
The Journal of Logic and
Algebraic Programming 51 (2002) 157–174

��� �����	
��

��
� 	��
	
����	
�
�����	��
��

www.elsevier.com/locate/jlap

Program algebra with unit instruction operators
Alban Ponse∗

Programming Research Group, Faculty of Science, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

CWI, Department of Software Engineering, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract

In the setting of program algebra (PGA), a projection from PGAu, i.e., PGA extended with a unit
instruction operator, into PGA is defined. This is done via a composition that employs backward
jumps and (labeled) goto’s. © 2002 Elsevier Science Inc. All rights reserved.

Keywords: Program algebra; Unit instruction operator; Projection semantics

1. Introduction

Program algebra (PGA) is an area of research that provides an algebraic framework
and semantical foundations for sequential programming in assembly-like programming
languages. In [1], PGA is defined as a basic notation for such languages. Furthermore, that
paper introduces a family of languages comprising more advanced programming features.
These languages are systematically interrelated via projections (from ‘higher’ dialects into
PGA) and embeddings (mappings in the reverse direction). Motivation for PGA and further
information can be found in [1,2].

In [1,2] it is observed that theunit instruction operator, which takes a PGA program and
wraps it into a unit of length one, is a natural extension of PGA. This length is significant
for the evaluation of jumps and tests. In this paper a projection from PGA extended with
the unit instruction operator into PGA is defined. The existence of such a projection implies
that the unit instruction operator is not needed as a primitive in terms of expressiveness.
Nevertheless, this operation is of interest because:
(1) It allows for a much more flexible style of programming (just as the PGA-based pro-

gram notations with more advanced jump instructions that are closer to programming
practice).

(2) It may be a useful tool in the study of program algebra itself.

∗ Tel.: +31-20-525-7592; fax: +31-20-525-7490.
E-mail address:alban@science.uva.nl

1567-8326/02/$ - see front matter� 2002 Elsevier Science Inc. All rights reserved.
PII: S1567-8326(02)00019-X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82158721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

158 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

The first property is illustrated by two running examples throughout the paper, while the
second is demonstrated in the last two sections, wherecomposed instructionsare defined,
and analyzed with help of the unit instruction operator.

The structure of this paper is as follows: in Section 2 some basic facts about PGA
and program equivalence are recalled. In Section 3 the behavioral semantics for PGA
programs as defined in [2] is summarized. In Section 4 some variants of PGA that are
used to define the above-mentioned projection are introduced, and the projection itself
is defined in Section 5. This paper is ended with some conclusions and discussion in
Section 6.

2. The language PGA and instruction sequence congruence

In this section some basic information on PGA (taken from [2]) is recalled.

2.1. Basics of PGA

The programming language PGA is based on a parameter set� of the so-calledbasic
instructions. These are regarded as indivisible units and execute in finite time. Furthermore,
a basic instruction is viewed as a request to the environment, and it is assumed that upon
its execution a boolean value (true or false) is returned that may be used for subsequent
program control. The language PGA has two composition constructs:

Concatenation.If X andY are programs (or ‘program terms’), i.e., closed terms, then
X;Y is one as well.

Repetition.If X is a program, so is(X)ω. If no confusion can arise, the brackets in a
repetition may be dropped, e.g. ifX = a, wherea is a basic instruction, thenXω stands for
aω and ifX = a; a, thenXω stands for(a; a)ω.

Given�, the primitive instructions of PGA are the following:
Void basic instruction.All elements of�, typically a, b, ... are such instructions. When

executed, a void basic instruction generates a boolean value and the associated behavior
may modify a state. After execution, a program has to enact its subsequent instruction. If
that instruction fails to exist, inaction occurs. The attribute void expresses that subsequent
execution is not influenced by the returned boolean value.

Termination instruction.The termination instruction! yields termination of the program.
It does not modify a state, and it does not return a boolean value.

Positive test instruction.For each elementa of � there is a positive test instruction
+a. When executed, the state is affected according toa, and in casetrue is returned,
the remaining sequence of actions is performed. If there are no remaining instructions,
inaction occurs. In the case thatfalse is returned, the next instruction is skipped and
execution proceeds with the instruction following the skipped one. If no such instruction
exists, inaction occurs.

Negative test instruction.For each elementa of � there is a negative test instruction
−a. When executed, the state is affected according toa, and in casefalse is returned, the
remaining sequence of actions is performed. If there are no remaining instructions, inaction
occurs. In the case thattrue is returned, the next instruction is skipped and execution pro-
ceeds with the instruction following the skipped one. If no such instruction exists, inaction
occurs.

