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Abstract

Let ¥ = (2, 4, 1) be a generalized quadrangle of ordert), s, r > 1, and assume th&’ has a
regular pointX. In this paper we survey some basic results on such generalized quadrangles (GQs)
as well as the known examples. We also study a general representation of such GQs using the net
associated with the regular poilitand specialise the representation to the case wkiéseabelian
centre of symmetry, as in all of the known examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and definitions

A (finite) generalized quadrangi&Q) is an incidence structut€ = (2, 4, 1) in which
2 and# are disjoint (non-empty) sets of objects calfgintsandlines respectively, and
forwhich | C (2 x %) U (% x 2) is a symmetric point-line incidence relation satisfying
the following axioms:

(i) Each pointis incident with % ¢ lines ¢ > 1) and two distinct points are incident with
at most one line.

(i) Each line is incident with H- s points § > 1) and two distinct lines are incident with
at most one point.
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(iii) If Xis a point and is a line not incident withx, then there is a unique pdir, m) €
P x BforwhichX ImlYleL.

For a comprehensive introduction to GQs E&&). The integers andt are theparameters
ofthe GQ and? is said to haverder (s, r). If s =¢, then is said to have ordex. If ¥ has
order(s, t), then it follows that 2| = (s + 1) (st + 1) and|%| = (t + 1) (st + 1) [26, 1.2.1]
If &= (2,4, 1)is aGQ of orders, t), then the incidence structu€* = (%, 2, 1) is
a GQ of ordert, s) called thedual of .. By a result of Higmarj12,13] (a short proof is
found in[5]), if s, ¢ > 1, thens <2 andr <s2.

The classical GQs (with, r > 1) arise as the classical rank 2 polar spaces and are:
Q(4, ¢g), from the parabolic quadric in R@, ¢), and,W (¢), from the symplectic polarity in
PG(3, q), GQs of order; Q(5, q), from the non-singular elliptic quadric in R& ¢), a GQ
of order(q, ¢?); H(3, ¢%), from the Hermitian variety in P@, ¢2), a GQ of orderg?, ¢);
and H (4, ¢%), from the Hermitian variety in P@, ¢2), a GQ of order¢?, ¢°). Note that
04, q)=W(g)* andQ(4, ¢) =W (q) if and only if g is even, whileQ(5, ) =~ H (3, ¢%)*
(se€[26, Chapter 3]

A (finite) netis an incidence structurg” = (£, %4, 1) in which 2 and % are disjoint
(non-empty) sets of objects callpdintsandlines respectively, and for which £ (2 x
B)U (4 x ) is a symmetric point-line incidence relation satisfying the following axioms:

(i) Each pointis incident with % ¢ lines ¢ > 1) and two distinct points are incident with
at most one line.
(ii) Each line is incident with 4+ s points ( > 1) and two distinct lines are incident with
at most one point.
(i) If Xis a point and’ is a line not incident withX, then there is a unique lima such
that X I m and there is no point incident with bothand m (that is,¢ and m are
non-concurrent).

Theorderof /" is s + 1, while thedegreeof /" ist + 1. The incidence structurd™ =
(%, 2,1) is thedual of ./”". Two non-concurrent lines of/” are said to bgarallel and
parallelismis an equivalence relationg@nStraightforward counts show tha®| = (s +1)2,
|AB| = (s + 1)(¢t + 1), the number of parallel classestis- 1 and the number of lines in a
parallel class is + 1.

Important examples of nets are the affine planes of asdehich are nets of ordexand
degrees + 1. Another important example is the dual #g}f, » > 2, which is constructed as
follows: the points of/”? are the points of PG, ¢) notin a given subspace R&— 2, g) C
PG(n, ¢), the lines ofH; are the lines of PG, ¢) which have no point in common with
PG(n — 2, ¢), the incidence infi} is the natural one. The axiom of Veblen for a dual net
is the following: If €11 X 1 €5, €1 # £2, mq} X f m2, and if¢; is concurrent withn ; for all
i, j € {1, 2}, thenm1 is concurrent withn,. In fact, the axiom of Veblen characterizes the
Hy in the following way.

Theorem 1 (Thas and De Clerck34]). Let /™ be a dual net withy + 1 points on any
line andz + 1 lines through any pointvherer + 1 > s. If 4™ satisfies the axiom of Veblen
then./™* = H with n > 2 (hences = g ands + 1=¢""1).
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Let¥ = (2, %4,1) be a GQ of ordets, r). Given two (not necessarily distinct) poirks
X' of &, we write X ~ X’ and say thaK and X’ arecollinear, provided that there is some
line ¢ for which X 1 £1 X’; henceX + X’ means thaX and X’ are not collinear. Dually,
for ¢, ¢ € %, we write¢ ~ ¢’ or ¢ + ¢ according to whethe¢ and ¢’ are concurrent
or nonconcurrent. FOK € Z put X+ ={X' € 2 : X ~ X'}, and note thak e X~ .
ForX # X', the set{X, X'} is defined to bexNy,. Hencel{X, X'}*| =s +1ort + 1
according ax ~ X’ or X + X'. More generally, ifA C 2, At is defined to b§) ., X*.
ForX # X', the setX, X'}-1 is definedtobglU € 2 : U € z+ forall Z e Xt nXx'*}.
We havel{X, X'} =s + 1 or|[{X, X'}*| <t + 1 according a ~ X' or X + X'.

