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Abstract

The purpose of this paper is to generalize the Liouville theorem for functions which are defined on the complete Riemannian
manifolds. Then, we apply it to the isometric immersions between complete Riemannian manifolds in order to obtain an estimate for
the size of the image of immersions in terms of the supremum of the length of their mean curvature vector in a quite general setting.
The proofs are based on the Calabi’s generalization of maximum principle for functions which are not necessarily differentiable.
© 2007 Elsevier B.V. All rights reserved.
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Introduction

The classical Liouville theorem asserts that harmonic and bounded functions on Euclidean spaces are constant. In
this paper, we extend the Liouville theorem to functions which are defined on a complete (non-compact) Riemannian
manifold whose Ricci curvature is bounded from below. Moreover, we relax the assumptions harmonicity and bound-
edness of functions. We prove the following Liouville type theorem (Theorem 2.1, see also Remarks 2.2, 2.3, 2.4 and
Theorem 2.9):

• Let N be an n-dimensional complete (non-compact) Riemannian manifold whose Ricci curvature is bounded
from below. Let w :N → R be a C2-function such that �w � 1. Then, we have

lim sup
rN (x)→∞

w(x)

rN(x)
> 0,

where rN denotes the distance function on N , rN(y) := dN(y,p). In particular, w is unbounded.
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The above theorem can be interpreted as a generalization of maximum principle (on unbounded domains), compare
with [3] and [11]. See also [12]. Then, this Liouville type theorem is applied, similar to [4] and [9], in order to sharpen
and generalize the following theorem which is due to Jorge and Xavier [8]:

• Let f :Mn → Mn+k be an isometric immersion between complete Riemannian manifolds. Suppose that the scalar
curvature of M is bounded from below by some constant and the sectional curvature of M is bounded from above
by some constant K . Denote the supremum of the length of mean curvature vector of f by H0 < ∞. Suppose that
the image of f is inside the closed normal ball B(p,R) ⊂ M ; and R < π

2
√

K
, if K > 0. Then, we have

R �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
K

tan−1
(√

K
H0

)
if K > 0,

1
H0

if K = 0,

1√−K
tanh−1(√−K

H0

)
if K < 0.

We extend the above theorem of Jorge and Xavier (see also [7]) for quite general manifolds M . In fact, in our result
(Theorem 3.1), we do not need to compare manifold M with a space form.

The proof of above Liouville type theorem is based on the Calabi’s generalization of maximum principle for
continuous functions which are not necessarily differentiable (see [2] or [5]).

1. Preliminaries

In this section, we recall some of the basic definitions in order to state the Calabi’s generalization of maximum
principle.

Let N be a Riemannian manifold (of class C3) and let 〈·,·〉 denote the Riemannian metric on N . We denote the
associated covariant derivative of N by D. For p ∈ N , we denote the distance from p to y by rN(y) := dN(y,p). The
function rN(y) is smooth on N\({p} ∪ Cp), where Cp denotes the cut locus of p. Also, we denote the Hessian of

rN(y) by Hess(rN)(v,w) := 〈D∇rN
v ,w〉, for all vectors v and w in the tangent bundle of N . We denote the closed ball

with center q ∈ N and radius R > 0 by B(q,R) and the Laplacian (on N ) by � = �N .

Definition 1.1. (See [2] and [5].) Let N be a Riemannian manifold and let η :N → R be a continuous function. An
upper barrier (support function) for η at the point x0, is a C2-function, η̃, defined in some neighborhood of x0 such
that η̃ � η and η(x0) = η̃(x0).

We say that �η(x0) � a (or �(−η)(x0) � −a) in the barrier sense (sense of support functions), if for all ε > 0,
there is an upper barrier ηx0,ε for η at x0 such that �ηx0,ε(x0) � a + ε.