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 159

Forward jump instruction.For any natural numberk, the instruction #k denotes a jump
of lengthk andk is called the counter of this instruction. Ifk = 0, this jump is to the instruc-
tion itself and inaction occurs (one can say that #0 definesdivergence, which is a particular
form of inaction). If k = 1, the instruction skips itself, and execution proceeds with the
subsequent instruction if available, otherwise inaction occurs. Ifk > 1, the instruction #k
skips itself and the subsequentk − 1 instructions. If there are not that many instructions
left in the remaining part of the program, inaction occurs.

Note that withunfolding, captured by the identityXω = X;Xω and explained in Section
2.2, PGA programs refer to an execution mechanism that is left-sequential (from left to
right). This is closer to the behavioral semantics defined in [2] (and discussed in Section 3)
than would be possible when more ‘advanced’ programming features asgoto’s orbackward
jumpswere included from the start, and hence may clarify why PGA is distinguished as
most basic.

2.2. Instruction sequence congruence and canonical forms

On PGA, different types of equality can be discerned, the most simple of which is
instruction sequence congruence, identifying programs that execute identical sequences of
instructions. Such a sequence is further called aprogram object. For programs not contain-
ing repetition, instruction sequence congruence boils down to the associativity of concate-
nation, and is axiomatized by

(PGA1) (X;Y);Z = X; (Y ;Z).

As a consequence, brackets are not meaningful in repeated concatenations and will be left
out. Now letX1 = X and forn > 0, Xn+1 = X;Xn. Then instruction sequence congru-
ence for infinite program objects is further axiomatized by the following axioms (schemes):

(PGA2) (Xn)ω = Xω,

(PGA3) Xω;Y = Xω,

(PGA4) (X;Y)ω = X; (Y ;X)ω.

It is straightforward to derive from (PGA2) to (PGA4) the unfolding identity of repeti-
tion: Xω = (X;X)ω = X; (X;X)ω = X;Xω. Whenever two programsX and Y are in-
struction sequence congruent, this is writtenX =isc Y . The subscriptisc will be dropped if
no confusion can arise. Instruction sequence congruence is decidable (see [2]).

Each PGA program term can be rewritten into one of the following forms:
(1) Ynot containing repetition, or
(2) Y ;Zω, with YandZ not containing repetition.

Any program term in one of the two above forms is said to be infirst canonical form.
According to [1,2], for each closed PGA term there is a PGA program term in first canon-
ical form that is instruction sequence congruent. Canonical forms are useful as input for
further transformations.

For concise representation,Yω with Y a program term not containing repetition is also
considered a PGA program term in first canonical form in the remainder of this paper. Note
thatYω = Y ;Yω, and the right-hand side equals form (2) above.

160 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

3. Behavioral semantics for PGA programs

In this section the behavioral semantics defined in [2] is summarized. This semantics is
based on BPPA, basic polarized process algebra.

3.1. Primitives of BPPA

As is the case with PGA and its programming language PGA, BPPA is based on a
collection� of basic instructions, called ‘actions’ in the setting of behavioral semantics.
BPPA has two constants and two composition mechanisms, and is equipped with a fam-
ily of approximation operators. The constants model termination and inaction. Given�,
BPPA� denotes its associated family of program behaviors.

Termination.With S (stop) the terminating behavior is denoted; it does no more than
terminate, and has no side effect on a state.

Divergent behavior.By D (inaction or divergence) an inactive behavior is indicated. It
is a behavior that represents the impossibility of making real progress (an example of this
is a loop resulting from an infinite number of consecutive jumps, as in #0 or (#1)ω, not
yielding any observable ‘activity’). Like termination, inaction does not affect a state in
which it occurs.

The constantsS andD are contained in BPPA�. The composition mechanisms arepost-
conditional compositionandaction prefix, where action prefix is an abbreviation:

Postconditional composition.For actiona ∈ � and behaviorsP andQ in BPPA�,

P � a � Q

denotes the behavior in BPPA� that first performsa and then either proceeds withP if true
was produced, and otherwise withQ.

Action prefix.Fora ∈ � and behaviorP ∈ BPPA�,

a ◦ P = P � a � P.

3.2. Approximation of program behaviors

A program behavior is called finite if there is a finite upper bound to the number of
consecutive actions it can perform. Finite behaviors are made fromS andD by means of
postconditional composition. The definition of infinite behaviors makes use of the so-called
‘projective sequences’. These in turn requireapproximation operatorsπn (n ∈ N), which
are defined as follows:

π0(P) = D,

πn+1(S) = S,

πn+1(D) = D,

πn+1(P � a � Q) = πn(P) � a � πn(Q),

and hence,πn+1(a ◦ P) = a ◦ πn(P).
A projective sequenceis a sequence(Pn)n∈N such that for eachn ∈ N,

πn(Pn+1) = Pn.

