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Abstract

Let Mn be the algebra of all n × n complex matrices. If φ : Mn → Mn is a surjective
mapping satisfying det(A + λB) = det(φ(A) + λφ(B)), A,B ∈ Mn, λ ∈ C, then either φ is
of the form φ(A) = MAN , A ∈ Mn, or φ is of the form φ(A) = MAtN , A ∈ Mn, where
M,N ∈ Mn are nonsingular matrices with det(MN) = 1. © 2002 Elsevier Science Inc. All
rights reserved.
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1. Introduction and statement of the result

The study of linear operators on algebras that leave invariant certain functions,
subsets or relations is now commonly referred to as the study of linear preserver
problems. The first result on linear preservers is due to Frobenius [1] who studied
linear maps on matrix algebras preserving the determinant. Let Mn be the algebra
of all complex n × n matrices. If A ∈ Mn, then At denotes its transpose. Frobe-
nius proved that if φ : Mn → Mn is a bijective linear mapping satisfying detφ(A) =
detA, A ∈ Mn, then either φ(A) = MAN , A ∈ Mn, or φ(A) = MAtN , A ∈ Mn,
for some M,N ∈ Mn with det(MN) = 1. One of the most known results in the
theory of linear preservers is the Gleason–Kahane–Żelazko theorem [2,3] stating
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that every unital linear invertibility preserving functional f defined on a unital com-
mutative complex Banach algebra A is multiplicative. For unital linear functionals
the assumption of preserving invertibility is easily seen to be equivalent to the con-
dition f (x) ∈ σ(x), x ∈ A. Here, σ(x) denotes the spectrum of x. An interesting
improvement of this result has been obtained by Kowalski and Slodkowski [4] who
replaced the two assumptions in the Gleason–Kahane–Żelazko theorem, that is, the
assumption of linearity and the assumption of preserving invertibility, by a single
weaker assumption and showed that under this weaker condition the same conclusion
holds true. More precisely, they proved that every functional f (no linearity of f is
assumed) defined on a unital commutative complex Banach algebra A satisfying
f (0) = 0 and

f (x) − f (y) ∈ σ(x − y), x, y ∈ A, (1)

is linear and multiplicative. Obviously, every linear functional f on A with the prop-
erty that f (x) ∈ σ(x), x ∈ A, satisfies (1). It is the aim of this note to improve the
classical result of Frobenius in a similar way.

Theorem 1.1. Let φ : Mn → Mn be a surjective mapping satisfying

det(A + λB) = det(φ(A) + λφ(B)), A,B ∈ Mn, λ ∈ C. (2)

Then there exist M,N ∈ Mn with det(MN) = 1 such that either

φ(A) = MAN, A ∈ Mn,

or

φ(A) = MAtN, A ∈ Mn.

2. Proof

We need two simple lemmas.

Lemma 2.1. Let A,B ∈ Mn be matrices such that det(A + X) = det(B + X) for
every X ∈ Mn. Then A = B.

Proof. If we denote Y = A + X and C = B − A, then det Y = det(C + Y ) for ev-
ery Y ∈ Mn. Denote rankC = r . Then there exists Y0 of rank n − r such that C + Y0
is invertible. Hence, detY0 	= 0, or equivalently, r = 0. It follows that C = 0, as
desired. �

Lemma 2.2. Let A ∈ Mn be a matrix of rank k and X ∈ Mn a nonsingular matrix.
Then X + λA is singular for at most k different values of λ.

Proof. Define p(λ) = det(X + λA) and note that this is a nonzero polynomial since
p(0) 	= 0. Moreover, since A is of rank k, it is equivalent to Ik ⊕ 0n−k , the diagonal
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matrix having first k diagonal entries equal to one and all others equal to zero. Hence,
the degree of p is at most k. The desired conclusion follows trivially. �

Proof of Theorem 1.1. Suppose that φ(A) = φ(B) for some A,B ∈ Mn. Then for
every X ∈ Mn, we have det(A + X) = det(φ(A) + φ(X)) = det(B + X), and so,
by Lemma 2.1, A = B. Hence, φ is bijective.

Next, we will see that φ is rank nonincreasing. Let A ∈ Mn be of rank k and
denote rankφ(A) = l. Then there exist nonsingular matrices U,V ∈ Mn such that
Uφ(A)V = Il ⊕ 0n−l . By surjectivity we can find B ∈ Mn with Uφ(B)V =
diag (1, 2, . . . , n). It follows that

det(B + λA)= det(φ(B) + λφ(A))

= 1

det(UV )
det

(
diag (1, 2, . . . , n) + λ(Il ⊕ 0n−l )

)
.

By Lemma 2.2, the left side is equal to zero for at most k different values of λ, while
the right side has l zeroes as a polynomial in λ. Hence, l � k and so, rankφ(A) �
rankA. The inverse φ−1 is also rank nonincreasing. Therefore, rankφ(A) = rankA
for every A ∈ Mn.

Clearly, detφ(I) = det I = 1, and so, after replacing φ by A �→ φ(A)φ(I)−1, if
necessary, we may assume that φ(I) = I . In particular, det(A − λI) = det(φ(A) −
λI), A ∈ Mn, λ ∈ C. Thus, A and φ(A) have the same characteristic polynomial for
every A ∈ Mn.

Let us denote by N ∈ Mn the matrix with 1’s above the main diagonal and ze-
roes elsewhere,N = E12 + E23 + · · · + En−1,n. Since φ preserves the characteristic
polynomial and rank, φ(N) must be similar to N, and after composing φ by a suitable
similarity transformation we may assume with no loss of generality that φ(N) = N .
Thus, for an arbitrary X ∈ Mn we have det(X + λN) = det(φ(X) + λN), λ ∈ C.
Comparing the coefficients at λn−1 we arrive at et

nXe1 = et
nφ(X)e1.

Let u and v be any orthogonal unit vectors. We can find an orthonormal basis
x1, . . . , xn of Cn such that x1 = u and xn = v. Let U be the unitary matrix satis-
fying Uei = xi , i = 1, . . . , n. Denote L = UNU∗ and M = φ−1(L). Then M is a
nilpotent of nilindex n, and consequently, there is a nonsingular S ∈ Mn such that
SMS−1 = N . Define an auxiliary mapping ψ : Mn → Mn by

ψ(X) = U∗φ(S−1XS)U.

Clearly, ψ is a bijective mapping satisfying (2), ψ(I) = I , and ψ(N) = N . It fol-
lows that et

nXe1 = et
nψ(X)e1 for every X ∈ Mn. Replacing S−1XS by A, a straight-

forward computation gives us

v∗φ(A)u = et
nSAS

−1e1, A ∈ Mn.

Thus, the mapping A �→ v∗φ(A)u is linear for every pair of orthogonal unit vectors
u and v. Let A,B be any matrices and λ,µ any scalars. Denote by Z = φ(λA +
µB) − λφ(A) − µφ(B). Then v∗Zu = 0 for every pair of orthonormal vectors u
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and v, and hence, Z = γ I for some scalar γ . But φ preserves the characteristic
polynomial, and therefore, it preserves the trace. Hence, Z = 0. Thus, φ is linear.
Using the result of Frobenius we complete the proof. �
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