is used as input to the algorithm outlined by Hane and Shield
(1998, 1999) to compute the vectors b(a) and m(a) for all a = 1, . . . , 24. Additionally, the same algorithm pro-
vides the twin volume fractions kða;b1Þ and kða;b2Þ and the rotation tensors R(a) and �R

ðaÞ
; these parameters will

be used in Section 3 for estimating the effective elastic properties of the twinned martensite. Observe that,
since the rotations R(a) and �R

ðaÞ
are computed, there is no need to assume a priori an orientation relation-

ship such as Kurdjumov-Sachs or Nishiyama-Wassermann (Christian, 2002).
Up to this point we have only considered the transformation kinematics. In the next section we consider

the total deformation by introducing an elastic contribution. Following the viewpoint of Jannetti et al.
(2004), the mesoscale deformation gradient is related to a volume average of the deformation gradients
associated with each phase in a representative volume element.

2.4. Elastic and transformation kinematics: from upper microscale to mesoscale

In order to connect the kinematic descriptions from the upper microscale to the mesoscale, let us con-
sider a representative volume element (RVE) at the upper microscale level, shown in Fig. 2b. In this setting,
we construct a reference configuration from the region occupied by the undistorted austenite with a given
crystal lattice orientation. The reference configuration for the upper microscale kinematics is inherited from
the mesoscale, as depicted in Fig. 5. Further, let x be the location of a mesoscale material point in the ref-
erence configuration and let Yx be the corresponding RVE centered at x. By adopting two kinematic
assumptions, we will show below that the mesoscale deformation gradient F = F(x, t) at point x and time
t can be decomposed as
F ¼ FeF tr; ð12Þ

where Fe and Ftr represent the elastic and the transformation parts of the deformation gradient, respec-
tively. This decomposition is equivalent to that used in large deformation plasticity, i.e., F = FeFp (Lee,
1969; Hill and Rice, 1972; Havner, 1973), where the transformation deformation gradient Ftr plays a similar
role as the plastic deformation gradient Fp. In connection with the decomposition (12), we introduce an
intermediate configuration (unstressed) and a current configuration as shown in Fig. 5. The vectors y = Ftrx
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and z = Fey correspond to the location of the center of Yx in the intermediate and the current configura-
tions,3 respectively, where Ftr = Ftr(x, t) and Fe = Fe(y, t).

At the upper microscale level, we denote by x* the location of a microscale material point inside Yx. As
shown in Fig. 5, the deformation due to the martensitic transformation is characterized by a function ŷ
whereas the elastic deformation is characterized by a function ẑ. To make a connection with the mesoscale
kinematics, we consider deformations such that the boundary of Yx is mapped in accordance with
3 Str
have a
y� ¼ F trx
�; z� ¼ Fey

� 8x� 2 oY x; ð13Þ

where as before, Ftr = Ftr(x, t) and Fe = Fe(y, t).

We note that the inelastic deformation at the microscale ŷ should be accompanied by a small elastic con-
tribution in order to maintain coherent interfaces between austenite and twinned martensite as well as
ictly speaking the vectors y and z are given by y = Ftrx + c and z = Fey + d but for simplicity and without loss of generality we
ssumed that the rigid body translations c and d are zero.
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coherent interfaces between different twins (Ball and James, 1987). Nonetheless, we assume that most of the
elastic deformation is characterized by ẑ. We will a posteriori take into account the effect of local elastic
deformations at the interfaces by means of a surface energy contribution (see Section 5).

We now consider subregions inside Yx where martensite nucleates. We denote as Y ðaÞx ðtÞ the subregion
occupied by the transformation system a at time t. Observe that these subregions are defined in the refer-
ence configuration even though the martensite is physically present in the current configuration. We reserve
a = 0 for the subregion occupied by untransformed austenite and denote the volume of Yx as jYxj. In view
of (12) and (13), and applying the divergence theorem, it follows that
Fðx; tÞ ¼ 1

jY xj

Z
Y x

rx� ẑðŷðx�; tÞ; tÞdvx� .
Since Y x ¼
SN

a¼0Y ðaÞx ðtÞ and using the chain rule, the above relation can be expressed as
Fðx; tÞ ¼ 1

jY xj
XN

a¼0

Z
Y ðaÞx ðtÞ

ry� ẑðy�; tÞrx� ŷðx�; tÞdvx� ; ð14Þ
where y� ¼ ŷðx�; tÞ and N is the total number of transformation systems as defined in Section 2.3. We now
assume that the transformation deformation gradient is constant in each subregion Y ðaÞx ðtÞ and equal to the
transformation deformation gradient of the corresponding transformation system a, i.e.,
rx� ŷðx�; tÞ ¼ F
ðaÞ
tr 8x� 2 Y ðaÞx ðtÞ; a ¼ 0; . . . ;N ; ð15Þ
where F
ðaÞ
tr is given by (10). Eq. (14), under assumption (15), becomes
Fðx; tÞ ¼ 1

jY xj
XN

a¼0

1

J ðaÞtr

Z
Y ðaÞy ðtÞ

ry� ẑðy�; tÞdvy�

 !
F
ðaÞ
tr ; ð16Þ
where Y ðaÞy ðtÞ is the region occupied by Y ðaÞx ðtÞ in the intermediate configuration and
J ðaÞtr :¼ det F
ðaÞ
tr ð17Þ
for each a. Eq. (16) can be expressed as
F ¼
XN

a¼0

nðaÞFðaÞe F
ðaÞ
tr ; ð18Þ
where
FðaÞe :¼ 1

jY ðaÞy ðtÞj

Z
Y ðaÞy ðtÞ

ry� ẑðy�; tÞdvy� ð19Þ
is the average elastic deformation gradient in each subregion Y ðaÞy ðtÞ and
nðaÞ ¼ nðaÞðx; tÞ :¼ 1

jY xj
jY ðaÞy ðtÞj

J ðaÞtr

¼ jY
ðaÞ
x ðtÞj
jY xj

. ð20Þ
The parameter n(a) corresponds to the mesoscale volume fraction of the subregions Y ðaÞx ðtÞ occupied by the
transformation system a (with a = 0 representing austenite). Observe that these volume fractions are mea-
sured in the reference configuration. Since we assume that austenite can only transform into one or more
transformation systems a (with 1 6 a 6 24), the volume fractions must satisfy the following condition:
nð0Þ ¼ 1�
XN

a¼1

nðaÞ. ð21Þ
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In addition to the kinematic assumption (15), we introduce a second kinematic assumption, namely that all
average elastic deformation gradients FðaÞe are equal to a common value Fe, i.e.,
FðaÞe ¼ Fe; a ¼ 0; . . . ;N . ð22Þ
Enforcing this assumption, the decomposition (12) follows from (18) with the transformation deformation
gradient given by
F tr ¼
XN

a¼0

nðaÞFðaÞtr . ð23Þ
In view of (10), (21) and (23), with c(0) = 0 for austenite, the transformation deformation gradient can be
expressed as
F tr ¼ I þ
XN

a¼1

nðaÞcðaÞ. ð24Þ
The present model has some formal similarities with crystal plasticity models where transformation systems
play an equivalent role to slip systems. However, as opposed to crystal plasticity, c(a) is the tensor product
of two nonorthogonal vectors b(a) and m(a), where the nonorthogonality is related to the nonzero volumetric
change caused by the transformation. We note that the material time derivative of Ftr is given by
_F tr ¼
XN

a¼1

_n
ðaÞ

cðaÞ. ð25Þ
The above kinematic description is different than the one adopted by Thamburaja and Anand (2001) and
Anand and Gurtin (2003), which is based on an analogy with crystal plasticity. The rate of volume fraction
_n
ðaÞ

in (25) will be obtained by means of a kinetic law, as further explained in Sections 4 and 5.
3. Stress and effective elastic stiffness in austenite and martensite

To determine the stress and the effective elastic stiffness at the mesoscopic level, we assume for all scales
that the second Piola–Kirchhoff stress in the intermediate configuration is related linearly to the elastic
Green–Lagrange strain tensor. The relation between the stress and elastic strain measures at each scale
is given in terms of a corresponding effective elasticity tensor. We start from the lower microscale and ex-
ploit information about the twinned martensite to determine the effective stiffness at the upper microscale.
Subsequently, we average the constitutive relations at the upper microscale to determine the stress and
effective stiffness at the mesoscale.

