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a b s t r a c t

Antagonizing TNF-α signaling attenuates chronic inflammatory disease, but is associated with adverse
effects on the cardiovascular system. Therefore the impact of TNF-α on basal control of redox signaling
events needs to be understand in more depth. This is particularly important for the Keap1/Nrf2 pathway
in the heart and in the present study we hypothesized that inhibition of a low level of TNF-α signaling
attenuates the TNF-α dependent activation of this cytoprotective pathway. HL-1 cardiomyocytes and TNF
receptor1/2 (TNFR1/2) double knockout mice (DKO) were used as experimental models. TNF-α (2–5 ng/
ml, for 2 h) evoked significant nuclear translocation of Nrf2 with increased DNA/promoter binding and
transactivation of Nrf2 targets. Additionally, this was associated with a 1.5 fold increase in intracellular
glutathione (GSH). Higher concentrations of TNF-α (410–50 ng/ml) were markedly suppressive of the
Keap1/Nrf2 response and associated with cardiomyocyte death marked by an increase in cleavage of
caspase-3 and PARP. In vivo experiments with TNFR1/2-DKO demonstrates that the expression of Nrf2-
regulated proteins (NQO1, HO-1, G6PD) were significantly downregulated in hearts of the DKO when
compared to WT mice indicating a weakened antioxidant system under basal conditions. Overall, these
results indicate that TNF-α exposure has a bimodal effect on the Keap1/Nrf2 system and while an intense
inflammatory activation suppresses expression of antioxidant proteins a low level appears to be pro-
tective.
& 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The family of redox regulated transcription factors including p53,
NF-κB, AP-1, Nrf2 and Keap1 and their partner proteins have critical
cysteine residues in the DNA binding domain which form the basis of
their redox sensitive transcriptional regulation [1–4]. Of these, one of
the best studied is Nrf2 which is a redox-sensitive basic leucine
zipper transcription factor and a master regulator of the electrophile
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response element (EpRe or ARE) dependent cellular defense system
[5,6]. Using Nrf2 knockout in vivo and in vitro models, several studies
reveal important roles for this transcription factor in regulating an-
tioxidant and cytoprotective gene expression in various pathological
conditions including cancer, inflammation and neurodegenerative
diseases [5,7–9]. Under basal conditions, Nrf2 is sequestered by the
Kelch like ECH associated protein (Keap1), a BTB-Kelch substrate
adapter protein, in the cytoplasm by binding to its Neh2 domain [10].
This promotes the rapid ubiquitin-dependent ligation to the cullin-3
ubiquitin ligase leading to proteasomal degradation of Nrf2 thus
preventing its nuclear entry [11]. Modification of critical thiol re-
sidues on Keap1 by electrophiles or other oxidants leads to the re-
lease of Nrf2 to the nucleus [12,13]. Therefore, the Keap1/Nrf2
pathway is considered as one of the primary regulatory nodal points
for the cellular oxidative/electrophilic stress response.
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

www.sciencedirect.com/science/journal/22132317
www.elsevier.com/locate/redox
http://dx.doi.org/10.1016/j.redox.2016.06.004
http://dx.doi.org/10.1016/j.redox.2016.06.004
http://dx.doi.org/10.1016/j.redox.2016.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2016.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2016.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.redox.2016.06.004&domain=pdf
mailto:rajnsr@uabmc.edu
http://dx.doi.org/10.1016/j.redox.2016.06.004


G. Shanmugam et al. / Redox Biology 9 (2016) 77–8978
Studies with TNF-α [14–16] have shown an important role in a
number of pathologies associated with oxidative stress including
diabetes, cancer, cardiac hypertrophy and cardiomyopathy [17–20].
Consistent with these reports, genetic ablation of TNF-α and its
resultant signaling enabled increased but short-term protection
against fibro-proliferative effects of asbestos inhalation and dex-
tran sodium sulfate-induced colitis in mouse models [21,22].
Subsequently, there are several clinical studies demonstrating that
TNF antagonists can be an effective class of anti-inflammatory,
with an associated antioxidant effect [23–25]. Over 5 anti-TNF
drugs are currently being used therapeutically and typically
function as neutralizing antibodies or a soluble TNF receptor. No-
tably, chronic use of TNF-α blockers and anti-TNF α therapies have
shown to be deleterious in various cells and organ systems and is
associated with risk of developing cancer, demyelinating disorders
and cardiovascular complications [15,26–30]. In addition, pro-
longed TNF-α signaling deficiency cause wide range of immune
system defects starting from asymptomatic immunological ab-
normalities to life-challenging autoimmune diseases [28,31,32]. At
present the mechanisms which underlie these adverse effects due
to TNF-α inhibition are not clear. One possibility is that prolonged
TNF-α blockade may suppress ROS generation below the threshold
which is required for physiological regulation of the Keap1/Nrf2
pathway. In support of this concept recent studies suggest that
basal levels of TNF-α may have beneficial effects in acute heart
ischemia [33,34].

