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On acyclic systems with minimal Hosoya index�

Yaoping Hou
Department of Mathematics, Hunan Normal University Changsha, Hunan 410081,

People’s Republic of China

Received 11 January 2000; received in revised form 15 May 2001; accepted 25 June 2001

Abstract

The Hosoya index of a graph is de*ned as the total number of independent edge subsets of the
graph. In this note, we characterize the trees with a given size of matching and having minimal
and second minimal Hosoya index. ? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Hosoya index of a graph originated from the work of Hosoya [5] in 1971 as
a topological parameter to study the relation between molecular structure and physical
and chemical properties of certain hydrocarbon compounds. Since then, much progress
has been made in understanding the properties of Hosoya index and its applications by
numerous investigators. A good survey may be found in [1,3,4].
Two edges of a graph G are said to be independent if they possess no vertex in

common. Let E(G) be the edge set of graph G. Any subset of E(G) containing no two
mutually incident edges is called an independent edge set. Hosoya index of a graph G
is de*ned as the total number of independent edge sets of G, and denoted by Z(G),
that is,

Z(G)=
∑
k=0

m(G; k); (1)

where m(G; k) denotes the number of ways in which k pairwise independent edges
are selected in G; k¿ 2, in addition m(G; 0)=1 and m(G; 1)= number of edges of
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the graph G. Recall that m(G; k) is just the number of k-matchings of G and note
that if m(G; k)= 0, then necessarily m(G; k + 1)=0. Besides, m(G; k)= 0 whenever
k ¿n=2. Therefore, the summations on the right-hand side of Eq. (1) go over a *nite
number of terms.
Among all n-vertex trees, the path Pn has the greatest Hosoya index and the star Sn

has the smallest Hosoya index. This fact was established long time ago [2,4], that is,
for any tree T with n vertices,

n=Z(Sn)6Z(T )6Z(Pn)=Fn+1; (2)

where Fn+1 is the (n+1)th Fibonacci number. Star with n vertices can be characterized
within the set of all trees with n vertices by property: each matching contains only one
edge (n¿ 2). Hence, in an improved inequality (2) for trees, it is natural to impose
some lower bound on the size of a matching tree. In this note, we generalize the above
lower bound for the trees with at least m-matchings.
Let k and r be non-negative integers, and let n=2k+r+1. We de*ne a tree S(n; k; r)

with n vertices as follows: S(n; k; r) is obtained from a star S with k + r + 1 vertices
by attaching a pendant edge to k non-central vertices. We call S(n; k; r) a spur and
note that it has a matching of m= k + r′ edges, where r′ =0, if r=0 and r′ =1, if
r ¿ 0. Then the center of S(n; k; r) is the center of the star S. For m¿ 3, let R(n; k; r)
be the graph obtained from the spur S(n− 2; k − 1; r) by attaching a path of length 2
to one vertex of degree 2. Then R(n; k; r) also has an m-matching, where m= k + r′

and r′ =0 if r=0 and r′ =1 if r ¿ 0. The center of R(n; k; r) is the center of the spur
S(n− 2; k − 1; r). In Fig. 1, we have drawn S(14; 5; 3) and R(14; 5; 3).
We note that a spur S(n; k; r) with k ¿ 0 has at least two m-matchings unless r=1.

In the case r=1; m= k + 1= 1
2n, and m-matching is a perfect matching in the sense

that each vertex is incident to an edge of the matching. It is easy to prove by induction
that a perfect matching of a tree is unique when it exists.
Our main result is

Theorem 1. Let T be an n-vertex tree with an m-matching; where m¿ 1. Then

Z(T )¿ 2m−2(2n− 3m+ 3)

with equality if and only if T is the spur S(n; m− 1; n− 2m+ 1) (see Fig 1).