Projective sequences can be used to represent finite as well as infinite behaviors, and
are considered equal exactly if all components are equal. A finite behaviorP is represented

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 161

by the projective sequence(πn(P))n∈N. For example,a ◦ S is represented by(D, a ◦ D, a ◦
S, a ◦ S, ...). Postconditional composition (and action prefix at the same time) is defined
on infinite behaviors (i.e. on projective sequences) as follows: letP = (Pn)n∈N andQ =
(Qn)n∈N, thenP � a � Q = (Rn)n∈N with R0 = D andRn+1 = Pn � a � Qn. One proves
the sequence(Rn)n∈N to be a projective sequence with induction onn.

Equality of infinite behaviors can easily be retrieved from equality of finite behaviors.
Two (finite or infinite) behaviors are equal exactly if for each natural numbern, the
n-th approximations of the two behaviors are equal. Finite approximations of behaviors
are considered equal if and only if they have exactly the same form.

3.3. Behavior extraction and behavioral equivalence

Semantic equations define the behavior of complex programs in terms of the behavior
of their constituent parts. Thebehavior extraction operator|_| assigns a behavior to a
program. Instruction sequence congruent programs have identical behaviors, but the be-
havioral equivalence defined by behavior extraction is not a congruence, i.e., from the fact
that|X| and|Y | are the same behavior, one cannot infer that|X;Z| and|Y ;Z| are the same
behavior (or|Z;X| and|Z;Y |, or |Xω| and|Yω|).

For any finite program objectX, its behavior is determined by

|X| = |X; (#0)ω|,
expressing that if the program ends without being able to perform an explicit termination
instruction, the program execution stagnates (which is modelled as inaction). With this
identity and unfolding, each PGA program behavior matches exactly one of the semantic
equations below. In these equations,a ranges over the basic instructions in�, u ranges over
all primitive instructions andX ranges over arbitrary program objects:

|a;X| = a ◦ |X|,
|!;X| = S,

|+a; u;X| = |u;X| � a � |X|,
|−a; u;X| = |X| � a � |u;X|.

The semantic equations for jump instructions require a case distinction on the counter of
the jump. In case the counter is zero, inaction will occur. In case the counter is one, at least
one further instruction should be present, otherwise inaction occurs. In case the counter
exceeds one, the program should contain at least two subsequent instructions; otherwise
the program becomes inactive. In the equations below,k ranges over the natural numbers.

|#0;X| = D,

|#1;X| = |X|,
|#k + 2; u;X| = |#k + 1;X|.

The above equations should be used to obtain successive steps of the behavior of a
program objectX. These equations may never generate atomic behavior. In that case the
program has a non-trivial loop and its behavior will be identified withD, for instance:
|(#1)ω| = D and |b; (#2; a)ω| = b ◦ D. Phrased differently: if for a behavior|X| the be-
havior extraction equations fail to prove|X| = S or π1(|X|) = a ◦ D for somea ∈ �, then
|X| = D.

162 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

If X has no repetition,|X| is a finite behavior. Programs with repetition can have infinite
behaviors. As an example consideraω. The equations above yield|aω| = a ◦ a ◦ a ◦ · · ·.
Using projective sequence notation:|aω| = (Pn)n∈N with P0 = D, P1 = a ◦ D, P2 = a ◦
a ◦ D, · · ·. A concise characterization of|aω| is captured by the recursive equation

|aω| = a ◦ |aω|.
Two programsX andY are behaviorally equivalent (denoted byX ≡be Y) if |X| = |Y |.

This in turn holds precisely if for alln ∈ N, πn(|X|) = πn(|Y |). It can be shown that it
is decidable whether or notX ≡be Y for closed PGA program termsX andY (see [2]).
Behavioral equivalence includes instruction sequence congruence, i.e., ifX =isc Y , then
X ≡be Y . As an example,

|bω; cω| = |bω| (1)

or, equivalently,bω; cω ≡be bω, because this is an instance of axiom (PGA3). Behavior-
al equivalence is non-compositional,1 e.g.,+a ≡be a, while +a; b �≡be a; b. For another
example, #2; a ≡be #3; a, but(#2; a)ω �≡be (#3; a)ω.

4. The unit instruction operator in PGA and PGLB

In this section theunit instruction operator, introduced in [1], is discussed. This oper-
ator takes a PGA program and wraps it into a unit of length one. This length matters in
connection with the evaluation of jumps and tests. The extension of PGA with the unit
instruction operation is denoted by PGAu. Furthermore, some variants of PGA that will be
used to define a projection semantics for PGAu are described.