Previous studies have shown that TNF-α activates Nrf2 in
human monocytes [35], but in this cell type this is also asso-
ciated with a change to metabolically glycolytic phenotype and
this response could therefore underlie this response [36]. The
effect of TNF-α-dependent activation of the Keap1/Nrf2 path-
way in the cardiomyocyte are unknown and this is important
since cardiomyocytes rely more on oxidative capacity and
change to glycolysis is not possible to meet the energetic de-
mands of the heart [37]. A range of concentrations of TNF-α (1–
100 ng/ml) have been commonly used in different cellular
models and elicit diverse cellular responses ranging from sub-
inflammatory to inflammatory and apoptotic effects [38,39].
These responses are partly due to the inherent differences in the
levels of TNFR1 and TNFR2 expression and the ability of TNF-α
to activate these receptors in the context of the differential re-
dox status that exists in different cell types [35,40–44]. More-
over, sustained TNF-α signaling and the adverse effects of its
over-activation have received wide attention because of their
effects on cell death and inflammatory pathways in cardio-
myocytes [38]. The physiologically relevant and/or sub-in-
flammatory effects of TNF-α in regulating cytoprotective me-
chanisms (involving Nrf2) in cardiomyocytes are poorly under-
stood. Given that (i) a broad spectrum of biological effects of
TNF-α depends on the type and growth state of the target cell
[45], (ii) its signaling is not constitutive within the heart but
rather is temporally coupled to the response to metabolic or
oxidative stress [46–48], it is important to note that the re-
sponse to cytokines will be cell specific. Here, the concentra-
tions of TNF-alpha (1–50 ng/ml) used encompass for the first
time the range from sub-inflammatory to inflammatory with the
impact on the Keap1/Nrf2 signaling pathway in cardiomyocytes.
Further, we have tested the hypothesis, that TNF-α dependent
activation is essential for redox regulation of Keap1/Nrf2 using
HL-1 cardiomyocytes and TNFR1/2 DKO mice.
2. Methods

2.1. Reagents and antibodies

TNF–α, Claycomb medium, Fetal Bovine Serum, nor-
epinephrine, gelatin and fibronectin were purchased from Sigma
(St. Louis, MO, USA). Trypsin, PBS, Penicillin/streptomycin, L-glu-
tamine etc., were obtained from Life technologies (Carlsbad, CA,
USA). Reagents for RNA extraction and real-time RT-PCR quantifi-
cation were purchased from Qiagen (Valencia, CA, USA). The pri-
mers used in this study were obtained from IDT technologies,
(Coralville, IA, USA). The fluorescent probes Annexin V-FITC, Pro-
pidium Iodide (PI), 2′,7′-dichlorodihydrofluorescein diacetate
(H2DCFDA) were from Molecular Probes/Invitrogen Corp., (Carls-
bad, CA, USA). TransAM kit for Nrf2 was purchased from Active
motif (Carlsbad, CA, USA). Glutathione kit was from Cayman (Ann
Arbor, MI, USA). Protein assay reagent was from Biorad (Hercules,
CA, USA). PVDF membrane was obtained from Millipore (Billerica,
MA, USA). Antibodies were obtained from different sources and
they are as follows: Catalase (219,010, Calbiochem, Merck KGaA,
Germany), the following from Abcam (Cambridge, MA, USA):
glutathione peroxidase (GPX1; ab22604), NQO1 (ab34173), SOD1
(ab13498), SOD2 (ab13534), GCLC (ab41463), GCLM (ab81445),
GAPDH (ab9485) and G6PD (NB100-236, Novus Biologicals, CO,
USA). Secondary rabbit and mouse antibodies conjugated with
horseradish peroxidase IgG were purchased from Vector Labora-
tories (Burlingame, CA, USA). ECL kit was obtained from Thermo
Fisher Scientific (Waltham, MA, USA).