Lemma 1.2. Let N be an n-dimensional complete Riemannian manifold whose Ricci curvature is bounded from below
by some constant b. Suppose that rN(y) := dN(y,p) denotes the distance function on N . Let Ψ : [0,∞[ → R be a
C2-function such that Ψ ′ � 0. Then, we have

�N(Ψ ◦ rN) � �b(Ψ ◦ rb)|rb=rN ,

in the sense of barrier, where �N and �b denote the Laplacian respectively, on N and the space form of constant
curvature b. In particular, when Ψ (s) ≡ s, we have

�N(rN) � �b(rb) = (n − 1)mb(rb)|rb=rN ,

where mb(r) is defined as the following:

mb(r) :=
⎧⎨
⎩

√
b cot(r

√
b) if b > 0,

1
r

if b = 0,√−b coth(r
√−b) if b < 0.

Proof. See [2, Prop. 7.7]. �
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Lemma 1.3 (Maximum principle). Let N be a connected complete Riemannian manifold and let η :N → R be a
continuous function. Suppose that �η � 0, in the barrier sense. Then, η attains no (local) maximum unless it is
constant.

Proof. See [2, Thm. 7.8] or [5, 12.6]. �
2. The Liouville type theorem

We start this section with the following generalization of Liouville theorem for functions which are defined on a
complete Riemannian manifold whose Ricci curvature is bounded from below. Compare with [4] and [9].

Theorem 2.1. Let N be an n-dimensional complete (non-compact) Riemannian manifold whose Ricci curvature is
bounded from below by some constant b. Let w :N → R be a C2-function such that �w � 1. Then, we have

lim sup
rN (x)→∞

w(x)

rN(x)
� C,

where rN denotes the distance function on N , rN(y) := dN(y,p), and C is a positive constant which depends on b

and n. In particular, w is unbounded.

Proof. Without loss of generality, we can assume that w(p) = 0 and b � −1. Suppose that Ψ : [0,∞[ → R is a non-
decreasing C2-function such that Ψ is zero on [0,4

√−b] and Ψ (s) = (3
√−b)s, if s � 8

√−b. Then, by Lemma 1.2,
there is a positive constant L, which depends on b and n, such that

�N(Ψ ◦ rN) � �b(Ψ ◦ rb)|rb=rN � L,

in the barrier sense, where L is a constant which depends on b and n. Therefore, there is a constant K , which depends
on b and n, such that

�N(Ψ ◦ rN) � �N(Kw),

in the barrier sense. Now, by the maximum principle (Lemma 1.3) applied to the function u := Kw − Ψ ◦ rN on the
ball B(p, t), for t � 8

√−b, we get

0 = u(p) � max
B(p,t)

u = max
∂B(p,t)

u.

Then, we see that, for any t � 8
√−b, there exists y ∈ ∂B(p, t) such that 0 � u(y) or equivalently 3

√−b rN(y) �
Kw(y). This completes the proof of theorem. �
Remark 2.2. In Theorem 2.1, we can relax the assumption �w � 1 as the following:

• �w(y) � 0, for all y ∈ N and �w(y) � 1, for all y outside a compact (bounded) subset of N .

Moreover, by choosing a different (non-decreasing) C2-function Ψ (as in the proof of theorem), we can obtain a
different type of Liouville theorem.

Remark 2.3. In Theorem 2.1, when b = 0, we can relax the assumption �w � 1 as the following:

• �w(y) � 0, for all y ∈ N and �w(y) � 1
rN (y)

, for all y outside a compact (bounded) subset of N .

Remark 2.4. In Theorem 2.1, when b = 0, we can sharpen the conclusion of theorem as the following (by replacing
r2
N instead of rN in the proof of theorem):

• lim suprN (x)→∞
w(x)

r2
N(x)

� C.
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Question 2.5. Is there any best choice for the function Ψ in the proof of Theorem 2.1? Compare with Remarks 2.2
and 2.4.

Next, we relax the assumptions of Theorem 2.1 for a 2-dimensional manifold N with non-negative curvature.