Fig. 1. The graphs of S(14; 5; 3) and R(14; 5; 3).
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2. Proofs

Let T be an n-vertex tree and A be its adjacency matrix. We call the matrix I + A
the neighbor matrix of T and write B(T )= I + A, where I is the unit matrix of order
n. Recall the de*nition of permanent [7] of a matrix B=(bij);

per(B)=
∑
�

n∏
i=1

bi�(i); (3)

where the summation is taken over the symmetric group of order n. Since the tree T
has no cycles,

∏n
i=1 bi�(i) = 0 if � has a cycle of length 3 or more. For permutations �

containing cycles of length at the most 2;
∏n

i=1 bi�(i) = 0 if for some i �= �(i); viv�(i) �∈
E(T ). This gives the following:

Lemma 1. Let T be a tree. Then

Z(T )=per(I + A):

In order to obtain the proof of Theorem 1 we need the following structure properties
of trees. In what follows, we use the notation v∈M to mean that the vertex v is incident
with some edge in M , and v �∈ M means that the vertex v is not incident with any
edge in M .

Lemma 2. Let T be an n-vertex tree with a perfect matching. Then T has a pendant
edge which is incident to a vertex of degree 2.

Proof. We need only root T at a vertex r and choose a pendant vertex v farthest from
r. Let e= vw be the unique pendant edge incidenting the vertex v. If the degree of
the vertex w is not 2, then there would be a pendant vertex u �= v joined to w. This
contradicts with T having a perfect matching.

Lemma 3. Let T be an n-vertex tree with an m-matching where n¿ 2m. Then there
is an m-matching M and a pendant vertex v such that v �∈ M .

Proof. For n6 3 the result clearly holds. We assume that n¿ 3 and proceed by in-
duction. Let JM be an m-matching of an n-vertex tree T . Root T is at a vertex r
and let v be a pendant vertex farthest from r. Let vw be the unique pendant edge
incidenting the vertex v. If vw does not belong to JM , then the conclusion follows.
So we may assume that vw belongs to JM . If the degree of w is not 2, then there
is a pendant vertex Jv �= v joined to w and Jv �∈ JM . Thus, we may assume that w has
degree 2. Let ww′ be an edge with w′ �= v, and let T ′ be the tree obtained from T
by removing vertices v; w and edges vw and ww′. Then T ′ has n − 2= n′ vertices
and an m′-matching, where m′ =m − 1. Since n′¿ 2m′, it follows by induction that
T ′ has an m′-matching M ′ and a pendant vertex v′ such that v′ �∈ M ′. If v′ �=w′, then
M ′′ =M ′ ∪ {vw} is an m-matching of T such that the pendant vertex v′ �∈ M ′. If



254 Y. Hou /Discrete Applied Mathematics 119 (2002) 251–257

v′ =w′, then M ′′ =M ′ ∪{v′w} is an m-matching such that the pendant vertex v �∈ M ′′.
Hence, the lemma holds by induction.

We now compute the Hosoya index of the spur S(n; k; r) in the following lemma:
Lemma 4.

Z(S(n; k; r))= 2k−1(2r + k + 1): (4)

Proof. We can order the vertices of S(n; k; r) such that its neighboring matrix is


1
1
0
...
1
0
1
...
1

2k︷ ︸︸ ︷
1 0 · · · 1 0
1 1 · · · 0 0
1 1 · · · 0 0

. . .
1 1
1 1

r︷ ︸︸ ︷
1 · · · 1
0 · · · 0
0 · · · 0

1
. . .

1




;

where the unwritten entries are all zeros. Calculating the permanent by an expansion
along the *rst row, we then obtain

Z(S(n; k; r))=per B(S(n; k; r))= 2k + k2k−1 + r2k =2k−1(2r + k + 2):

Proof of Theorem 1. Since T has an m-matching, n¿ 2m. First we suppose that n=2m,
that is, T has a perfect matching. We prove that Z(T )¿ 2m−2(m+3) and with equality
if and only if T is the spur S(2m;m− 1; 1) by induction on m. If m=1 or 2, then T
must be the spur S(2m;m − 1; 1), since T has a perfect matching. We now suppose
that m¿ 3 and proceed by induction. By Lemma 2, T has a pendant edge vw which is
incident on a vertex w of degree 2. Thus, there exists a unique vertex u �= v such that
we is an edge. Let T ′ be the tree with 2(m−1) vertices and with an (m−1)-matching
obtained from T by deleting vertices v and w and edges vw and we. By the inductive
assumption