3.1. Effective stiffness: from lower- to upper microscale

Consider an RVE at the lower microscale as shown in Fig. 2c. RVEs at that level might be composed of
either austenite or one of the transformation systems a. Suppose first that the RVE corresponds to a region
occupied by the transformation system a composed of variants b1 and b2 of martensite layered in propor-
tions kða;b1Þ and kða;b2Þ. Fig. 2c corresponds schematically to the case of an RVE occupied by one of the trans-
formation systems.
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Assuming that the elastic deformation in both martensitic variants b1 and b2 is the same,4 then the effec-
tive elastic stiffness CðaÞ for the transformation system a is
4 We
stress (
CðaÞ ¼ kða;b1ÞEðb1Þ þ kða;b2ÞEðb2Þ; a ¼ 1; . . . ;N ; ð26Þ
where EðbÞ denotes the elasticity tensor of variant b at the lower microscale level. As mentioned in Section
2.3, the volume fractions kða;b1Þ and kða;b2Þ can be computed from the algorithm outlined in Hane and Shield
(1998). We note that the volume fractions k(a,b) and the stiffnesses EðbÞ are measured in the intermediate con-
figuration. If the RVE at the lower microscale contains only austenite (a = 0) then we have
Cð0Þ ¼ EA; ð27Þ
where the tensor EA represents the elastic properties of austenite.
For numerical implementations of the model, it is convenient to express the components of CðaÞ in the

lattice basis of austenite feA
i g

3
i¼1 introduced in Section 2.2. To this end, we need the orientations of the lat-

tices of variants b1 and b2 in the transformation system a with respect to the lattice of austenite. These can

be determined as follows: Let ê
ða;b1Þ
i and ê

ða;b2Þ
i be orthonormal unit vectors aligned with the tetragonal axes

of the variants b1 and b2 after the transformation. By convention, set ê
ða;b1Þ
b1

and ê
ða;b2Þ
b2

to coincide with the c-

axis of the tetragonal lattice after transformation of variants b1 and b2 respectively. Fig. 6 shows a two-
dimensional schematic representation of the basis vectors after transformation. Since the transformation
deformation gradient related to each variant is given by (6), the variants� basis vectors after transformation,

i.e., ê
ða;b1Þ
i and ê

ða;b2Þ
i , are related to those before transformation, i.e., e

ðb1Þ
i and e

ðb2Þ
i , as follows:
ê
ða;b1Þ
i ¼ Qða;b1Þe

ðb1Þ
i ; ê

ða;b2Þ
i ¼ Qða;b2Þe

ðb2Þ
i ; ð28Þ
where, from (9), the rotations are Qða;b1Þ ¼ �R
ðaÞ

RðaÞ and Qða;b2Þ ¼ �R
ðaÞ

. The rotations R(a) and �R
ðaÞ

can be
computed from the algorithm reported by Hane and Shield (1998). Choosing the lattice basis of austenite

as a common reference basis, and in view of (2) and (28), the vectors ê
ða;b1Þ
i and ê

ða;b2Þ
i can be expressed as
ê
ða;b1Þ
i ¼ Q̂

ða;b1Þ
eA

i ; ê
ða;b2Þ
i ¼ Q̂

ða;b2Þ
eA

i ; ð29Þ
with
Q̂
ða;b1Þ ¼ �R

ðaÞ
RðaÞRðb1Þ

� ; Q̂
ða;b2Þ ¼ �R

ðaÞ
Rðb2Þ
� ; ð30Þ
where the rotations Rðb1Þ
� and Rðb2Þ

� are given by (3).
The components of EA with respect to the austenitic tensor basis feA

i � eA
j � eA

k � eA
l g

3
i;j;k;l¼1 are denoted

as ðEA
ijklÞA. For notational convenience, introduce the following convention to express the components of a

fourth-order tensor in matrix form: pairs of indices ij or kl are mapped to matrix row I and column J

according to
ij 7!I kl 7!J

11! 1; 22! 2; 33! 3; 23! 4; 13! 5; 12! 6.
With this convention, the components ðEA
ijklÞA of the cubic austenite can be displayed as a 6 · 6 matrix of

components of the form ðEA
IJ ÞA as follows:
note that the assumption of uniform elastic strain is not in contradiction with the theory of Ball and James (1987), where the
and therefore the elastic strain) is taken uniformly as zero in the martensitic variants.
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Fig. 6. Two-dimensional schematic representation of the basis vectors fêða;1Þ1 ; ê
ða;1Þ
2 g and fêða;2Þ1 ; ê

ða;2Þ
2 g of the two tetragonal variants in a

transformation system a. By convention, the vector ê
ða;bÞ
b is aligned with the c-axis of variant b. The habit plane normal is m(a), the

normalized shape vector is b̂
ðaÞ

and the variants� proportions are k(a,1) and k(a,2).
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½EA�A ¼

jA
1 jA

2 jA
2

jA
2 jA

1 jA
2

jA
2 jA

2 jA
1

jA
3

jA
3

jA
3

0
BBBBBBBB@

1
CCCCCCCCA

A

; ð31Þ
where jA
1 :¼ ðEA

1111ÞA ¼ ðEA
2222ÞA ¼ ðEA

3333ÞA, jA
2 :¼ ðEA

1122ÞA ¼ ðEA
1133ÞA ¼ ðEA

2233ÞA, jA
3 :¼ ðEA

1212ÞA ¼
ðEA

1313ÞA ¼ ðEA
2323ÞA and the other components are found by major and minor symmetry. Components

not displayed in the matrix are zero.
The components ðEðb1Þ

ijkl Þða;b1Þ and ðEðb2Þ
ijkl Þða;b2Þ of the tensors Eðb1Þ and Eðb2Þ (stiffness tensors of variants b1

and b2 in a system a) are known with respect to the tensor bases fêða;b1Þ
i � ê

ða;b1Þ
j � ê

ða;b1Þ
k � ê

ða;b1Þ
l g3

i;j;k;l¼1 and

fêða;b2Þ
i � ê

ða;b2Þ
j � ê

ða;b2Þ
k � ê

ða;b2Þ
l g3

i;j;k;l¼1, respectively. Using the previous conventions, the components of each

of the tetragonal martensite variants (b = 1, 2, 3) are as follows:
½Eð1Þ�ða;1Þ ¼

jM
4 jM

3 jM
3

jM
3 jM

1 jM
2

jM
3 jM

2 jM
1

jM
6

jM
5

jM
5

0
BBBBBBBB@

1
CCCCCCCCA
ða;1Þ

; ð32Þ

½Eð2Þ�ða;2Þ ¼

jM
1 jM

3 jM
2

jM
3 jM

4 jM
3

jM
2 jM

3 jM
1

jM
5

jM
6

jM
5

0
BBBBBBBB@

1
CCCCCCCCA
ða;2Þ

; ð33Þ



S. Turteltaub, A.S.J. Suiker / International Journal of Solids and Structures 43 (2006) 4509–4545 4521
½Eð3Þ�ða;3Þ ¼

jM
1 jM

2 jM
3

jM
2 jM

1 jM
3

jM
3 jM

3 jM
4

jM
5

jM
5

jM
6

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
ða;3Þ

; ð34Þ
where jM
1 :¼ ðEð3Þ1111Þða;3Þ ¼ ðE

ð3Þ
2222Þða;3Þ, jM

2 :¼ ðEð3Þ1122Þða;3Þ, jM
3 ¼ ðE

ð3Þ
1133Þða;3Þ ¼ ðE

ð3Þ
2233Þða;3Þ, jM

4 ¼ ðE
ð3Þ
3333Þða;3Þ,

jM
5 :¼ ðEð3Þ1313Þða;3Þ ¼ ðE

ð3Þ
2323Þða;3Þ, jM

6 :¼ ðEð3Þ1212Þða;3Þ and the other components are found by major and minor
symmetry.

In view of (26), (29) and (30), the components of CðaÞ with respect to the austenitic tensor basis are given
by
ðCðaÞabcdÞA ¼ kða;b1Þ
X3

i;j;k;l¼1

ðEðb1Þ
ijkl Þða;b1ÞQ̂

ða;b1Þ
ai Q̂

ða;b1Þ
bj Q̂

ða;b1Þ
ck Q̂

ða;b1Þ
dl

þ kða;b2Þ
X3

i;j;k;l¼1

ðEðb2Þ
ijkl Þða;b2ÞQ̂

ða;b2Þ
ai Q̂

ða;b2Þ
bj Q̂

ða;b2Þ
ck Q̂

ða;b2Þ
dl ; a ¼ 1; . . . ;N ; ð35Þ
where Q̂
ða;b1Þ
ai and Q̂

ða;b2Þ
ai are the components of Q̂

ða;b1Þ
and Q̂

ða;b2Þ
.

3.2. Stress and effective stiffness: from upper micro- to mesoscale

We now consider an RVE at the upper microscale as shown in Fig. 2b. To estimate the effective meso-
scale elastic properties, we assume that in every point y* of the subregion Y ðaÞy ðtÞ the local deformation gra-
dient is equal to the average deformation gradient of that subregion, i.e.,
ry� ẑðy�; tÞ ¼ FðaÞe 8y� 2 Y ðaÞy ðtÞ; ð36Þ
where the average elastic deformation gradient FðaÞe is given by (19). We note that the above assumption is
strong; however it is used only to estimate the stiffness and it is not part of the general kinematic description
formulated in the previous section. In connection with the average elastic deformation gradient FðaÞe , we
introduce an elastic Green–Lagrange strain in the intermediate configuration, i.e.,
EðaÞe :¼ 1

2
ððFðaÞe Þ

T
FðaÞe � IÞ. ð37Þ
Furthermore, we adopt at the upper microscale a linear relation between the stress and the elastic strain.
Thus, the average second Piola–Kirchhoff stress (work conjugate of EðaÞe ) in each subregion Y ðaÞy ðtÞ in the
intermediate configuration is given by
SðaÞ ¼ CðaÞEðaÞe ; ð38Þ

where CðaÞ is a fourth-order elasticity tensor given by (26) (or by (27) for a = 0). We remark that the
assumption used to obtain CðaÞ in (26) (i.e., uniform elastic strain in each martensitic variant) is consistent
with (36). Let S = S(y, t) be the second Piola–Kirchhoff stress in the intermediate configuration at the
mesoscale. The tensor S can be computed as the volume average of the tensors S(a), which, in view of
(38), can be expressed as
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Sðy; tÞ ¼ 1

jY yj
XN

a¼0

jY ðaÞy ðtÞjS
ðaÞ ¼ 1

jY yj
XN

a¼0

jY ðaÞy ðtÞjC
ðaÞEðaÞe . ð39Þ
Combining (37) and (39) with the kinematic assumption (22) provides the second Piola–Kirchhoff stress in
the intermediate configuration at the mesoscale, i.e.,
S ¼ CEe; ð40Þ
where the elastic Green–Lagrange strain at the mesoscale is defined as
Ee :¼ 1