4.1. PGAu and its canonical forms

The unit instruction operator, notationu(_), allows for a flexible style of PGA-program-
ming. As an example,

+a; u(bω); cω (2)

has the behavior|bω| � a � |cω|, as will be explained below. Like repetitions, units are
semipermeable, but in a complementary sense: whereas a jump to a non-starting position
in a repetition is possible and a jump out of a repetition is not, a jump out of a unit is
possible, but a jump to a non-starting position in the unit is not.

Following the intuitions given thus far, the behavior of PGAu programs might be defined
by the following equation:

|u(X);Y | = |X;Y |,
because once execution has entered the body of a unit, the unit has become transparent. The
behavioral extraction defined by this equation is called thelazy projectionof PGAu into
PGA (cf. [2]). With lazy projection the behavior of the program (2) above can be deduced
as follows:

|+a; u(bω); cω| = |u(bω); cω| � a � |cω|

1 This is the reason to use the notation≡be rather than=be.

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 163

= |bω; cω| � a � |cω|
(1)= |bω| � a � |cω|. (3)

For another example, lazy projection yields that the behavior of the program

(+a; u(+b; #5; !; c); d; +e)ω (4)

is captured by the following recursive equation:

|X| = (|X| � b � S) � a � d ◦ (|X| � e � (|X| � b � S)), (5)

where action prefix◦ is taken to bind stronger than postconditional composition. In Section
5.4 we arrive at the same characterizations (3) and (5) via a different route, namely by
using the full (or total) projection function that is defined in the following section. Lazy
projection is further discussed in Section 6.1.

The notion of the first canonical form for PGA programs (see Section 2.2) immediately
extends to PGA with units: a PGAu program is in first canonical form if it is when units
are regarded as primitive instructions, and the bodies of all units are in first canonical form
as well. The example programs (2) and (4) above both are in first canonical form. (Recall
that alsobω is considered a first canonical form in this paper.)

4.2. PGLB, PGLBg and PGLBu

In this paper some variants of PGA are used to define a projection semantics for PGAu.
The most basic of these is the program notation PGLB (see [1,2]), which is defined by add-
ing backward jumps to PGA and omitting repetition (which has then become a redundant
feature):

Backward jump instruction.For any natural numberk, the instruction\#k denotes a
backwards jump of lengthk. If k = 0, this jump is to the instruction itself and inaction oc-
curs. Ifk > 0, the instruction\#k moves execution to proceed atk instructions backwards.
If there are not that many instructions in the preceding part of the program, inaction occurs.

The program notation PGLBg (PGLB with labels and goto’s) is defined as a variant
of PGLB by leaving out the forward and backward jumps, and adding labels and goto’s2.
Assume a decidable and infinite set of labels as a (second) parameter of PGLBg. The added
instructions are these:

Label catch instruction.The label catch instruction has the formLσ for σ some label.
Upon execution, this instruction is simply passed and cannot modify a state. If there is no
subsequent instruction to be executed, inaction occurs.

Absolute goto instruction.This instruction takes the form ##Lσ for σ some label, and
represents a jump to the leftmost occurrence of the label catch instructionLσ in the pro-
gram. If there is no such instruction, inaction occurs.

The language PGLBg can be seen as an extension of PGLB, in which the latter can be
embedded: it is not hard to add (forward and backward) jumps to PGLBg, but this is not
done as these can simply be emulated.

Finally, the extension of PGLB with the unit instruction operation is denoted by PGLBu.
The reason to consider PGLBu (next to PGAu) is that units have a clear-cut (syntactical)
internal length (number of instructions): a length measure on repetitions is not anymore
an issue. The internal length of a unitu(X), i.e. the number of instructions ofX (in which

2 This extension reflects the one defined in [1] on PGLD.

164 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

occurrences ofu(_) are counted as single instructions), is further called itsunit-length.
Having units with a fixed, finite unit-length, one can keep track of the position within a
unit, and for forward jumps also of the unit-length of all encompassing units.

5. Projecting PGAu into PGA

In this section a (relatively simple) program algebra projection function from PGAu into
PGA is described. Following the notational conventions in [1], the projection from PGAu
into PGA is denoted bypgau2pga (from PGAu to PGA). This projection is defined as a
composition of four mappings (embeddings or projections):

PGLBu
pglbu2pglbg−→ PGLBg

pglbg2pglb−→ PGLB�pgau2pgbu �pglb2pga

PGAu
pgau2pga−→ PGA

where the projectionpglbu2pglb constitutes the algorithmic kernel. In the following sec-
tions each of these mappings is described in detail. (Except for the projectionpglb2pga
these mappings were not defined before.)