2.2. Cell culture and treatments

HL-1 mouse cardiomyocytes were cultured in 0.02% gelatin and
fibronectin pre-coated cell culture grade plates/flasks using Clay-
comb medium supplemented with 10% fetal bovine serum, 1%
penicillin/ streptomycin, 1% L-glutamine and Norepinephrine at
37 °C in 5% CO2�95% air. Cells were cultured in 6 well, T-25 or
60 mm culture plates. All the TNF-α treatment was carried out in
serum free media. Cells were treated with different concentrations
of TNF-α (0, 1, 2, 5, 10 and 50 ng/ml) for 2 h and 24 h and washed
with ice cold phosphate buffered saline (PBS) and used for further
analysis.

2.3. Annexin-V Staining and FACS analysis

Annexin V binding was used to measure the apoptosis in cells.
After TNF-α treatment, untreated and treated cells were washed
with PBS. The harvested cells were centrifuged and the pellets
were suspended in buffer containing annexin V-FITC, PI and were
incubated in the dark for 15 min in room temperature. Untreated
single cell events were gated and used as a control for the analysis.
At least 10,000 cells were counted for each measurement. The
stained cells were tested using flow cytometer (Becton Dickinson)
and analyzed using Cell Quest (BD Biosciences) software.

2.4. Measurement of DCFDH-reactive signals

HL-1 cardiomyocytes were grown in 6 well plates treated with
TNF-α at indicated concentrations. The treated cells were washed
with PBS followed by H2DCFDA (5 mM) incubation for 30 min in
the dark. The unbound H2DCFDA was removed by washing with
PBS and H2DCFDA fluorescence was visualized and images were
captured using fluorescence microscopy. The fluorescence in-
tensity was measured using Image J and graphs were made using
Graph pad Prism software.



Table 1
Primer list used for the semi-quantitative and quantitative
PCR.

Genes Sequences (5′….3′)

mNrf2 F CTGAACTCCTGGACGGGACTA
mNrf2 R CGGTGGGTCTCCGTAAATGG
mKeap1 F TGCCCCTGTGGTCAAAGTG
mKeap1 R GGTTCGGTTACCGTCCTGC
mCat F GGAGGCGGGAACCCAATAG
mCat R GTGTGCCATCTCGTCAGTGAA
mGpx 1 F CCACCGTGTATGCCTTCTCC
mGpx 1 R AGAGAGACGCGACATTCTCAAT
mNqo1 F AGGATGGGAGGTACTCGAATC
mNqo1R TGCTAGAGATGACTCGGAAGG
mSod-1 F AACCAGTTGTGTTGTCAGGAC
mSod-1 R CCACCATGTTTCTTAGAGTGAGG
mSod2 F TGGACAAACCTGAGCCCTAAG
mSod2 R CCCAAAGTCACGCTTGATAGC
mGclc F GGACAAACCCCAACCATCC
mGclc R GTTGAACTCAGACATCGTTCCT
mGclm F CTTCGCCTCCGATTGAAGATG
mGclm R AAAGGCAGTCAAATCTGGTGG
mGapdh F TGACCTCAACTACATGGTCTACA
mGapdh R CTTCCCATTCTCGGCCTTG
mG6pd F TCAGACAGGCTTTAACCGCAT
mG6pd R CCATTCCAGATAGGGCCAAAGA
mTnfr1 F CCGGGAGAAGAGGGATAGCTT
mTnfr1 R TCGGACAGTCACTCACCAAGT
mTnfr2 F GCCCAGGTTGTCTTGACACC
mTnfr2 R CACAGCACATCTGAGCCTTCC
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2.5. Immunofluorescence determination of Nrf2 nuclear
translocation

Nuclear translocation of Nrf2 induced by TNF-α was de-
termined by immunofluorescence and TransAM Nrf2 binding as-
say. At the end of TNF-α treatment, cells were fixed with 4% par-
aformaldehyde at 37 °C for 15 min and rinsed with PBS containing
2% BSA. Cells were then permeabilized with 1% Triton X-100 25 °C
for 30 min. Followed by rinsing with PBS, cells were incubated
with anti-Nrf2 antibody (1:500) for 2 h and incubated with red-
fluorescent Alexa Flour 594 rabbit anti-mouse IgG antibody for 1 h.
DAPI (Abcam) was used to stain the nuclei. The cells were imaged
using a Nikon Eclipse A1 Microscopy System and the intensity was
measured using Image J software.