2
FT

e Fe � I
� �

; ð41Þ
and the effective properties C are given by
C ¼
XN

a¼0

uðaÞCðaÞ; uðaÞ :¼
jY ðaÞy ðtÞj
jY yj

. ð42Þ
The ratio u(a) = jYy
(a)(t)j/jYyj represents the volume fraction of the transformation system a in the interme-

diate configuration. To obtain a formula that involves the volume fractions n(a) defined in (20), we first note
that,
uðaÞ ¼
jY ðaÞy ðtÞj
jY yj

¼ det F
ðaÞ
tr

det F tr

nðaÞ; ð43Þ
where F
ðaÞ
tr is given by (10) and Ftr by (24). Following Ball and James (1987), one can show that for all trans-

formation systems a = 1, . . . ,N, the volumetric change dT due to transformation is the same, i.e., by (10)
and (11),
det F
ðaÞ
tr ¼ 1þ dT with dT :¼ bðaÞ �mðaÞ. ð44Þ
For a = 0 (austenite), we have det F
ð0Þ
tr ¼ 1. To guarantee that the volume fractions u(a) in the intermediate

configuration satisfy the relation
PN

a¼0u
ðaÞ ¼ 1, and in view of (10), (11), (21), (43) and (44), the Jacobian Jtr

of the transformation deformation gradient Ftr is approximated as follows:
J tr :¼ det F tr � 1þ ð1� nð0ÞÞdT. ð45Þ

Alternatively, the approximation on the right side of (45) can be obtained by a direct calculation of Jtr

where the non-linear terms in the volume fractions can be neglected since they remain small over the entire
range 0 6 n(0)

6 1 for typical values of dT and cT. From (21), (42)–(44) it follows that the effective stiffness at
the mesoscale is
C ¼ 1

J tr

nð0ÞCð0Þ þ
XN

a¼1

1þ dT

J tr

	 

nðaÞCðaÞ ¼ 1

J tr

1�
XN

a¼1

nðaÞ
 !

CA þ ð1þ dTÞ
XN

a¼1

nðaÞCðaÞ
( )

; ð46Þ
where we set CA :¼ Cð0Þ as the elastic properties of the austenite given in (27). Note that for the special case
where the properties of the martensite are equal to those of austenite, i.e., CðaÞ ¼ CA, the approximation
(45) guarantees that the effective stiffness is equal to CA. Although the averaging scheme used here for deriv-
ing the elastic properties is straightforward (i.e., uniform elastic deformation), we note that in the above
procedure we incorporate two effects that are commonly neglected in martensitic transformation models:
(i) the tensor C preserves information at the mesoscale regarding the proportion and orientation of the indi-
vidual martensitic variants for each transformation system a and (ii) the tensor C incorporates the influence
of volumetric changes due to the transformation when the volume fractions are measured in the reference
configuration.



S. Turteltaub, A.S.J. Suiker / International Journal of Solids and Structures 43 (2006) 4509–4545 4523
4. Thermodynamic formulation

The transformation from austenite to martensite is a thermodynamically irreversible process since en-
ergy is dissipated during transformation. To complete the transformation model, we introduce the thermal
variables and balance principles and we derive an expression for the dissipation where the influence of the
transformation systems is explicitly taken into account. In addition, the evolution of the transformation
deformation gradient Ftr needs to be determined. As we shall see in this section, both the evolution of
Ftr and the dissipation depend on a quantity known as the transformation driving force.

Following the formalism proposed by Onsager for irreversible thermodynamics (see, e.g., Callen, 1985),
for each physical phenomenon ‘‘k’’ where energy is dissipated, a pair of conjugate quantities can be iden-
tified, termed generically affinities Fk and fluxes Jk. The corresponding contribution to the dissipation is
equal to the product FkJk. Furthermore, a relation between Fk and Jk is required in order to fully char-
acterize the constitutive behavior of a material. For phase transformations, the driving force is an affinity
and its constitutive connection to the corresponding flux is known as a kinetic relation. Mesoscale kinetic
relations can in principle be obtained by homogenization of microscale kinetic laws. Bhattacharya (1999)
homogenized a kinetic law for a one-dimensional model of a material undergoing a phase transformation.
However, in a three-dimensional setting the homogenization procedure is complex and still a rather open
problem. Thus, for simplicity, we propose a kinetic relation directly at the mesoscale. From the thermody-
namic framework presented in this section we will identify the conjugated variables that characterize the
mesoscale kinetic law and its specification will be given in Section 5.

4.1. Thermodynamic quantities

We introduce the following thermal quantities defined in the reference configuration: let h be the (abso-
lute) temperature, g the entropy density per unit mass, q the heat flux per unit area and r the body heat
source per unit volume. In addition, let U be the entropy flux per unit area and s the entropy source per
unit volume, given by (Liu, 2002)
U ¼ q

h
; s ¼ r

h
. ð47Þ
In analogy with the kinematic relations (12) and (24), we introduce equivalent expressions for the entropy
density. Materials can coexist in two different phases at the same temperature but at different entropies (see,
e.g., Callen, 1985). The analogous situation for mechanical fields is that two different phases of a material
can coexist at the same stress but with different deformation gradients. Hence, within a thermodynamic
framework the entropy density has a similar role as the deformation gradient, while the temperature is anal-
ogous to the stress. In analogy with the entropy decomposition used by Simo and Miehe (1992) for ther-
moplastic behavior, we propose the following decomposition of the total entropy density:
g ¼ ge þ gtr; ð48Þ
where ge represents the conservative part of the entropy density and gtr is the transformation entropy density.
In order to provide an expression for gtr, we define the transformation temperature hT as the temperature at
which austenite can transform isothermically into a specific system a of martensite at zero stress, without

dissipation and in the absence of an internal energy barrier. We remark that in metals and alloys the actual
temperature at which transformation occurs is usually different from hT, as a result of the presence of an
internal energy barrier. Furthermore, define the latent heat kðaÞT of system a at the transformation temper-
ature hT and at zero stress as the heat required per unit mass during a complete transformation from aus-
tenite to system a of martensite. Consistent with the definition of kðaÞT , we propose the following expression
for the transformation entropy density:
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gtr :¼
XN

a¼1

nðaÞ
kðaÞT

hT

. ð49Þ
Eqs. (48) and (49) are the thermal analogues of (12) and (24) respectively. The transformation entropy gtr

represents the entropy change as n(a) changes during an isothermal phase transformation at the transforma-
tion temperature (and at zero stress). The analogous situation in the mechanical framework is that Ftr mea-
sures changes in F only at zero stress (and at the transformation temperature). Since the entropy of
austenite (high-temperature phase) is higher than the entropy of martensite (low-temperature phase), kðaÞT

in (49) is negative. We note that the latent heat at temperatures other than hT needs to include changes
in ge as well.5

4.2. Thermodynamic restrictions and transformation driving force

In their work on propagating phase boundaries, Abeyaratne and Knowles (1991) identified the velocity
of an interface as a flux. By analogy, a natural choice at the mesoscopic level for the flux J

ðaÞ
tr , associated to

a phase transformation from austenite to system a of martensite, is the time rate of change of the volume

fraction _n
ðaÞ

of the region occupied by the transformation system a. The corresponding affinity (i.e., the
transformation driving force, henceforth denoted as f (a)) can be identified from the expression for dissipa-
tion following Onsager�s approach. In addition, for heat conduction, the flux is the entropy flux (i.e.,
Jq ¼ U) and, as shown below, the corresponding affinity is (minus) the temperature gradient (i.e.,
Fq ¼ �rh). In this section we derive an expression for the dissipation and subsequently use the second
law of thermodynamics in order to obtain constitutive restrictions and a definition for the driving force f (a).

Let � be the internal energy density per unit mass,6 P the first Piola–Kirchhoff stress in the reference con-
figuration, bf the body force per unit reference volume, q0 the mass density in the reference configuration
and a the acceleration of a material point x. Assuming that all field quantities at the mesoscale are contin-
uously differentiable, the balance of linear momentum, localized per unit reference volume, is given by
divP þ bf ¼ q0a.
The balance of total energy, combined with the balance of linear momentum and localized per unit refer-
ence volume, can be expressed as
q0 _�þ ðdivq� rÞ � P � _F ¼ 0; ð50Þ
where the term P � _F represents the internal power. The entropy rate C per unit referential volume is
C :¼ q0 _gþ ðdivU� sÞ ¼ q0 _gþ 1

h
divq� rð Þ � 1

h2
q � rh; ð51Þ
where we have used (47). Defining the total dissipation density D per unit reference volume as
D :¼ Ch ð52Þ

and combining it with (47), (50) and (51), the dissipation can be expressed as
D ¼ �q0 _�þ q0h _gþ P � _F �rh �U. ð53Þ
specific expression will be shown at the end of Section 5.3.
energy densities as well as the entropy density are defined here per unit mass and not per unit volume, as often encountered in
rature. The advantage of the present choice is that otherwise we need to define one such density per configuration.
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With the goal of deriving an expression for the transformation driving force, we analyze each term in (53) in
more detail. Using the kinematic assumptions in equations (12) and (24), we may express the internal power as
P � _F ¼ PFT
tr � _Fe þ