5.1. Embedding PGAu in PGLBu

The embeddingpgau2pgbu is defined on program terms in first canonical form (see
Section 4.1). Fork, n > 0,

pgau2pgbu(u1; . . . ; uk) = ψ(u1); . . . ;ψ(uk),

pgau2pgbu((u1; . . . ; un)ω) = ψ(u1); . . . ;ψ(un); (\#n)max(m,2)

wherem is the maximum of the jump counters occurring inu1; . . . ; un and 0 otherwise,

pgau2pgbu(u1; . . . ; uk; (uk+1; . . . ; uk+n)
ω)

= ψ(u1); . . . ;ψ(uk);ψ(uk+1); . . . ;ψ(uk+n); (\#n)max(m,2)

wherem is the maximum of the jump counters occurring inu1; . . . ; uk+n and 0 otherwise,
and where the auxiliary operationψ is defined as follows:

ψ(u(X)) = u(pgau2pgbu(X)),

ψ(u) = u otherwise.

Application ofpgau2pgbu to the two previously mentioned examples yields:

pgau2pgbu(+a; u(bω); cω)
= +a; u(pgau2pgbu(bω)); c; \#1; \#1

= +a; u(b; \#1; \#1); c; \#1; \#1,

pgau2pgbu((+a; u(+b; #5; !; c); d; +e)ω)

= +a; u(+b; #5; !; c); d; +e; \#4; \#4; \#4; \#4; \#4.

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 165

5.2. Embedding PGLBu in PGLBg

The embeddingpglbu2pglbg is defined inductively, where sequences of natural num-
bers are used as labels: the empty sequence is writtenε, and “,” is used as a separator
between the natural numbers occurring in a sequence. First,

pglbu2pglbg � pglbu2pglbgεε .

In the definition ofpglbu2pglbgρσ below, the subscripted sequenceσ is used to keep
track of the relative position in a unit and that of all encompassing units, while the super-
scripted sequenceρ records the current unit-length and that of all encompassing units. Note
that by definition,σ andρ have equal length. The embeddingpglbu2pglbgρσ uses auxiliary
functionsf_target (forward target) andb_target (backward target) that compute the
label of goto’s, and is defined as follows:

pglbu2pglbgρσ (u1, . . . , uk) = ϑ
ρ
1,σ (u1); . . . ;ϑρ

k,σ (uk),

where the auxiliary operationϑρ
j,σ (u) is defined by:

ϑ
ρ
j,σ (#l) = Lj, σ ; ##Lf_target(l, (j, σ), ρ),

ϑ
ρ
j,σ (\#l) = Lj, σ ; ##Lb_target(l, (j, σ)),

ϑ
ρ
j,σ (+a) = Lj, σ ; +a; ##Lf_target(1, (j, σ), ρ); ##Lf_target(2, (j, σ), ρ),

ϑ
ρ
j,σ (−a) = Lj, σ ; −a; ##Lf_target(1, (j, σ), ρ); ##Lf_target(2, (j, σ), ρ),

ϑ
ρ
j,σ (u(X)) = Lj, σ ; pglbu2pglbgk′,ρ

j,σ (X)′ wherek′ is the length ofX,

ϑ
ρ
j,σ (u) = Lj, σ ; u otherwise,

and where the auxiliary functions

f_target : N × N∗ \ {ε} × N∗ → N∗ \ {ε},
b_target : N × N∗ \ {ε} → N∗ \ {ε}

are defined by:

f_target(l, j, ε) = l + j,

f_target(l, (j, j ′, σ), (k, ρ)) =
{
(l + j), j ′, σ if l + j � k,
f_target(l + j − k, (j ′, σ), ρ) otherwise.

(Explanation of the last clause: there arek − j steps possible on levelj, j ′, σ , sol + j − k

are to be done on levelj ′, σ .)

b_target(l, j) = max(0, j − l),

b_target(l, (j, j ′, σ)) =
{
(j − l), j ′, σ if j − l � 1,
b_target(l − j + 1, (j ′, σ)) otherwise.

(Explanation of the last clause: on levelj, j ′, σ there arej − 1 steps possible, sol − j + 1
remain on levelj ′, σ .)

166 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

Fig. 1. First example (continued) onpglbu2pglbg.

Note that if one starts from programs in first canonical form, the last clause ofb_target
(l, (j, j ′, σ)) is redundant. In Figs. 1 and 2,pglbu2pglbg is applied to the examples pre-
viously described.