2.6. ELISA based measurement of Nrf2 activity

Briefly, 10 mg of nuclear extracts from each sample in triplicate
were incubated in a 96-well plate that was coated with oligonu-
cleotide containing a consensus binding site for Nrf2. For compe-
titive binding experiments, which measure the specificity of the
assay, 10 μg of nuclear extract from the TNF-α-treated cells were
assayed in the presence of wild-type or mutated competitor oli-
gonucleotides. After 1 h of incubation, the wells were washed and
incubated with 100 μl of a 1:1000 dilution of rabbit polyclonal
antibody against Nrf2. Incubation with normal rabbit polyclonal
IgG was also performed separately to determine the specificity of
the Nrf2 antibody. The wells were then washed, followed by in-
cubation with 100 μl of a 1:1000 dilution of horseradish perox-
idase-conjugated, anti-rabbit secondary antibody at room tem-
perature. The wells were developed using 100 μl of TMB substrate
for 15 min before addition of 100 μl of stop solution. Absorbance
was read at 450 nm with a reference wavelength of 650 nm using
a plate reader from Bio-Rad Laboratories. All the values for the
TNF-α treated samples (for each concentration) were divided by
the control values and expressed as a fold expression.

2.7. RNA isolation, reverse transcription, and gene expression using
qPCR analysis

Total RNA was isolated from control and TNF-α treated HL-1
cells or TNFαR1/R2-DKO mouse heart using Qiagen RNeasy Mini
kit and 1.25 mg RNA was processed for cDNA synthesis using Qia-
gen reverse transcription kit (205,311) as per the supplier in-
structions. An aliquot of cDNA template (25–50 ng), 10 μl of
QuantiFast SYBR green master mix (204,054), and appropriate
primers were used for quantitative real-time RT-PCR (qPCR) ana-
lysis and analyzed in a Light Cycler (Roche Bio) [49]. Fold changes
of mRNA expression of different targets were quantified using Ct
values, and the relative mRNA expression levels for all samples
were obtained by normalizing to the level of the housekeeping
gene Arbp1 or Gapdh mRNA expression. All the primers used for
qPCR were given in Table 1. Semi-quantitative PCR was also car-
ried out for TNFR1, TNFR2 and GAPDH using gene specific primer
by following PCR conditions; an initial denaturation at 95 °C for
3 min followed by 95 °C for 30 s, 60 °C for 30 s, 72 °C for 45 s, and
finally an extension at 72 °C for 5 min. The PCR products were run
in 2% agarose gel and the products were seen at �100 bp sizes by
ethidium bromide staining [50] using Amersham Imager 600 RGB.

2.8. Preparation of cell lysates, heart homogenates, SDS-PAGE, and
immunoblotting

Cells lysates were prepared from control and TNF-α treated HL-
1 cardiomyocytes using lysis buffer (20 mM HEPES, 400 mM NaCl,
1.5 mM EDTA, 1.5 mM MgCl2, with freshly prepared 0.1 mM
phenyl methylsulfonyl fluoride (PMSF), 1 mM dithiothreitol, 1%
Triton X-100, pH 7.9), and centrifuged at 6000 rpm for 10 min.
Heart tissues from WT and TNFR DKO mice were harvested and
flash-frozen in liquid nitrogen. Tissue homogenates were prepared
using cytosolic extraction buffer (10 mM HEPES, 60 mM KCl, 1 mM
EDTA with freshly prepared 0.1 mM phenyl methylsulfonyl fluor-
ide (PMSF), 1 mM dithiothreitol and 1% Triton X-100), and cen-
trifuged at 5000 rpm for 6 min. Equal amount (25 mg) of proteins
were resolved by electrophoresis on 10% polyacrylamide gels and
electrotransferred to PVDF membrane and blocked using 5% milk.
After incubation with specific primary antibodies against NQO1,
HO-1, G6PD, GCLC, GCLM, GPX1, SOD1, SOD2 and CAT, the mem-
branes were washed with PBS-Tween 20 and incubated with
horseradish peroxidase conjugated with anti-rabbit or anti-mouse
IgG for 1 h. The antigen-antibody complex was detected using an
ECL chemiluminescence kit. The same membranes were stripped
and reprobed with Gapdh antibodies. Quantification of specific
protein signals were performed using ImageJ software and were
normalized to the signal intensity of GAPDH [51].
2.9. Measurement of glutathione levels