XN

a¼1

sðaÞm
_n
ðaÞ
; ð54Þ
where sðaÞm is given by
sðaÞm :¼ FT
e P � cðaÞ; a ¼ 1; . . . ;N ð55Þ
and is referred to as the resolved stress for the transformation system a. We note that the thermal deforma-
tion gradient has been neglected (i.e., Fth’I in the decomposition (12)) and therefore does not appear in
(54). From (48) and (49) it follows that the second term in (53) is
q0h _g ¼ q0h _ge þ
XN

a¼1

sðaÞth
_n
ðaÞ
; ð56Þ
where sðaÞth is given by
sðaÞth :¼ q0h
kðaÞT

hT

; a ¼ 1; . . . ;N ð57Þ
and can be interpreted as the thermal analogue of the resolved stress sðaÞm given in (55).
We now turn our attention to the internal energy density �, and its time derivative appearing in (53). We

propose as mesoscopic state variables the elastic deformation gradient Fe, the conservative part of the en-
tropy density ge and the volume fractions n(a) of the transformation systems a = 1, . . . ,N. In view of (12),
(24), (48) and (49), it is also possible to use F and g as variables for the internal energy density; however in
that case the expression for the internal energy becomes cumbersome. As mentioned previously, the dissi-
pative behavior is characterized by relations between affinities and fluxes. In the present model, the fluxes
are _n

ðaÞ
and U. The classical procedure is to include all variables in all constitutive assumptions without a

priori discarding any of them. Consequently, we assume that the internal energy density depends, in addi-

tion to the state variables, on the fluxes _n
ðaÞ

and U, i.e.,
� ¼ ��ðFe; ge; n; _n;UÞ; ð58Þ

where, for notational convenience, we use a semi-colon to distinguish the state variables from the fluxes.
Further, we have collected the volume fractions n(a), with a = 1, . . . ,N, in a vector n as follows:
n :¼ fnð1Þ; . . . ; nðNÞg.

In addition to the internal energy �, the dependent variables are the first Piola–Kirchhoff stress in the ref-
erence configuration P, the temperature h and the affinities Fq and F

ðaÞ
tr associated with heat conduction

and phase transformations respectively. We recall that these affinities are (minus) the temperature gradient
�$h and the transformation driving force f(a), respectively, as introduced at the beginning of this section.
Consistent with the assumption (58), we suppose that all dependent variables (i.e., P, h, �$h and f(a)) de-
pend on all the independent variables (i.e., Fe; ge; n;

_n and U).
Combining (53), (54), (56) and (58), the dissipation density can be expressed as
D ¼ PFT
tr � q0

o��

oFe

	 

� _Fe þ q0 h� o��

oge

	 

_ge þ

XN

a¼1

sðaÞm þ sðaÞth � q0

o��

onðaÞ

	 

_n
ðaÞ � rh �U

�
XN

a¼1

q0

o��

o _n
ðaÞ

 !
€n
ðaÞ � q0

o��

oU
� _U. ð59Þ
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The second law of thermodynamics, in the form of the Clausius-Duhem inequality, indicates that in any
thermomechanical process the entropy rate density is non-negative, i.e., C P 0. Since C ¼ D=h and
h > 0, this is equivalent to
D P 0;
which is the dissipation inequality. Following the procedure of Coleman and Noll (1963), the terms in (59)
that are multiplied by the rates _Fe, _ge, €n and _U must vanish. This follows from the assumption that these
terms do not depend on the corresponding rates and the fact that, if these terms were not equal to zero, one
could specify a process where the dissipation is negative. Consequently, it follows that
P ¼ q0

o��

oFe

F�T
tr ; h ¼ o��

oge

ð60Þ
and that the internal energy density does not depend on the fluxes _n or U, which reduces (58) to
� ¼ ��ðFe; ge; nÞ. ð61Þ

In (61), we use the same symbol �� as in (58) to denote the internal energy density, although henceforth we
only view it as a function of the state variables Fe, ge and n.

The remaining non-zero terms in (59) correspond to the dissipation due to heat conduction, i.e.,
Dq :¼ �rh �U ð62Þ

and the dissipation due to the phase transformation, i.e.,
Dtr :¼
XN

a¼1

f ðaÞ _n
ðaÞ
; ð63Þ
where
f ðaÞ :¼ sðaÞm þ sðaÞth � q0

o��

onðaÞ
. ð64Þ
Following the terminology of Onsager (see also Abeyaratne and Knowles (1990) for the specific case of
phase transformations), the transformation dissipation density in (63) is identified as a product of an affin-
ity times a flux. The affinity f(a) is interpreted as the transformation driving force of the corresponding trans-
formation system a. From (62), we confirm that for heat conduction the affinity is �$h and the flux is U.

From (59), (60), (62) and (63), the dissipation inequality can be written as
D ¼ Dq þDtr P 0. ð65Þ

However, it is assumed that the inequalities Dtr P 0 and Dq P 0 hold independently of each other, and thus
Dtr ¼
XN

a¼1

f ðaÞ _n
ðaÞ

P 0. ð66Þ
A posteriori, to motivate the choice of state variables and fluxes, we observe that, had we not assumed that
f(a) depends on _n

ðaÞ
, then necessarily f(a) would have been zero and the model would have predicted a dis-

sipation-free transformation.
It is important to note that the definition of the driving force given in (64) is not in contradiction with

classical definitions of thermodynamically conjugated quantities. In particular, f(a) could be defined as
(minus) the derivative of the internal energy with respect to n(a) (Rice, 1971, Eq. (8)). According to (64) this
might not be immediately evident. However, it should be pointed out that in the above definition the total
deformation gradient F and the total entropy density g are taken as variables for the internal energy density
(instead of Fe and ge as in (61)). If we consider a process where the total deformation gradient and the total
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entropy density are held fixed, say F = F0 and g = g0, then, from (12), (24), (48) and (49), we can determine
the required change in Fe and ge with respect to n(a) such that F and g are held constant, i.e., since
7 Ob
the cho
oF0

onðaÞ
¼ oFe

onðaÞ

����
F0

F tr þ Fec
ðaÞ ¼ 0;

og0

onðaÞ
¼ oge

onðaÞ

����
g0

þ kðaÞT

hT

¼ 0;
then
oFe

onðaÞ

����
F0

¼ �Fec
ðaÞF�1

tr ;
oge

onðaÞ

����
g0

¼ � kðaÞT

hT

. ð67Þ
From (55), (57), (60), (61), (64) and (67) it follows that
f ðaÞ ¼ �q0

o��

onðaÞ

����
F0;g0

; ð68Þ
a result that is equivalent to (64). However, since we find it conceptually more advantageous to work with
Fe and ge as variables for the energy density, we view (68) as a result rather than a definition. In the next
subsection we will provide additional relations between f(a) and other thermodynamic energies.

4.3. Formulation in terms of the Helmholtz and Gibbs energy densities

For mechanics problems it is convenient to work with the Helmholtz energy density w instead of the
internal energy density � since the temperature is viewed as an experimentally more manageable and intu-
itively more accessible variable than the entropy. The Helmholtz energy is the potential that uses Fe, h and n

as independent variables. Similarly, some researchers find it convenient to work with Gibbs� energy, which
is the potential that uses P,h and n as natural variables. We provide in this section some useful relations in
terms of these potentials.

The Helmholtz energy density can be obtained from the internal energy density by means of a Legendre
transformation,7 i.e.,
�wðFe; h; nÞ ¼ ��ðFe; ~geðFe; h; nÞ; nÞ � h~geðFe; h; nÞ; ð69Þ

where the function ~ge is formally obtained by combining the second relation in (60) with (61) and solving
for ge in terms of h. From (69) and the second relation in (60), it follows that:
o�w
oFe

¼ o��

oFe

; ge ¼ �
o�w
oh
;

o�w
on
¼ o��

on
; ð70Þ
where the partial derivatives of each energy density are computed while holding the corresponding natural
variables fixed (i.e., (Fe, h, n) for �w and (Fe, ge, n) for ��).

We note that a restriction on the form of the Helmholtz energy density (which also applies to ��) is pro-
vided by the principle of material frame indifference. In particular, the Helmholtz energy density cannot
depend on the full elastic deformation gradient but rather on a strain measure based on the stretch part
only. One such measure is the elastic Green–Lagrange strain Ee. Consequently, we consider a function ŵ
such that
ŵðEe; h; nÞ ¼ �wðFe; h; nÞ; ð71Þ
serve that on the right hand side of (69) we use the product hge (instead of the more classical expression hg) in accordance with
ice of variables of �w and ��.
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where Ee and Fe are related via (41). In view of constructing a specific model for the material, we will work
with the Helmholtz energy density ŵ and, therefore, it is useful to establish relations for the partial deriv-
atives of this energy. We observe from (71) that derivatives of ŵ with respect to h or n are the same as the
derivatives of �w with respect to those variables. In particular, from the second relation in (70), we have
8 Th
and fu
ge ¼ �
oŵ
oh

ð72Þ
and, from (64), we may express the driving force in terms of ŵ as
f ðaÞ ¼ sðaÞm þ sðaÞth � q0

oŵ

onðaÞ
. ð73Þ
Finally, for subsequent use, we establish a connection between the second Piola–Kirchhoff stress S in the
intermediate configuration and the Helmholtz energy density ŵ. Using the chain rule and the symmetry of
Ee, it follows from (71) that
o�w
oFe

¼ Fe

oŵ
oEe

. ð74Þ
Let
J :¼ det F ¼ J eJ tr ð75Þ

be the Jacobian of the total deformation, where
J e :¼ det Fe ð76Þ

and Jtr is defined in (45). The mass densities ~q and q in the intermediate and current configurations are re-
lated to the mass density q0 in the reference configuration via
~q ¼ q0