5.3. Projecting PGLBg into PGLB

The projectionpglbg2pglb is defined by

pglbg2pglb(u1; . . . , uk) = ψ1(u1); . . . ;ψk(uk),

where the auxiliary operationψj is defined as follows:

ψj (##Lσ) =



#n if the leftmost occurrence ofLσ is n instructions forward,
\#n if the leftmost occurrence ofLσ is n instructions backward,
#0 otherwise,

ψj (Lσ) = #1,

ψj (u) = u otherwise.

In Fig. 3,pglbg2pglb is applied to the examples previously described.

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 167

Fig. 2. Second example (continued) onpglbu2pglbg.

5.4. Projecting PGLB into PGA

The projectionpglb2pga is defined in [1], and reads

pglb2pga(u1; . . . ; uk) = (ψ1(u1); . . . ;ψk(uk); #0; #0)ω,

168 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

Fig. 3. Examples (continued) onpglbg2pglb.

where the auxiliary operationψj is defined by:

ψj (#l) = #l if j + l � k,

ψj (#l) = #0 if j + l > k,

ψj (\#l) = #k + 2 − l if l < j,

ψj (\#l) = #0 if l � j,

ψj (u) = u otherwise.

In Fig. 4, pglb2pga is applied to the examples previously described. Extracting the
behavior of the uppermost PGA program yields|bω| � a � |cω|, where|bω| abbreviates
b ◦ b ◦ b ◦ · · ·, or equivalently,|bω| = b ◦ |bω|. This behavior equals (3), the behavior that
was extracted with lazy projection in Section 4.1.

Extracting the behavior of the second PGA program, sayX, is a tedious exercise. With
unfolding the following characterization can be found:

|X| = (|X| � b � S) � a � d ◦ (|X| � e � (|X| � b � S)).

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 169

Fig. 4. Examples (continued) onpglb2pga.

This exactly matches the behavior of the originating PGAu program (4), i.e.,

(+a; u(+b; #5; !; c); d; +e)ω,

that was expected in Section 4.1 (cf. characterization (5) in that section).

6. Conclusion and digression

In this paper a projection from PGAu, i.e., PGA with unit instruction operators, into
PGA is described in detail. The resulting projectionpgau2pga is a functional composition,
in which a projection from PGLBu into PGLBg constitutes the algorithmic kernel. This
approach is chosen because the absence of repetitions seems to allow for a simpler type
of bookkeeping. The latter projection is composed with an embeddingpgau2pgbu and the
appropriate projections into PGLB and PGA, respectively. It should be noticed that the
embeddingpgau2pgbu when restricted to PGA differs frompga2pglb as defined in [1,2].
The possible advantage of the present definition is that the instructions themselves need not

170 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

be transformed; only a sequence of backward jumps is added (and the possible occurrence
of a repetition is omitted). Finally, it can be concluded that projections for therelevantPGA
programming notations with unit instruction operators, i.e. PGAu and PGLBu, are covered
in this paper: for the program notations with more advanced programming features (see
this issue) there is no reason to add a unit instruction operation, as its effect can easily be
mimicked.

This paper is ended with a brief discussion of some topics that relate to the unit instruc-
tion operator:
(1) Equations for instruction sequence congruence and lazy projection of PGAu.
(2) Second canonical forms for PGAu.
(3) Composed instructions.
(4) Bisimulation equivalence.

Lazy projection was already mentioned in Section 4.1. The second topic discusses a
refinement of the first canonical form for PGAu for which the projection into PGA yields
in some cases much more concise programs.Composed instructions, i.e., propositional
combinations of basic instructions as may occur in conditions in imperative programming
languages, comprise an example of the unit instruction operator, as these can be simply
rewritten into PGAu programs. Finally,bisimulation equivalenceon PGAu programs co-
incides with behavioral equivalence and can be decided in polynomial time. Therefore,
the equivalence of conditions with a side effect as may occur in imperative programming
languages, can be decided in polynomial time.

6.1. Equations and lazy projection for the unit instruction operator

First, observe that the following equations are valid in the setting of instruction sequence
congruence:

u(u) = u,

u(u(X)) = u(X),

u(u(X);Y) = u(X;Y).
These equations can (of course) be used to remove occurrences of the unit instruction
operator, thus allowing a more efficient projection of PGAu into PGA.