Intracellular levels of reduced GSH and GSSG were assessed by
a GSH detection kit from Cayman (Ann Arbor, MI, USA). In brief,
MES buffer was used to prepare the cell extracts and centrifuged at
500 rpm for 5 min at 4 °C. An aliquot of the supernatant was taken
for protein determination and equal amount of 10% MPA (meta-
phosphoric acid, Cat. No. 239,275, Sigma) was added to the re-
maining samples to precipitate the proteins. 100 μl of the MPA
extracts were treated with TEAM (triethanolamine) reagent and
additionally GSH and GSSG standards were prepared and pro-
cessed similarly to prepare a standard graph. After deproteination,
10 μl of 1 M 2-vinylpyridine was added and then the assay was
performed as per the manufacture's instruction using a plate
reader (Bio-Tek; epoch) [49].
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2.10. Animals

C57BL/6�129 S background breeding pairs of male and female
WT and TNF-α receptors knockout (TNFR-DKO, Cat #003243) mice
were obtained from Jackson Laboratory. All the mice were main-
tained in pathogen free facility with 12 h day/night cycle and the
mice were fed with standard rodent diet and water ad libitum and
humanely treated accordance with Guidelines for the Care and Use
of Laboratory Animals from the National Institutes of Health. The
mice were genotyped using PCR primers and protocols re-
commended by Jackson Laboratories. All the animal experiments
were approved by institutional animal Care and Use Committee
Fig. 1. TNF-α treatment in cell viability and apoptosis in HL-1 cardiomyocytes. HL-1 cells
cells were stained with annexin-V/FITC and read immediately by flow cytometry to me
concentration of TNF-α (B) and percentage dead cells (C) relative to that of control. (D
fragments of caspase-3 and PARP was determined by immunoblotting. 'þ ' indicates Stau
significance was calculated by Mann Whitney test, where *po0.05 vs untreated contro
(IACUC), University of Utah, Utah, USA. Age-matched WT and
TNFR-DKO mice were used to study the effect of TNFR-DKO on
Nrf2 dependent antioxidant protein expression.
2.11. Statistical analysis

Data are expressed as mean7SD. “Mann Whitney test” was
used to determine significant differences between control and
TNF-α treated groups and all the statistical comparisons were
made between control and TNF-α treated groups. p Values smaller
than 0.05 were considered statistically significant.
were treated with TNF-α 1, 2, 5, 10, 50 ng/ml for 24 h. (A) At the end of experiment,
asure the extent of apoptosis (n¼3). Quantification of percentage live cells at each
) HL-1 cells treated with TNF-α as in Panel A and protein expression for cleaved
rosporine, a positive control. Equal loading was analyzed by anti-GAPDH. Statistical
l.