J tr

; q ¼ q0

J
. ð77Þ
The first Piola–Kirchhoff stress P in the reference configuration is related by definition to the second Piola–
Kirchhoff stress S in the intermediate configuration as
P ¼ J trFeSF�T
tr . ð78Þ
Consequently, in view of (60), (70), (74), (77) and (78), it follows that:
S ¼ ~q
oŵ
oEe

. ð79Þ
In order to compare the present formulation with other theories, we list a series of relations that include
Gibbs� energy since it is often used in the study of phase transformations, particularly in the definition
of the driving force. The Gibbs� energy density �g (per unit mass) uses P, h and n as natural variables. It
can be constructed via a Legendre transformation of the Helmholtz energy density with respect to the con-
jugate pair ðFe; q�1

0 PFT
trÞ

8 or, equivalently, as a Legendre transformation of the internal energy density with
respect to the conjugate pairs (ge, h) and ðFe;q�1

0 PFT
trÞ, i.e.,
�g ¼ �w� 1

q0

Fe � PFT
tr ¼ ��� geh�

1

q0

Fe � PFT
tr; ð80Þ
is conjugate pair is obtained from (60). For definiteness we have opted for this pair but it is also possible to work with ðEe; ~q
�1SÞ

nctions ĝ, ŵ and �̂.
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where, for ease of notation, we have omitted the arguments of Fe, ge and the energies, although they should
be interpreted as explicit or implicit functions of P, h and n. A direct calculation that utilizes (24), (55), (60),
(70) and (80) gives
Fe ¼ �q0

o�g
oP

F�1
tr ; ge ¼ �

o�g
oh
;

o�g

onðaÞ
¼ o�w

onðaÞ
� 1

q0

sðaÞm ; ð81Þ
where the partial derivatives are taken while holding the natural variables fixed for each energy density. We
note that, from the third relation in (81) and in view of (71) and (73), the relation between the driving force
and the Gibbs� energy density is
f ðaÞ ¼ sðaÞth � q0

o�g

onðaÞ
; ð82Þ
with sðaÞth given by (57). The transformation driving force is often defined in the materials science literature as
(minus) the change in Gibbs� energy as the material transforms from one phase to another. We observe that
the driving force in (82) does not conform to that definition. However, this is related to the fact that h and
ge are taken as conjugate variables in the Gibbs� energy density (see the second equation in (81)), instead of
the commonly used combination of h and total entropy g. Consequently, the effect of the transformation
entropy gtr on the driving force f(a) is represented in (82) by the additional term sðaÞth .
5. Thermomechanical constitutive model

In order to derive an expression for the driving force, a specific form of the Helmholtz energy ŵ is re-
quired in (73). To obtain the strain energy contribution to the Helmholtz energy, we integrate the stress-
strain relation (40) with respect to Ee. Similarly, to determine the thermal energy contribution, an entro-
py-temperature relation is adopted and integrated with respect to h. Additionally, we propose a form for
the surface energy that depends on n. With this form of the Helmholtz energy, we use (73) in order to com-
pute the driving force f(a). A specific kinetic relation is then proposed to describe the evolution of the mar-
tensitic volume fractions.

5.1. Helmholtz energy density for austenite

As shown in (71), the function ŵ depends on Ee, h and n. We start with the strain energy part of the
Helmholtz energy density using the results derived in Section 2. From (40), (77) and (79), the derivative
of the Helmholtz energy density with respect to the elastic Green–Lagrange strain is given by
oŵ
oEe

¼ J tr

q0

CEe. ð83Þ
Integrating ŵ with respect to Ee, keeping in mind that neither Jtr nor C depends on Ee, it follows that
ŵðEe; h; nÞ ¼ wmðEe; nÞ þ w1ðh; nÞ; ð84Þ
where
wmðEe; nÞ :¼ J trðnÞ
2q0

CðnÞEe � Ee ð85Þ
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is the (bulk) elastic strain energy density and w1 represents the terms of the Helmholtz energy density that
are not part of the elastic strain energy density (i.e., the integration constants). Note that both Jtr and C

depend explicitly on n, which reflects a coupling between the transformation and elastic behavior.
We develop an approximation to the thermal part of the energy using a similar approach as for the strain

energy density. As in Section 3.2, consider a mesoscopic RVE with subregions Y ðaÞy ðtÞ. In each subregion we
have a uniform temperature h(a) and a corresponding entropy gðaÞe . The specific heat capacity per unit mass,
measured at constant elastic deformation for each phase a = 0, . . . ,N, is defined as hðaÞ :¼ hðaÞogðaÞe =ohðaÞ. We
assume that h(a) does not depend on the temperature, therefore we use the following constitutive relation for
the conservative entropy density in terms of the temperature:
gðaÞe ¼ hðaÞ ln
hðaÞ

hT

þ gT; ð86Þ
where gT is the common value of gðaÞe at the transformation temperature for all systems a. We note that the
above entropy-temperature constitutive relation is only valid for a temperature range where gðaÞe is positive.

The mesoscopic entropy density ge is obtained by averaging the entropies in an RVE in the intermediate
configuration centered at a point y (see Fig. 5), i.e.,
~qðy; tÞgeðy; tÞ ¼
1

jY yj
XN

a¼0

Z
Y ðaÞy ðtÞ

~qðaÞðy�; tÞgðaÞe ðy�; tÞdvy� ; ð87Þ
where ~q is the mass density in the intermediate configuration defined in (77) and
~qðaÞ :¼ q0

J ðaÞtr

; ð88Þ
with J ðaÞtr as in (17). An effective specific heat capacity per unit mass can be obtained assuming all subregions
to have the same temperature h(a) = h. If we define the effective heat capacity h such that
ge ¼ h ln
h
hT

þ gT; ð89Þ
then, in view of (21), (43), (45), (77), (86), (87) and (88), h is given by
hðnÞ ¼ 1�
XN

a¼1

nðaÞ
 !

hA þ
XN

a¼1

nðaÞhðaÞ; ð90Þ
where hA := h(0) is the specific heat of austenite.
With the constitutive model (89) and in view of (72), we have
oŵ
oh
¼ �h ln

h
hT

� gT. ð91Þ
Integration of (91) with respect to the temperature provides the following expression for the Helmholtz en-
ergy density:
ŵðEe; h; nÞ ¼ wthðh; nÞ þ w2ðEe; nÞ; ð92Þ

where wth is the thermal energy given by
wthðh; nÞ :¼ �hðnÞh ln
h
hT

þ hðnÞ � gTð Þh; ð93Þ
and w2 corresponds to the terms of the Helmholtz energy that are not part of the thermal energy.
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At this point we have two equivalent expressions for the Helmholtz energy, namely (84) and (92). Dif-
ferentiating these expressions with respect to Ee and h gives
Fig. 7.
interfa
owm

oEe

þ ow1

oEe

¼ owth

oEe

þ ow2

oEe

;
owm

oh
þ ow1

oh
¼ owth

oh
þ ow2

oh
.

Since w1 and wth do not depend on Ee and, similarly, w2 and wm do not depend on h, it can be concluded
from the previous relations that
ow2

oEe

¼ owm

oEe

;
ow1

oh
¼ owth

oh
.

Consequently, integrating the above expressions, one finds
w1ðh; nÞ ¼ wthðh; nÞ þ w3ðnÞ; w2ðEe; nÞ ¼ wmðEe; nÞ þ w3ðnÞ;

where the function w3 only depends on n. In view of (84) or (92), w3 necessarily needs to be the same in the
expressions for w1 and w2 up to an arbitrary constant which, without loss of generality, is taken as zero.
From the above relations and (84) or (92), the Helmholtz energy density can be written as
ŵðEe; h; nÞ ¼ wmðEe; nÞ þ wthðh; nÞ þ w3ðnÞ. ð94Þ

We now turn our attention to the function w3(n) in (94) and use this function to incorporate a surface en-
ergy term as well as to satisfy additional requirements on the energy at the transformation temperature hT.
As mentioned in Section 2, to maintain a coherent interface between stress-free austenite and stress-free
twinned martensite (as well as a coherent interface between two stress-free regions of twinned martensite)
a local deformation field is required, which we assume to be elastic. Fig. 7 shows schematically an austenite-
twinned martensite interface at the lower and upper microscales (see also Figs. 2b and c). In the kinematic
analysis of Section 2 we ignored the local elastic deformation at interfaces; hence it is not included in wm

given in (85). The strain energy associated to this local elastic deformation corresponds to a surface energy
that can be accounted for in the model by means of the function w3. Since we do not resolve the elastic
deformation at the lower microscale, we propose instead a simple phenomenological formulation for the
surface energy in terms of the volume fraction n. Wang and van der Zwaag (2001) incorporated in their
analysis a surface energy term based on assumptions regarding the shape and arrangement of the plates
of newly formed martensite. Their model assumes that the area of the interface between austenite and
twinned martensite is a linear function of the volume fraction n(a). However, if a single transformation
=
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Fe
(0) =I/

       Lower microscale:
intermediate configuration

Interface

,

Austenite-twinned martensite interface in the intermediate configuration at the lower microscale. The sketch represents an
ce where the nominal stress is zero away from the interface.
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system occupies a whole representative volume element at the upper microscale, this area should be zero
since then there are no interfaces between austenite and martensite. This condition motivates the specific
form that we propose below for the relation between the interface area and the volume fraction.