Theorem 2.6. Let N be a 2-dimensional complete (non-compact) Riemannian manifold with non-negative Ricci cur-
vature. Let w :N → R be a non-constant C2-function such that �w � 0. Then, we have

lim sup
rN (x)→∞

w(x)

log(rN(x))
> 0,

where rN denotes the distance function on N , rN(y) := dN(y,p). In particular, w is unbounded.

Proof. Let notations be as in Lemma 1.2 with n = 2, b = 0 and Ψ (s) = β log(s) where β is positive constant. Since
that n = 2 and b = 0, it is easy to check that

�b(log ◦ rb) = 0,

on R2\{0}. By Lemma 1.2, we have

�N(Ψ ◦ rN) � 0 � �Nw,

in the barrier sense on N\{p}. Put ΩT := B(p,T )\B(p,1), for T > 1. Then, by Lemma 1.3, we can choose β > 0
small enough (depending on w) such that

max
ΩT

φ = max
∂B(p,T )

φ,

where φ := w − β log ◦ rN . This completes the proof of theorem. �
Remark 2.7. Compare Theorem 2.6 with [6, Thm. 7.3]. Also, note that Theorem 3.1 is not necessarily correct for a
complete manifold whose dimension is greater than 2. For example, consider the following function:

h(x, y, z) := −(1 + x2 + y2 + z2)−1/2.

It is easy to check that h is a smooth function on R3 and �h � 0. But, h is a bounded and non-constant function.

Remark 2.8. In Theorems 2.1 and 2.6, we can relax this assumption that Ricci curvature N is bounded from below
(on entire manifold) as the following:

• The Ricci curvature N is bounded from below outside a compact (bounded) subset of N .

Now, in Theorem 2.1, we relax the assumption of lower bound on Ricci curvature of N .

Theorem 2.9. Let N be an n-dimensional complete (non-compact) Riemannian manifold. Suppose that R and A are
two positive numbers and h is a positive, unbounded and non-decreasing C2-function on [R,+∞[ such that

(2.1)h′′ + nh′ exp

(
1

2
h

)
� A.

Suppose that w :N → R is a subharmonic C2-function such that �w � 1 on N\B(p,R), for some p ∈ N . Suppose
that the Ricci curvature of N is bounded from below by − exp(h ◦ rN) on N\B(p,R), where rN denotes the distance
function on N , rN(y) := dN(y,p). Then, we have

lim sup
rN (x)→∞

w(x)

h(rN(x))
> 0.

In particular, w is unbounded.
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Proof. It is easy to check that

∇(h ◦ rN) = h′(rN)∇rN ,

�(h ◦ rN) = h′′(rN)‖∇rN‖2 + h′(rN)�rN,

in the barrier sense on N\B(p,R). By Lemma 1.2, we have (note that ‖∇rN‖ = 1)

�(h ◦ rN) � h′′(rN ) + h′(rN)(n − 1) exp

(
1

2
h ◦ rN

)
coth

(
rN · exp

(
1

2
h ◦ rN

))
� A � A�w,

in the barrier sense on N\B(p,T ), for large enough T > R. Put ΩT := B(p,T )\B(p,R). Then, by Lemma 1.3 and
choosing β > 0 small enough (depending on w), we have

max
ΩT

φ = max
∂B(p,T )

φ,

where φ := Aw − βh ◦ rN . This completes the proof of theorem. �
Remark 2.10. In Theorem 2.9, we can replace the condition (2.1) with the following weaker condition:

h′′ + nh′ exp

(
1

2
h

)
� Ah.

Then, the conclusion of Theorem 2.9 becomes as the following (calculate �(log(h ◦ rN))):

lim sup
rN (x)→∞

w(x)

log(h ◦ rN(x))
> 0.

Moreover, by choosing exph(s) := Ks2 log2 s, for some constant K , we can recover the main results of [3].