G. Shanmugam et al. / Redox Biology 9 (2016) 77–89 81
3. Results

3.1. Dose dependent effects of TNF-α on the survival of HL1
cardiomyocytes

First, the survival of HL-1 cardiomyocytes were assessed fol-
lowing exposure to TNF-α (1 ng, 2 ng, 5 ng, 10 ng and 50 ng/ml) for
24 h followed by staining with annexin V and propidium iodide
(PI). Low concentrations of TNF-α (1 ng, 2 ng and 5 ng) did not
cuase significant apoptosis and cell death, while 10 ng/ml reduced
survival by approximately 20% which was further decreased to 72%
at 50 ng/ml (Fig. 1A–C). We next determined if TNF-α induced
apoptosis in HL-1 cardiomyocytes was associated with caspase-3
activation and PARP-1 cleavage, two hallmarks of apoptosis. As
illustrated in Fig. 1D, there was negligible detection of cleaved
caspase fragment (p17) in at the low TNF-α concentration (1–5 ng/
ml) while at concentrations of 10 ng and 50 ng/ml proteolytic ac-
tivation of pro-caspase 3 was detected. Since PARP-1 cleavage is
widely recognized as characteristic of the execution phase of cell
Fig. 2. TNF-α induced ROS levels in HL-1 cardiomyocytes by H2DCFDA. (A) HL-1 cell
munofluorescence analysis was performed using H2DCFDA (green fluorescence, 5 mM). T
20� magnification. (B) Three different fields were randomly counted for green positive
TNF-α relative to that of control was depicted. Statistical significance was calculated by M
color in this figure legend, the reader is referred to the web version of this article.
death, we next determined PARP-1 degradation. Consistent with
the previous data at doses ranging from 10 ng and 50 ng/ml, the
extent of PARP cleavage was increased (Fig. 1D) and, taken to-
gether, these data show that the higher doses of TNF-α induce
apoptosis.

3.2. Dose dependent effects of TNFα on the generation of ROS in HL1
cardiomyocytes

It has been shown that TNF-α induces a pro-oxidant environ-
ment in the cell as measured by a number of methods including a
range of structurally diverse fluorescent dyes, lipid and protein
oxidation [52–54]. In the present study we used DCFDH to detect
treatment change in the intracellular oxidative milieu [55–57].
Untreated control cells displayed very low levels of DCFDH-de-
pendent fluorescence. While 2–5 ng/ml TNF-α treatment of HL-1
cells for 2 h showed a moderate, yet significant DCF- fluorescence
(Fig. 2A and B), that was further intensified at 10 ng/ml–50 ng/ml
consistent with an increased oxidative intracellular milieu. These
s were treated with indicated concentrations of TNF-α (as in panel 1 A) and im-
he cells were visualized using fluorescence microscopy and images captured using
cells using Image J and the average fluorescence intensity of each concentration of
ann Whitney test, where *po0.05 vs control. For interpretation of the references to



Fig. 3. TNF-α treatment on Nrf2 Nuclear translocation in HL-1 cardiomyocytes. (A) Representative immunofluorescence photomicrograph (original magnification, 20� ) from
control and 2 h and 24 h TNFα-treated HL-1 cells (2, 5, 10, 50 ng/ml) showing Nrf2 nuclear localization. DAPI was used as a nuclear counterstain. Data are representative of
3 independent experiments. Relative fluorescence intensity was calculated for Nrf2 nuclear translocation for (B) 2 h and (C) 24 h. Statistical significance was determined by
Mann Whitney test, where *po0.05 compared with untreated control. For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.
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levels of DCF fluorescence were moderately sustained at 24 h (data
not shown).

3.3. TNF-α, at low concentrations, induces nuclear translocation of
Nrf2 along with enhanced Nrf2 transcript expression and antioxidant
proteins in HL1 cardiomyocytes