With reference to Fig. 5b and using the notation introduced in Section 2.4, let SðaÞx ðtÞ be the surface of a
region Y ðaÞx ðtÞ occupied by transformation system a in the reference configuration. We denote the area of the
interface as jSðaÞx ðtÞj and assume that
jSðaÞx ðtÞj
jY xj

¼ 1

l0

nðaÞðx; tÞ 1� nðaÞðx; tÞ
� �

; a ¼ 1; . . . ;N ; ð95Þ
where jYxj is the volume of the RVE and the constant l0 is a length scale parameter. If a single transfor-
mation system b occupies the whole RVE at the upper microscale, then n(b) = 1 and n(a) = 0 for
a = 1, . . . ,N and a 5 b. In that case, from (95), jSðaÞx ðtÞj ¼ 0 for all a = 1, . . . ,N, including a = b, which is
consistent with the fact that there are no interfaces in the RVE. Similarly, for an RVE occupied by austenite
only, n(a) = 0 and jSðaÞx ðtÞj ¼ 0 for all a = 1, . . . ,N. Finally, we note that the surface energy at the grain

boundary (i.e., the interface between the grain and the ferrite-based matrix) is assumed to remain the same
whether the grain contains only austenite, only martensite or a mixture of both.

An interpretation of the length scale parameter l0 can be obtained from the geometry of a plate of
twinned martensite inside a grain of austenite at the onset of transformation (i.e., when n(a)� 1). For a small
volume fraction n(a), the ratio jSðaÞx ðtÞj=jY xj can be linearized from (95) as
jSðaÞx ðtÞj �
1

l0

jY ðaÞx ðtÞj; if nðaÞ � 1;
where we have substituted the volume fraction by the expression given in (20). Hence, the value l0 can be
interpreted as the ratio between the initial volume and surface of twinned martensite.

Let v be an interface energy per unit area. We assume that all austenite-twinned martensite interfaces
have the same energy per unit area. Accordingly, the surface energy ws per unit mass adopts the following
form:
wsðnÞ ¼
1

q0

XN

a¼1

v
jSðaÞx ðtÞj
jY xj

¼ v
q0l0

XN

a¼1

nðaÞ 1� nðaÞ
� �

. ð96Þ
In (96) the summation runs over a = 1, . . . ,N; hence it does not include a = 0 (austenite) since ws(n) corre-
sponds to the surface energy in the austenite-twinned martensite interfaces. If n(0) = 0 (i.e., RVE occupied by
austenite only) but simultaneously none of the volume fractions n(a) is equal to one, then it means that the
RVE contains interfaces between twinned martensite with different orientations. From this point of view, the
interfaces between different transformation systems (i.e., twinned martensite/twinned martensite interfaces)
are assumed to have the same surface energy per unit area v as the austenite/twinned martensite interfaces.

With the surface energy ws as in (96), the function w3 in (94) can be expressed as
w3ðnÞ ¼ wsðnÞ þ w4ðnÞ;

where the function w4 represents all energy contributions that are not included in ws. From (94) and the
above relation, the Helmholtz energy becomes
ŵðEe; h; nÞ ¼ wmðEe; nÞ þ wthðh; nÞ þ wsðnÞ þ w4ðnÞ. ð97Þ

As a last step in the construction of the Helmholtz energy density, the function w4(n) needs to be deter-
mined. For this purpose, we return to the definition of the transformation temperature hT, which is the the-
oretical temperature at which a stress-free austenite can transform isothermally into stress-free martensite
without dissipation (or vice-versa). Since the dissipation associated with the transformation is Dtr as given
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in (66), the condition for a dissipation-free transformation from austenite to system a of martensite is

f(a) = 0 (since _n
ðaÞ
> 0 during transformation). Hence, this condition requires that there is no internal energy

barrier that opposes the transformation. However, in reality there are several mechanisms that contribute
to an internal energy barrier. One such mechanism is the nucleation of austenite/martensite interfaces,
which is taken into account in the surface energy ws given in (96). Accordingly, a theoretical dissipation-free
transformation corresponds to a vanishing surface energy (i.e., v! 0 in (96)). Therefore, in accordance
with the definition of the transformation temperature, we have
f ðaÞ
��
Ee¼0;h¼hT;v!0

¼ 0 8a ¼ 1; . . . ;N ð98Þ
where, in view of (40), the stress-free condition S = 0 can be satisfied by setting Ee = 0. Using the expres-
sions (73) and (97), we compute the driving force f(a) and then use the function w4(n) to match the condition
imposed in (98). To this end, we need the following derivatives: owm/on(a), owth/on(a) and ows/on(a). From

(46) and (85), the rate of change of the strain energy with respect to the volume fraction n(a) is
owm

onðaÞ
ðEe; nÞ ¼

1

2q0

ð1þ dTÞCðaÞ � CA
� �

Ee � Ee. ð99Þ
Similarly, from (90) and (93), the rate of change of the thermal energy with respect to the volume fraction
n(a) is
owth

onðaÞ
ðh; nÞ ¼ �ðhðaÞ � hAÞ h ln

h
hT

� h

	 

. ð100Þ
In addition, from (96), the change in surface energy is
ows

onðaÞ
ðnÞ ¼ v

q0l0

1� 2nðaÞ
� �

. ð101Þ
Combining (55), (57), (73), (78), (97), (99), (100) and (101), the driving force can be derived as
f ðaÞ ¼ J trF
T
e FeSF�T

tr � cðaÞ þ q0h
kðaÞT

hT

þ 1

2
CA � ð1þ dTÞCðaÞ
� �

Ee � Ee

þ q0ðhðaÞ � hAÞ h ln
h
hT

� h

	 

� v

l0

1� 2nðaÞ
� �

� q0

ow4

onðaÞ
; a ¼ 1; . . . ;N . ð102Þ
Hence, from (101) and (102), the condition (98) is satisfied if
f ðaÞ
��
Ee¼0;h¼hT;v!0

¼ kðaÞT � ðhðaÞ � hAÞhT �
ow4

onðaÞ
¼ 0; a ¼ 1; . . . ;N .
Integrating the previous relation for each a, and using (90) for the specific heat, provides the following
expression for w4:
w4ðnÞ ¼ �hðnÞhT þ
XN

a¼1

kðaÞT nðaÞ; ð103Þ
where we have arbitrarily chosen the integration constant as zero. With the function w4 chosen as in (103),
from (85), (93), (96) and (97) the Helmholtz energy can be written as
ŵðEe; h; nÞ ¼
1

2q0

J trðnÞCðnÞEe � Ee � hðnÞh ln
h
hT

þ hðnÞ h� hTð Þ � gTh

þ
XN

a¼1

kðaÞT nðaÞ þ v
q0l0

XN

a¼1

nðaÞ 1� nðaÞ
� �

; ð104Þ
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and, from (102) and (103), the driving force is
f ðaÞ ¼ f ðaÞm þ f ðaÞth þ f ðaÞs ; a ¼ 1; . . . ;N ; ð105Þ
where the functions f ðaÞm , f ðaÞth and f ðaÞs are given by
f ðaÞm :¼ J trF
T
e FeSF�T

tr � cðaÞ þ
1

2
CA � ð1þ dTÞCðaÞ
� �

Ee � Ee; ð106Þ

f ðaÞth :¼ q0

kðaÞT

hT

ðh� hTÞ þ q0ðhðaÞ � hAÞ h ln
h
hT

� ðh� hTÞ
	 


; ð107Þ
and
f ðaÞs :¼ � v
l0

1� 2nðaÞ
� �

. ð108Þ
The effect of the surface energy term f ðaÞs in the driving force is as follows: If n(a) < 0.5, it decreases the driv-
ing force, meaning that it acts against transformation since it requires the formation of new interfaces. If,
however, n(a) > 0.5, this term acts in favor of the transformation. The interpretation of the latter phenom-
enon is that one transformation system is in the process of occupying the whole grain and, as a result, mar-
tensitic plates of that system are coalescing (thus interfaces disappear and the surface energy is ‘‘released’’).

5.2. Onset of transformation and kinetic relation

In order to describe the onset and evolution of phase transformations, a nucleation criterion and a
kinetic law need to be specified (Abeyaratne and Knowles, 1991). The onset of a transformation from aus-
tenite to a system a of martensite occurs when the energy available for the transformation is equal to an
internal energy barrier. As mentioned in Section 5.1, the internal energy barrier consists of various contri-
butions, among which the nucleation of new interfaces is explicitly taken into account through the surface
energy term f ðaÞs . The remaining contributions, which are not explicitly quantified, are collected in a critical
threshold value f ðaÞcr for the driving force. Therefore, the criterion for the initiation of a martensitic phase
transformation is
f ðaÞ ¼ f ðaÞcr ðonset of transformationÞ.
When transformation is activated, the growth rate _n
ðaÞ

of a transformation system a is supposed to depend
on the amount by which the driving force exceeds the threshold level (i.e., f ðaÞ � f ðaÞcr ). From a crystallo-
graphic point of view, martensitic transformations in shape memory alloys are reversible in the sense that
martensite transforms back to austenite upon unloading. In contrast, reverse transformations of martensite
upon unloading are typically not observed in multiphase carbon steels. In the examples shown in Section 6
we will apply the model to crystallographically irreversible transformations. Since the model developed here
does not prevent reversible transformations, it needs to be specialized to take the irreversibility upon
unloading into account. One method is to introduce a sufficiently large absolute value for the critical driv-
ing force required for a martensite to austenite transformation. An alternative method, simpler to imple-
ment, is to introduce the following phenomenological kinetic relation for the evolution of the
transformation:
_n
ðaÞ ¼ _n

ðaÞ
max tanh

1

mðaÞ
hf ðaÞ � f ðaÞcr i

f ðaÞcr

 !
; ð109Þ
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where the Macauley brackets are such that hgi = g if g P 0 and equal to zero otherwise. Further, m(a) > 0,
f ðaÞcr > 0 and _n

ðaÞ
max P 0 are material parameters. We interpret m(a) as a dimensionless, viscosity-like parameter

and _n
ðaÞ
max as maximum value for the transformation rate. In view of (109), if f ðaÞ < f ðaÞcr then _n

ðaÞ ¼ 0. More-
over, the rates _n

ðaÞ
are restricted to non-negative values. Consequently, the martensite cannot transform

back into austenite. Note that the kinetic relation (109) is consistent with the isothermal dissipation inequal-
ity (66) for any value of f(a). Applications of this model for irreversible transformations in carbon steels can
be found in Turteltaub and Suiker (2005) and Suiker and Turteltaub (2005).