Next, in [1] it is stated that the semantic equations for PGAu satisfy

|u(X)| = |X|, |u(X);Y | = |X;Y |.
Note that the first equation follows from the second one and the equation|X| = |X; (#0)ω|
(the latter equation is present in [2]). These equations were given the characterizationlazy
projectionin Section 4.1 and in [2], as opposed to the global or full projectionpgau2pga
defined in Section 5. It remains to be shown that lazy projection matches global projection
for PGAu. Of course, the equations for lazy projection are so natural that one might give
these the status of a definition. In that perspective it remains to be shown that the projection
pgau2pga is correct, i.e.,|pgau2pga(X)| = |X|.
6.2. Towards a second canonical form forPGAu

A PGA program is insecond canonical formif it is in first canonical form and satisfies
the following two requirements:
(1) There are no chained jumps (i.e., subsequences of the form #n + 1; u1; . . . ; un; #m).

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 171

(2) Counters used for a jump into the repeating part are as short as possible.
In [1,2] a transformation from first canonical form to second canonical form is de-

scribed. The congruence that respects this transformation is calledstructural congruence,
notation=sc, and properly includes instruction sequence congruence. For example,

#2; a; #3; b =sc #5; a; #3; b,
a; #9; (+b; !; c)ω =sc a; #3; (+b; !; c)ω.

One can extend the definition of the second canonical form as described in [1,2] to PGAu
in the same way as was done with the first canonical form, except for the additional re-
quirement thatall jumps are “as short as possible”. This refers to the situation where a
jump exceeds the scope of a unit. The motivation to do so is that in some cases projecting
a second canonical form yields a much more concise projection into PGA than the related
first canonical form. The program

(+a; u(+b; #13; !; c); d; +e)ω

is not in second canonical form, as #13 can be minimized while preserving “structural
congruence": the annotation

(

13
9
5+a;

10
6
u(+b; #13; 1!; 2

c);
11
7
3
d;

12
8
4+e)ω

clarifies that

(+a; u(+b; #5; !; c); d; +e)ω (6)

is in second canonical form. Clearly,pgau2pga projects the latter program to a much
more concise PGA program than the former one. Obviously, the jump #k in the skeleton
(+a; u(+b; #k; !; c); d; +e)ω is minimal if k � 6. Of course, in the case of nested units
the transformation into second canonical form is less simple, and is not considered here.

6.3. Composed instructions

In this section propositional composition of basic PGA instructions is introduced.
Projecting composed instructions into PGA can be done with help of the unit instruction
operator in a natural way, and thus provides an application of this operator. Composed
instructions are built from� in the following way (φ,ψ ranging over composed instruc-
tions):

Negation.The composed instruction¬φ has the same atomic behavior (sequence of
actions) asφ and produces the negation of whatφ produces.

Left-sequential conjunction.The composed instructionφ ψ produces the result ofψ
if φ producestrue and then has the same atomic behavior asφ;ψ , otherwise it produces
false while behaving asφ.

Left-sequential disjunction.The composed instructionφ ψ producestrue if φ does
so and has the same atomic behavior asφ in that case, and otherwise it produces the result
of ψ while behaving asφ;ψ .

Composed instructions may be turned into composed test instructions by the prefix+
or −. Furthermore, composed instructions are projected into PGAu as follows:

φ �→ u(+φ; #1),

172 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

−φ �→ u(+φ; #2),

+¬φ �→ −φ,

+(φ ψ) �→ u(−φ; #3; +ψ),

+(φ ψ) �→ u(+φ; #2; +ψ).

As an example, setφ = +(¬a b); c andψ = +¬(a ¬b); c. Then

|φ| = |u(u(−a; #2); #3; +b); c| = |u(−a; #2; #3; +b); c|,
|ψ | = |u(u(+a; #2; −b); #2); c| = |u(+a; #2; −b; #2); c|,

which indeed are the same:

a b |φ| |ψ |
true true a ◦ D a ◦ D
true false a ◦ D a ◦ D
false true a ◦ b ◦ c ◦ D a ◦ b ◦ c ◦ D
false false a ◦ b ◦ D a ◦ b ◦ D

Composed instructions can be regarded in a fixed context, e.g. in the template

Rφ = +φ; #3; WF; !; WT; !
with φ a composed instruction.Rφ produces the observable actionWT (“write true”) in case
φ yields true, and the observable actionWF (“write false”) otherwise. NowRφ ≡be Rψ

if and only if φ ≡be ψ . The above shows that in principle there exists a procedure for
decidingφ ≡be ψ (namely, via the projectionpgau2pga). Furthermore, this can be decid-
ed in polynomial time by employingbisimulation equivalenceas discussed below. As a
consequence, the equivalence of propositions with a side effect as may occur in conditions
in programming languages as C [5] or Java [3], is decidable in polynomial time.