Since an increased pro-oxidant environment can promote nu-
clear accumulation of Nrf2 protein and activate Nrf2/EpRE sig-
naling [11,49], we next determined if TNF-α exposure resulted in
modulation of Nrf2-dependent antioxidant expression in HL-1
cardiomyocytes. HL-1 cardiomyocytes were treated with TNF-α
(1–50 ng/ml, 2 and 24 h) and immunofluorescence analysis was
used to detect the localization of the endogenous nuclear Nrf2
protein. In control cells, a fraction of the Nrf2 was found in the
nucleus (Fig. 3A and B control �2 h) which was substantially in-
creased by treatment with 2 or 5 ng/ml TNF-α (Fig. 3A and B). In
contrast, 10 ng and 50 ng/ml TNF-α did not result in significant
translocation of Nrf2 to the nucleus (Fig. 3A and B). TNF-α ex-
posure at 24 h gave essentially similar results consistent with a
sustained translocation of Nrf2 to the nucleus (Fig. 3A and C). We
next determined if the nuclear translocated Nrf2 was capable of
binding to the EpRE following TNF-α exposure. An ELISA based
Nrf2 transcription factor assay was performed on the nuclear ex-
tracts treated with and without TNF-α. A 2 fold increase in the
Nrf2 binding was observed in HL-1 cardiomyocytes stimulated
with 2 ng/ml TNF-α between 30 min and 2 h which again was not
evident at the higher concentrations (Fig. 4A and B). Taken to-
gether, these results demonstrate that TNF-α at the lower con-
centrations induces nuclear translocation of Nrf2 and leads to in-
creased DNA binding activity. Next, we assessed if the effect of
TNF-α signaling on increased Nrf2 nuclear levels is due to an
overall increase in Nrf2 transcription by quantitative real time PCR
analysis. A 3 fold stimulation of Nrf2 gene expression was noted as
early as 2 h at 5 ng/ml but decreased at the 10 ng and 50 ng/ml
concentrations (Fig. 4C). After 24 h TNF-α stimulation resulted in a
significant increase in Nrf2 gene expression even at the lower
concentrations of 2 ng/ml (po0.05, Fig. 4D). Similar to 2 h treat-
ment, the Nrf2 gene expression was found to approach the base-
line levels at 24 h when treated with higher concentration of TNF-
α (10 ng and 50 ng/ml). These data indicate that lower doses of
TNF-α activated Nrf2 gene expression while higher doses are re-
pressive. As shown in Fig. 5, we observed a robust differential
regulation of Nrf2 target genes 24 h after TNF-α treatment
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Fig. 4. Nrf2 binding activity and mRNA expression in HL-1 cardiomyocytes by TNF-α treatment. Nrf2- DNA binding activity was measured using Trans-AM Nrf2 kit in control
and TNF-α treated HL-1 cardiomyocytes (n¼3). (D) 2 h and (E) 24 h. Nrf2 gene expression determined in TNF-α treated HL-1 samples for (F) 2 h and (G) 24 h by qPCR. The
relative gene expression was calculated by normalizing the mRNA levels of Nrf2 with the levels of GAPDH. In panels, d-G, statistical significance was determined by Mann
Whitney test, where *po0.05 compared with untreated control.
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consistent with translocation to the nucleus which also showed a
biphasic response with respect to concentration.

Next, we determined whether the Nrf2 target gene expression is
reflected at the protein level and thus we performed immunoblotting
analysis for these Nrf2 targets at 2 and 24 h. Increases in the protein
expression, of GCLC, GPX1, CAT, NQO1 were significantly increased at
the lowest TNF-α concentration (Figs. 6 and 7) which was further
enhanced at 2 ng/ml. The protein levels of GPX1, CAT and NQO1 at-
tained a maximal level at 2 ng/ml that paralleled with the corre-
sponding transcript expression (compare 2 ng/ml 3 vs 5A, 5B). The
biphasic effect evident in the mRNA data was paralleled in the pro-
tein data for GCLC, SOD2 and NQO1 but not for GCLM, CAT, SOD1 or
GPX1 suggesting selective differential turnover of these antioxidant
proteins with increasing concentrations of TNF-α. Next, we measured
the cellular GSH level to determine whether the Nrf2 regulated an-
tioxidant protein expression is reflected in cellular GSH synthesis.
Interestingly, we observed �1.5 and �2.0 fold increase in the levels
of reduced glutathione (GSH) and a corresponding change in the
GSH/GSSG ratio at 2 and 5 ng/ml of TNF-α treatment, respectively, at
24 h. However, the GSH levels declined and GSH/GSSG ratio shifted
to a more oxidized state in the 10 ng. Consistent with the message
and protein data, the GSH levels and GSH/GSSG ratio were sig-
nificantly decreased with exposure to 50 ng/ml TNF- α (Fig. 8).

3.4. Abrogation of TNF-αR1/R2 impairs Nrf2-dependent antioxidant
signaling in the mouse (double knockout) heart

The previous data with the HL-1 cells suggested to us that
there is a basal requirement of TNF-α signaling for maintaining
the Nrf2 response in cardiomyocytes. Considering the fact that
TNF-α mediates its effect on target cells by binding to one of its
two specific cell surface membrane receptors (TNFR1 and
TNFR2) [18], we extend the relevance of in vitro observations to
in vivo setting and assessed the requirement of basal TNFα
signaling in regulating Nrf2/ARE pathway using TNFR1 and
TNFR2 double knockout mice (TNFR-DKO). Semi quantitative
and real time PCR analysis for TNFα receptors in TNFR-DKO mice
hearts confirmed the knockdown of receptors (Fig. 9A and B).
Real time PCR analysis for Nrf2 and Keap1 indicated that there
was no change in the transcript levels of both genes (Fig. 9C).
Interestingly, the Nrf2 regulated protein levels of NQO1, HO-1,
G6PD were found to be significantly decreased (po0.05) in the
TNFR-DKO mice compared to the WT (Fig. 9D and E). The protein
expression of other Nrf2 targets such as SOD1, SOD2 and CAT
was unaffected (Fig. 9D and E).
4. Discussion