5.3. Heat conduction and latent heat

To complete the thermal aspects of the model, a relation between the entropy flux U and its correspond-
ing affinity, the temperature gradient $h, is required. This relation is formally similar to a kinetic relation.
The most commonly used constitutive relation to describe this effect is Fourier�s model q = �K$h, where K
is the thermal conductivity tensor. From (47) and Fourier�s model, the relation between the entropy flux
and the temperature gradient becomes
U ¼ �K

h
rh. ð110Þ
From (65), the dissipation inequality in the absence of a phase change becomes Dq P 0 and, in view of (62),
is satisfied if K is positive semi-definite.

In order to relate the thermal parameters of the model to experimental data, it is useful to develop an
explicit expression for the latent heat for isothermal transformations. Let k(a)(h) denote the latent heat
for a complete transformation from pure austenite (n(0) = 1, n(a) = 0) to a single system a of martensite
(n(0) = 0, n(a) = 1) at a temperature h. By definition, k(a)(h) is given by
kðaÞðhÞ :¼ hDgðaÞ;
where Dg(a) represents the total change in entropy during the transformation. From (48), (49), (89) and (90),
we have
kðaÞðhÞ ¼ h ge þ gtrð ÞjnðaÞ¼1 � ge þ gtrð ÞjnðaÞ¼0

h i
¼ ðhðaÞ � hAÞh ln

h
hT

þ h
kðaÞT

hT

. ð111Þ
Knowledge of the specific heats and the latent heat at some temperature h can be used to compute the latent
heat kðaÞT at the theoretical transformation temperature hT using expression (111). We remark that, from the
thermal point of view, the existence of an energy barrier implies that a transformation at zero stress from
austenite to martensite does not occur at the theoretical transformation temperature hT; rather, this occurs
at a lower temperature, usually denoted as Ms. Accordingly, from (111), we obtain
kðaÞT ¼
hT

Ms
kðaÞðMsÞ � ðhðaÞ � hAÞMs ln

Ms

hT

	 

.

5.4. Summary of main model equations

For convenience, we summarize below the main ingredients of the model and we point out the duality
between the mechanical and thermal parts. The decompositions of the primary variables (i.e., deformation
gradient (12) and entropy (48)) are
F ¼ FeF tr; g ¼ ge þ gtr.
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The expressions for the transformation parts in the above relations (i.e., the transformation deformation
gradient from (24) and the transformation entropy (49)) are
F tr ¼ I þ
XN

a¼1

nðaÞcðaÞ; gtr ¼
XN

a¼1

nðaÞ
kðaÞT

hT

.

The constitutive relations between conjugate variables (i.e., stress and elastic strain from (40) and temper-
ature and reversible entropy from (89)) are
S ¼ CEe; ge ¼ h ln
h
hT

þ gT.
The effective stiffness and the effective specific heat (from (46) and (90)) are
C ¼ 1

J tr

1�
XN

a¼1

nðaÞ
 !

CA þ ð1þ dTÞ
XN

a¼1

nðaÞCðaÞ
( )

;

h ¼ 1�
XN

a¼1

nðaÞ
 !

hA þ
XN

a¼1

nðaÞhðaÞ.
The relation between the affinities and the fluxes (for the transformation from (109) and for heat conduc-
tion from (110)) are given by
_n
ðaÞ ¼ _n

ðaÞ
max tanh

1

mðaÞ
hf ðaÞ � f ðaÞcr i

f ðaÞcr

 !
;

U ¼ �K

h
rh;
where the driving force for the transformation is, from (105)–(108)
f ðaÞ ¼ J trF
T
e FeSF�T

tr � cðaÞ þ
1

2
CA � ð1þ dTÞCðaÞ
� �

Ee � Ee

þ q0

kðaÞT

hT

ðh� hTÞ þ q0ðhðaÞ � hAÞ h ln
h
hT

� ðh� hTÞ
	 


� v
l0

1� 2nðaÞ
� �

.

The above equations are in correspondence with a Helmholtz energy given by (104), i.e.,
ŵðEe; h; nÞ ¼
1

2q0

J trðnÞCðnÞEe � Ee � hðnÞh ln
h
hT

þ hðnÞ h� hTð Þ � gTh

þ
XN

a¼1

kðaÞT nðaÞ þ v
q0l0

XN

a¼1

nðaÞ 1� nðaÞ
� �

.

6. Single-crystal deformations

To illustrate the basic features of the model, several simple deformations of a cubic domain X are
analyzed in this section. More complex boundary value problems, involving transforming grains of austen-
ite embedded in a ferritic matrix, are presented elsewhere (Turteltaub and Suiker, 2005; Suiker and Turtel-
taub, 2005). In the present examples, for simplicity, only isothermal processes are considered (at
h = 300 K). The domain X consists initially of an undeformed single crystal of austenite. As a global coor-
dinate system we use an orthonormal vector basis {f1, f2, f3} with the basis vectors pointing in directions
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normal to three mutually perpendicular faces of the domain X. For a single-crystal of austenite the lattice
orientation is given in terms of basis vectors feA

1 ; e
A
2 ; e

A
3 g aligned with the cubic lattice axes. We study the

mechanical response of the material for two representative orientations of the crystal lattice under various
loading conditions. The two crystal orientations are specified as follows:

Orientation 1 ([1 1 1]A):
Table
Materi

Austen
Marten
Transf
Transf
Critica
Surfac
f 1 ¼
1ffiffiffi
3
p eA

1 þ eA
2 þ eA

3

� �
; f 2 ¼

1ffiffiffi
2
p eA

1 � eA
3

� �
; f 3 ¼

1ffiffiffi
6
p �eA

1 þ 2eA
2 � eA

3

� �
.

Orientation 2 ([1 0 0]A):
f k ¼ eA
k ; k ¼ 1; 2; 3.
Orientations 1 and 2 are henceforth referred to as [1 1 1]A and [1 0 0]A, respectively. The subindex �A� indi-
cates that the components of the global vector f1 are expressed in the austenite lattice basis. The mechanical
properties used in the isothermal simulations, which correspond to the austenitic and martensitic phases in
a multiphase carbon steel with a local carbon concentration of 1.4 wt.%, are listed in Table 1. The charac-
teristics of the transformation systems are presented in Appendix A (Table A.1). Details on the derivation
of the properties and the computation of the effective stiffness tensors CðaÞ can be found in Turteltaub and
Suiker (2005). Details of the numerical implementation of the transformation model can be found in Suiker
and Turteltaub (2005).

6.1. Uniaxial deformations

For each crystal orientation, a uniaxial extension followed by a uniaxial compression is prescribed. The
specific boundary conditions are as follows: on three mutually perpendicular faces of the cubic domain, the
displacement normal to each face is set to zero. On one of the faces perpendicular to the global direction f1

(opposite to the constrained face) the normal displacement is set to
u1 ¼ û1ðtÞ ¼
10�4lt for 0 6 t 6 T =2;

�10�4lðt � T Þ for T=2 6 t 6 T ;

(
ð112Þ
where l is the side length of the cubic domain and T is the total duration of the deformation process. In
(112) the nominal strain rate for extension and compression is given as 10�4 s�1, measured in terms of
the relative velocities of the two opposite external surfaces that are perpendicular to the f1-direction.
The tangential stresses on the constrained faces are zero and the unconstrained faces are stress-free. The
total duration of the deformation process is T = 300 s and T = 1200 s for the [1 1 1]A and [1 0 0]A crystal
orientations, respectively. The duration T in each case is chosen such that at t = T/2 approximately 50% of
the austenite has transformed into martensite.

The orientations and boundary conditions are shown in Fig. 8. The mechanical response of the material
is reported in terms of the Cauchy stress T and the logarithmic strain e. The logarithmic strain is defined as
1
al properties for the transformation model based on austenite and martensite in a multiphase carbon steel

ite jA
1 ¼ 268.5; jA

2 ¼ 156; jA
3 ¼ 136 [GPa]

site jM
1 ¼ 497; jM

2 ¼ 405; jM
3 ¼ 265; jM

4 ¼ 617; jM
5 ¼ 263; jM

6 ¼ 287 [GPa]
ormation strain and dilation cT = 0.1809, dT = 0.0391
ormation kinetics m = 0.17, _nmax ¼ 3	 10�3 s�1

l transformation value f ðaÞcr � fthðhÞ ¼ 5 MPa at h = 300 K
e energy v = 0.2 J m�2, l0 = 0.05 lm.
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e := lnV, where V is the left stretch tensor in the polar decomposition of the total deformation gradient F,
i.e., V = FRT, with R corresponding to the rigid body rotation. The component T11 of the Cauchy stress
(referred to the global basis) as a function of the component e11 of the logarithmic strain is shown in
Fig. 9a for orientations [1 1 1]A (curve 1) and [1 0 0]A (curve 2). For comparison, the response of the mate-
rial to monotonic extension is also shown for crystal orientations [1 1 1]A (curve 3) and [1 0 0]A (curve 4).