6.4. Bisimulation equivalence

One can define a version of bisimulation equivalence [6] that identifies two programs
whenever they give rise to step-wise similar behavior. Below this equivalence is sketched
for PGA programs of the form

X;Yω,

whereX andYdo not contain repetition. In terms of behavior, this particular variant of the
first canonical form is not a restriction by the identification

|X| = |X; (#0)ω|,
or,X ≡be X; (#0)ω. Now two programsX andY of the above form arebisimilar, nota-

tion

X ∼ Y

if there exists a binary relationB that relates the “instruction positions” ofX with those of
Ysuch that(1, 1) ∈ B, and whenever(i, j) ∈ B and theith instruction ofX gives rise to an

A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174 173

atomic behavior, then thej th instruction ofY should match this behavior and vice versa,
and the resulting instruction positions should again be inB. Such a relation is then called a
bisimulation. For example,

a; (+b)ω ∼ +a; bω
are related by the bisimulation{(1, 1), (2, 2)} and for a less trivial example,

a; (b; +c)ω ∼ a; #2; (#1; b; +c; #7; #8; d; b; +c; #2; #3)ω. (7)

As to the latter example, annotate both programs with instruction positions:

a1; (b2; (+c)3)ω,
a1; (#2)2; ((#1)3; b4; (+c)5; (#7)6; (#8)7; d8; b9; (+c)10; (#2)11; (#3)12)ω.

A bisimulation that witnesses (7) is the relationR defined by

R = {(1, 1), (2, 2), (2, 3), (2, 4), (2, 6), (3, 5), (3, 7)}.
Another bisimulation that also witnesses (7) is

R′ = R ∪ {(2, 9), (2, 11), (3, 10), (3, 12)}.
For PGA programs, a bisimulation relation as described above can be defined using a

large number of case distinctions. For instance, in the following style: for programs

X = u1; . . . ; uk; (uk+1; . . . ; uk+n)
ω and Y = v1; . . . ; vl; (vl+1; . . . ; vl+m)

ω,

one can define addition⊕X and⊕Y in such a way that the length of the repeating part
of X, respectivelyY, is balanced with the newly computed position. Then, if(i, j) ∈ B

andui = a, then eithervj = a and(i ⊕X 1, j ⊕Y 1) ∈ B, or vj ∈ {+a,−a} and{(i ⊕X

1, j ⊕Y 1), (i ⊕X 1, j ⊕Y 2)} ⊆ B, or vj = #n′ + 1 and(i, j ⊕Y (n′ + 1)) ∈ B. For the
cases thatui = +a,−a, ! and #n′, similar requirements are needed, as well as for the sym-
metric cases that start from the form ofvj .

It should be clear that bisimulation equivalence coincides with behavioral equivalence.
Furthermore, bisimulation equivalence can be decided in polynomial time (see, e.g., [4]
on the complexity of bisimilarity for finite structures). Because the projectionpgau2pga is
polynomial, as well as the necessary preprocessing of PGAu programs into first canonical
form, this establishes the claim made in the previous section: the equivalence of proposi-
tions with a side effect as may occur in conditions in programming languages as C [5] or
Java [3], is decidable in polynomial time.

Acknowledgements

I thank Jan Bergstra for providing the example in which composed instructions are
introduced (Section 6.3), and Inge Bethke and a referee for useful comments.

References

[1] J.A. Bergstra, M.E. Loots, Program algebra for component code, Formal Aspects of Computing 12 (2000)
1–17.

[2] J.A. Bergstra, M.E. Loots, Program algebra for sequential code, J. Logic Algebr. Programming 51 (2002)
125–156.

174 A. Ponse / Journal of Logic and Algebraic Programming 51 (2002) 157–174

[3] G. Bracha, J. Gosling, B. Joy, G. Steele, The Java Language Specification, second ed., Addison-Wesley, New
York, 2000 (First edition by J. Gosling, B. Joy, G. Steele, 1996).

[4] R. Cleaveland, O. Sokolsky, Equivalence and preorder checking for finite-state systems, in: J.A. Bergstra, A.
Ponse, S.A. Smolka (Eds.), Handbook of Process Algebra, Elsevier, Amsterdam, 2001, pp. 391–424.

[5] B.W. Kernighan, D.M. Ritchie, The C Programming Language, second ed., Prentice-Hall, Englewood Cliffs,
NJ, 1988.

[6] D.M.R. Park, Concurrency and automata on infinite sequences, in: P. Deussen (Ed.), Proceedings of the
5th GI (Gesellschaft für Informatik) Conference, Karlsruhe, Lecture Notes in Computer Science, vol. 104,
Springer, Berlin, 1981, pp. 167–183.