Heart is an organ with the highest O2 consumption among all
body organs that can increase consumption eightfold or more
under maximal workload conditions and Nrf2 signaling is a key
pathway that is sensitive to redox changes. Maintaining functional
redox signaling is crucial for living cells to protect them from
various pathological insults such as inflammation, apoptosis, oxi-
dative stress, toxic chemical exposure and genetic mutations. Al-
though TNF-α is well known to induce oxidative stress, mi-
tochondrial dysfunction and associated with or causally linked to a
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number of pathophysiological conditions, its primary role, at lower
concentrations is less well understood. In this context numerous
studies have highlighted the necessity of a basal physiological
maintenance of oxidants to activate and sustain the regulation of
transcription factors such as Nrf2 for control of redox modulators
necessary for cell signaling. The basal mechanisms which control
Nrf2 signaling remain elusive. The results from the present study
suggest that sub-inflammatory levels of TNF-α are necessary and
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sufficient to (i) promote Nrf2 signaling and (ii) maintain basal
transcription and translation of antioxidants in the HL-1 cardio-
myocytes/mouse myocardium.
Interestingly, certain Nrf2 targets were activated at lower con-
centrations of TNF-α such as Gclc, Gpx1, Catalase and Nqo1, whereas
others (i.e. Gclm, G6pd, Sod1, and Sod2) only at higher concentration
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of TNF-α. This could be attributed to the fact that there might be
certain ‘early-onset’ genes that are required for the initial regulatory
redox cascade and those are under the primary control of Nrf2. In
contrast, the ‘second wave genes’ that might be involved in a delayed
later maintenance cascade and those may be under secondary
control of Nrf2 that requires the interplay of other factors (activation
or repression) for subsequent gene regulation. In addition, we ob-
served a bimodal concentration dependent effect of TNF-α with re-
spect to expression of many of the Nrf2 target genes/proteins.
Overall, our results indicate that TNF-α stimulation resulted in a
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general pattern of Nrf2 dependent target activation that is consistent
with the increased nuclear Nrf2 levels and binding activity in HL-1
cardiomyocytes. Further, the TNF-α induced increase of GCLC, NQO1,
GPX1 and Catalase in combination with increased glutathione (GSH)
indicates a potential requirement for a low-dose of TNF-α to main-
tain Nrf2 signaling under basal conditions.

Our findings also show that exposure of TNF-α to cells at
concentrations well below the threshold associated with sub-in-
flammation significantly increased Nrf2 activity and its nuclear
translocation [35,42]. The transcriptional induction of Nrf2 and its
subsequent targets occurs in response to a low-dose
(42–o10 ng/ml) of TNF-α, while concentrations 410 ng/ml
were markedly suppressive and associated with cell death. In
support of a critical role for sub-inflammatory effects of TNFα,
other studies have shown that a complete neutralization and/or
chronic TNF-α blockade in the elderly resulted in impaired im-
mune function, increased risk of cancer, and cardiovascular com-
plications [27,58].

Finally, the present study with the TNFR1/2 double knockout
mice and HL-1 cardiomyocytes makes a first step forward in un-
derstanding the bimodal effects of the cytokine, TNF-α in reg-
ulating the redox-sensitive Keap1/Nrf2 antioxidant pathway. This
study has potential importance in the field of cardiovascular sig-
naling because the TNF-α induced biphasic regulation of the Nrf2
pathway suggest that a certain threshold of TNF/ROS signaling is
essential to prime and activate the Nrf2 protective signaling
pathway. This data also implies that abrogation of TNF-α signaling
similar to those that can occur in chronic anti-TNF therapy may
disrupt the sub-inflammatory basal signaling in cardiomyocytes
leading to toxicity and organ malfunction.
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