The stress-strain curves for extension followed by compression consist of several stages. During the
extension part, the deformation is initially elastic until the austenite starts to transform into martensite.
During transformation, the stress-strain response shows a plateau, which indicates that the material param-
eters for the kinetic law in combination with the applied strain rate provide a behavior close to a rate-inde-
pendent response (Anand and Gurtin, 2003). Upon reversal of the displacement from extension to
compression, the transformation systems that were active cease to transform and the deformation becomes
elastic. Subsequently, the transformation resumes in compression with other transformation systems being
activated. For the [1 0 0]A orientation (curve 2), the material fully transforms into martensite and subse-
quently behaves elastically. In contrast, for the [1 1 1]A orientation (curve 1) the transformation is far from
complete at the end of the compressive part.

The specific transformation systems that are active during deformation are shown in Fig. 9b for orien-
tations [1 1 1]A and [1 0 0]A (curves 1 and 2, respectively). Observe that the transformation from austenite to
martensite is irreversible; hence the martensite formed during extension remains in the microstructure dur-
ing compression. Moreover, for orientation [1 0 0]A the transformation in compression starts soon after the
displacement is reversed whereas for orientation [1 1 1]A a considerable stress build-up in compression is
required before the transformation becomes once again active. These results are in agreement with simula-
tions of uniaxial monotonic extension and monotonic compression presented in Turteltaub and Suiker
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(2005), where it was observed that austenite in the [1 0 0]A orientation offers less resistance to transforma-
tion than austenite in the [1 1 1]A orientation. The simulation results are also in agreement with experimen-
tal observations of Oliver et al. (2002) and Kruijver et al. (2003), which demonstrate that the [1 1 1]A and
[1 0 0]A are, respectively, ‘‘strong’’ and ‘‘weak’’ directions of the transforming austenitic grain.

6.2. Simple shear

For simple shear, the deformation ŷ referred to the global basis {fi} is given by ŷ1ðxÞ ¼ x1 þ cx2,
ŷ2ðxÞ ¼ x2 and ŷ3ðxÞ ¼ x3, where c is the amount of shear. As in the previous subsection, the response of
a single-crystal of austenite is analyzed for the [1 1 1]A and [1 0 0]A orientations. The amount of shear is
applied at a rate _c ¼ 10�4 s�1. The crystal orientations and boundary conditions for simple shear are shown
in Fig. 10. The components Tij of the Cauchy stress tensor (referred to the global basis) as functions of the
amount of shear c are shown in Figs. 11a and 12a for orientations [1 1 1]A and [1 0 0]A, respectively. The
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corresponding evolutions of active transformation systems as a function of the amount of shear are pre-
sented in Figs. 11b and 12b.

Under simple shear, the directions of the principal stresses evolve during the loading process. As shown
in Figs. 11b and 12b, this relates to a gradual change in activity of the transformation systems. Fig. 12a
illustrates that for the [1 0 0]A orientation the highest stress component corresponds to T12. In contrast,
for the [1 1 1]A orientation, the T12 component of the stress, which initially is the largest, is overtaken by
the T23 component as the amount of shear increases (see Fig. 11a). Furthermore, the T11, T22 and T33 com-
ponents substantially contribute to the stress state.
6.3. Volumetric expansion and contraction

For volumetric expansion and contraction, the deformation ŷ referred to the global basis {fi} is given by
ŷiðxÞ ¼ kxi, i = 1, 2, 3, with k > 1 for expansion and k < 1 for contraction. The Jacobian of this deformation
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is J = detF = k3 = V/V0, where V is the volume of the domain in the current configuration and V0 is the
volume in the reference configuration. The deformation rate is taken as _k ¼ 10�4 s�1. For all crystal orien-
tations, the Cauchy stress component T11 ( = T22 = T33) as a function of the volume ratio J = V/V0 is
shown in Fig. 13. The stress components T12,T23 and T23 are zero throughout the deformation. During vol-
umetric expansion, the response is initially elastic followed by a transformation part that is characterized by
a plateau-like response. All transformation systems are equally active during the transformation, i.e.,
n(a) = n for a = 1, . . . ,N. After the austenite has fully transformed into martensite, the deformation pro-
ceeds elastically. In contrast, during volumetric contraction, no transformation systems are activated
and the deformation is elastic in the austenitic phase. The difference in behavior between volumetric expan-
sion and contraction is due to the fact that the phase change from austenite to martensite is accompanied by
a dilatational change (equal to dT as given in (44)), which is prevented during volumetric contraction.
7. Concluding remarks

The multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations pre-
sented in this paper incorporates effects associated to microstructural information from several subgrain
length scales. In particular, the crystallographic orientations of individual layers of tetragonal martenstic
variants are preserved in the mesoscale stiffness tensor. This information is accounted for explicitly in
the expression for the transformation driving force. Consequently, the so-called ‘‘variant selection crite-
rion’’ is improved in comparison to other martensitic transformation models. More specifically, the char-
acteristics of each transformation system enter the selection criterion not only through the orientation of
the habit plane (via the tensor c(a) in the expression of the driving force f(a)) but also through the internal

structure of the twinned martensite (via the constitutive tensor CðaÞ that appears in f(a)).
The model predicts a ‘‘plateau’’ type stress-strain response under uniaxial and volumetric deformations,

which is typically observed in martensitic phase transformations under quasi-static loading (Miyazaki,
1996). During transformation, the model automatically selects the energetically most favorable combination
of transformation systems, which depends on the externally-imposed deformation. Furthermore, as shown
in Section 6.1, the model can handle non-monotonic loadings in a robust fashion. The present paper
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presents the theoretical framework of the transformation model, and validations of the model based on
comparisons with experimental data on multiphase carbon steels can be found in Turteltaub and Suiker
(2005) and Suiker and Turteltaub (2005).

Although we have focussed attention to cubic to tetragonal transformations, the model can be readily
adapted to simulate austenite to twinned a 0-martensite transformations for non-tetragonal variants of mar-
tensite. This can be achieved by modifying the number and the geometrical characteristics of the transfor-
mation systems.
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Appendix A. Transformation systems

See Table A.1.
Table A.1
Geometrical characteristics of the transformation systems a of martensite (referred to the lattice basis of austenite and based on a
carbon concentration of 1.4 wt.%): the tetragonal variants b1 and b2 are layered in volumetric proportions kða;b1Þ and kða;b2Þ ¼ 1� kða;b1Þ

a (b1, b2) kða;b1Þ Normalized shape strain: ½b̂ðaÞ�A Habit plane normal: [m(a)]A

1 (1, 2) 0.3998 [�0.1906, 0.6311, �0.7520] [0.1711,�0.5666, �0.8060]
2 (1, 2) 0.3998 [0.1906, �0.6311, �0.7520] [�0.1711, 0.5666, �0.8060]
3 (1, 2) 0.6002 [�0.6311, 0.1906, �0.7520] [0.5666, �0.1711, �0.8060]
4 (1, 2) 0.6002 [0.6311, �0.1906, �0.7520] [�0.5666, 0.1711, �0.8060]
5 (1, 2) 0.3998 [0.1906, 0.6311, �0.7520] [�0.1711, �0.5666, �0.8060]
6 (1, 2) 0.3998 [�0.1906, �0.6311, �0.7520] [0.1711, 0.5666, �0.8060]
7 (1, 2) 0.6002 [�0.6311, �0.1906, �0.7520] [0.5666, 0.1711, �0.8060]
8 (1, 2) 0.6002 [0.6311, 0.1906, �0.7520] [�0.5666, �0.1711, �0.8060]
9 (1, 3) 0.3998 [�0.1906, �0.7520, 0.6311] [0.1711, �0.8060, �0.5666]
10 (1, 3) 0.3998 [0.1906, �0.7520, �0.6311] [�0.1711, �0.8060, 0.5666]
11 (1, 3) 0.6002 [�0.6311, �0.7520, 0.1906] [0.5666, �0.8060, �0.1711]
12 (1, 3) 0.6002 [0.6311, �0.7520, �0.1906] [�0.5666, �0.8060, 0.1711]
13 (1, 3) 0.3998 [0.1906, �0.7520, 0.6311] [�0.1711, �0.8060, �0.5666]
14 (1, 3) 0.3998 [�0.1906, �0.7520, �0.6311] [0.1711, �0.8060, 0.5666]
15 (1, 3) 0.6002 [�0.6311, �0.7520, �0.1906] [0.5666, �0.8060, 0.1711]
16 (1, 3) 0.6002 [0.6311, �0.7520, 0.1906] [�0.5666, �0.8060, �0.1711]
17 (2, 3) 0.3998 [�0.7520, 0.1906, �0.6311] [�0.8060, �0.1711, 0.5666]
18 (2, 3) 0.3998 [�0.7520, �0.1906, 0.6311] [�0.8060, 0.1711, �0.5666]
19 (2, 3) 0.6002 [�0.7520, 0.6311, �0.1906] [�0.8060, �0.5666, 0.1711]
20 (2, 3) 0.6002 [�0.7520, �0.6311, 0.1906] [�0.8060, 0.5666, �0.1711]
21 (2, 3) 0.3998 [�0.7520, �0.1906, �0.6311] [�0.8060, 0.1711, 0.5666]
22 (2, 3) 0.3998 [�0.7520, 0.1906, 0.6311] [�0.8060, �0.1711, �0.5666]
23 (2, 3) 0.6002 [�0.7520, 0.6311, 0.1906] [�0.8060, �0.5666, �0.1711]
24 (2, 3) 0.6002 [�0.7520, �0.6311, �0.1906] [�0.8060, 0.5666, 0.1711]
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