Question 2.11. Is it possible to strengthen the conclusion of Theorem 2.9 (similar to Theorem 2.1) as the following:

lim sup
rN (x)→∞

w(x)

h(rN(x))
� C,

where C is a positive constant (which depends on A and n)?

Question 2.12. Is there any best choice for the function h, the lower bound of Ricci curvature in Theorem 2.9?
Compare with Question 2.5. See example of [3, p. 365] and also [11, p. 205].

3. Application

In this section, by using Theorem 2.1, we generalize the result of Jorge and Xavier [8]. See also [7] and [3].

Theorem 3.1. Let f :Mn → M
n+k

be an isometric C2-immersion between complete Riemannian manifolds. Suppose
that the Ricci curvature of (non-compact) manifold M is bounded from below by some constant b. Denote the mean
curvature vector of f (M) in M by H . Suppose that the image of f is contained in M\(Cp ∪ {p}), for some p ∈ M ,
where Cp denotes the cut locus of p. Suppose that the Hessian of distance function on M , r(y) := dM(y,p), is
bounded from below by m(r) � 0 on the tangent bundle of ∂B(p, r), i.e. Hess(r)(v, v) � m(r)‖v‖2 for all vectors v

in the tangent bundle of ∂B(p, r). Moreover, suppose that Φ : [0,∞[ → R is a C2-function and Φ ′′(r) � Φ ′(r)m(r).
Then, we have

• Either

lim sup
ρ(x)→∞

Φ(r ◦ f )(x)

ρ(x)
� C,

where ρ denotes distance function on M , i.e. ρ(x) := dM(x, q), for some q ∈ M , and C is a positive constant
which depends on b and n. In particular, the image of f , f (M), is unbounded.
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• Or

inf
x∈M

[
Φ ′(r ◦ f )(x)

(
m(r ◦ f )(x) − ∥∥H

(
f (x)

)∥∥)]
� 0.

Proof. By [13, Lemma 2.1] (see also [10, Lemma 2]), we have

�M

(
Φ(r ◦ f )

)
� nΦ ′(r ◦ f )

[
m(r ◦ f ) − 〈∇r,H

(
f (x)

)〉]
� nΦ ′(r ◦ f )

[
m(r ◦ f ) − ∥∥H

(
f (x)

)∥∥]
.

Now, theorem follows from Theorem 2.1, applied to function Φ(r ◦ f ). �
Remark 3.2. We can improve Theorem 3.1 similar to Remarks 2.2, 2.3, 2.4 and Theorem 2.9. Moreover, when n = 2,
we can prove a Rigidity type theorem similar to [13, Cor. 2.7].

Corollary 3.3. Suppose that the assumptions and notations are as in Theorem 3.1. Moreover, suppose that the sectional
curvature of M is bounded from above by some constant K . Then, we can choose the function m(r) := mK(r), where
mK(r) is defined as in Lemma 1.2, and function Φ can be chosen as the following:

Φ(r) :=

⎧⎪⎨
⎪⎩

1−cos(r
√

K)
K

if K > 0,

r2

2 if K = 0,

1−cosh(r
√−K)

K
if K < 0.

In particular, this generalizes the result of Jorge and Xavier [8].

Proof. By the Hessian comparison theorem (see [14, p. 4]), we can choose m(r) := mK(r). It is easy to see that
function Φ (as the above) satisfies the assumptions of Theorem 3.1. �
Remark 3.4. We can state and prove a theorem for maps between Riemannian manifolds (which are not necessarily
isometric immersion) in terms of the energy density and torsion field, see [9, Thm. 2].

Remark 3.5. In Corollary 3.3 and Theorem 3.1, this condition that Ricci (scalar) curvature of M is bounded from
below, cannot be omitted. Indeed, there exists an example, which is due to Calabi [1, 28.2.7], of a complete minimal
(H ≡ 0) surface which is contained in a ball of R4.
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