Z(T ′)¿ 2m−3(m− 1 + 3) (5)

with equality if and only if T ′ is the spur S(2m − 2; m − 2; 1). Ordering the vertices
of T as v; w; u; : : : ; then

B(T )=



1 1 0 0
1 1 1 0
0 1 1 x
0 0 xT C


 ; B(T ′)=

[
1 x
xT C

]
:
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So a simple calculation gives

Z(G)=per B(T )=per C + 2per B(T ′)=per C + 2Z(T ′): (6)

Since T ′ has a perfect matching of m − 1 edges, then with a suitable ordering of its
vertices, C has the form



1 1 ∗
1 1

. . .
∗ 1 1

1 1
1



;

where there are (m− 2) blocks[
1 1
1 1

]

in C. Thus,

per C¿ 2m−2: (7)

Combining (5)–(7), and Lemma 1, we have

Z(T ) =per B(T )¿ 2m−2 + 2× 2m−3(m− 1 + 3)

= 2m−2(m+ 3)=Z(S(2m;m− 1; 1)): (8)

Suppose that equality holds in (8). Then equality holds in (5) and it follows by the
inductive assumption that T ′ is the spur S(2m−2; m−2; 1). Moreover, if equality holds
in (7), then we conclude that the entries in (∗) of C are zero. From this it follows
that the vertex u is the center of spur S(2m − 2; m − 2; 1), and hence that T is the
spur S(2m;m − 1; 1). This completes the induction on m and completes the proof of
theorem when n=2m.

We now suppose that n¿ 2m and proceed by induction on n. By Lemma 3, T has
an m-matching M and a pendant vertex v such that v �∈ M . Let w be the unique vertex
such that vw is an edge and T ′ be the tree obtained from T by removing the vertex v
and the edge vw. Then T ′ has n− 1 vertices and has an m-matching. By the induction
assumption

Z(T ′)¿ 2m−2[2(n− 1)− 3m+ 3]=2m−2(2n− 3m+ 1) (9)

with equality if and only if T ′ is the spur S(n−1; m−1; n−2m). Ordering the vertices
of T as v; w; : : : ; we obtain

B(T )=


 1 1 0
1 1 x
0 xT C


 ; B(T ′)=

[
1 x
xT C

]
:

By expanding the permanent along the *rst row, we have

per B(T )=per B(T ′) + per C;
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that is,

Z(T )=Z(T ′) + per C: (10)

Since T ′ has an m-matching, it follows as in the previous induction that

per C¿ 2m−1: (11)

Combining (9), (10), (11), and Lemma 1, we obtain

Z(T )¿ 2m−1 + 2m−2(2n− 3m+ 1)

= 2m−2(2n− 3m+ 2)=Z(S(n; m− 1; n− 2m+ 1)): (12)

If the equality in (12) holds, then inequalities (9) and (11) become equalities. By
the inductive assumption T ′ is the spur S(n− 1; m− 1; n− 2m). It again follows as in
the previous induction that vertex w is the center of S(n− 1; m− 1; n− 2m), and hence
T is the spur S(n; m− 1; n− 2m+ 1). Thus, the theorem is proved by induction.

As an analogue to S(n; m− 1; n− 2m+ 1), we can obtain

Z(R(n; m− 1; n− 2m+ 1))=5(2n− 3m)2m−4;

and similar to the above proof of Theorem 1, we can prove the following:

Theorem 2. Let T be an n-vertex tree with an m- matching where m¿ 1; and T �= S(n;
m− 1; n− 2m+ 1): Then

Z(T )¿ 5(2n− 3m)2m−4

with equality if and only if T is R(n; m− 1; n− 2m+ 1) (see Fig. 1).

While we have determined the minimum value of the Hosoya indices of n-vertex
trees with an m-matching, the maximum Hosoya indices with constraints corresponding
to those imposed for the minimum value seems more diKcult, although the path Pn has
a maximum Hosoya index when n=2m. Another interesting problem is to determine
the minimum (maximum) value of the Hosoya indices of n-vertex chemical trees (trees
which have no vertices with degrees ¿ 3) with an m-matching, although the comb
graph Cn has a minimum Hosoya index when n=2m [6,8].
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