If X ~ X', X # X,orif X + X" and|{X, X'}**| =1 + 1, whereX, X' € 2, we
say the paif X, X'} is regular. The pointX is regular provided{X, X'} is regular for all
X' € #, X # X'. Regularity for lines is defined dually. Note thakfs a regular point and
Y,Z € X+, Y # Z, then{Y, Z} is regular.

2. Basic results on regularity

In this section we review some fundamental results concerning regularity in GQs. Many
more are to be found in Chapter 1[@6]. Let ¥ = (£, 4, | ) be a GQ of orde(s, 7).

Theorem 2 (1.3.6 of Payne and Thd&6]). If ¥ has a regular pair of point$X, Y}, then
eithers =1ors>t.

Theorem 3 (Thas[28]). If s # 1 # r and.% has a regular point X and a regular liné
with X1 ¢, thens =1 is even

A point X of & is coregularif each line incident withX is regular.

Theorem 4 (Payne and Tha$25]). If % has a coregular point X and t is ogddhen
X, Y} =2forall Y ¢ X1,

Theorem 5 (Paynd20], Payne and Tha®5]). If & hasa coregular point Xang=¢ # 1,
then X is regular if and only if s is even

Perhaps the mostimportant structural result concerning regularity in GQs is the following
theorem giving a construction of a (dual) net from a regular point of a GQ.

Theorem 6 (1.3.1 of Payne and Thd86]). Let.¥ have a regular point XThen the inci-
dence structure with pointsét-\{X}, with lineset the set with elemer{tg, Z}*, where
Y,Z € X'\{X}, Y + Z, and with the natural incidencas the dual of a net of order s
and degree + 1. If in particular s =t > 1, then there arises a dual affine plane of order s
Moreovet in this case the incidence structurg with pointsetx -, with lineset the set with
elementgy, Z}, whereY, Z € X1\{X}, and with the natural incidengés a projective
plane of order s
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The net arising as in Theorem 6 from a regular p&if a GQ.¥” will be referred to as
the netassociatedvith X.

The implications of this result for regularity in GQs will be investigated in great detail in
the rest of the paper.

Also important for the rest of the paper is the concept of a centre of symmetry. Let
S = (2,4,1) be a GQ of ordefs, r) andX a point of . A symmetryof % aboutX is
a collineation of¥ fixing X elementwise. Any non-trivial symmetry aboXtfixes no
point of 2\ X. The symmetries about form a group whose order dividessee[26,
Chapter 8. If the symmetry group abothas maximal ordet; thenXis called acentre of
symmetryDually we have the concept of axis of symmetrylf X is a centre of symmetry
with symmetry groupG and P € 2\ X+, then{X, P} = {X} U {g(P) : g € G} and
{X, P} is aregular pair. Consequently, we have the following result:

Lemma 7. LetY = (2, %4, 1) be a GQ of ordel(s, t) and X a centre of symmetry &f.
Then X is a regular point of”.

3. Examples of GQs and regularity

In this section we list the known examples of GQs with regularity.

The classical GQV (¢) of orderq has all points regular. 1| is even, then all lines of
W (q) are regular, otherwis# (¢) has no regular lines (recall that farevenW (g) is self
dual). SinceQ (4, ¢) is the dual ofW (¢) it has all lines regular, all points regulargis even
and no regular points otherwise. The classical @, ¢) of order (¢, ¢2) has all lines
regular (and since> s may have no regular points) while its dui3, ¢2) has all points
regular. These results may be found2e, 3.3.1]

Now we introduce our first examples of non-classical GQs and their regularity properties.
These examples are due to Tits, first appearirigjiisee als¢26]). For these GQs we will
need the following two definitions:

An oval of PG(2, ¢) is a set ofy + 1 points, no three collinear. Lines of % ¢) meet
an oval in Q1 or 2 points and are called external lines, tangent lines and secant lines,
respectively. Ifg is even, then thg + 1 tangent lines to an oval are concurrent in a point
called thenucleusof the oval. Se¢15] for details and references on ovals.

An ovoid of PG(3, ), ¢ > 2, is a set of7? + 1 points, no three collinear. An ovoid of
PG(3, 2) is a set of five points no four of which are coplanar. Lines ofl @) are either
external, tangent or secant to the ovoid. The tangents at the point of the ovoid form a plane
called thetangentplane at that point. Any plane of R& ¢) not a tangent plane meets
the ovoid in an oval and is calledsecantplane. Sed14] for details and references on
ovoids.

Let n = 2 (respectivelyn = 3) and let® be an oval (respectively, ovoid) of R@& g).
Further, let PGn, g) be embedded as a hyperplane in(RG- 1, g). We now give the
definition of the GQT;, (") of order(q, ¢"~1). Define points as (i) the points of RG+
1, ¢)\PG(n, q) (theaffinepoints), (ii) the hyperplaned of PG(n + 1, ¢) for which |H N
0| = 1, and (iii) one new symbo{co). Lines are defined as (a) the lines of RGH
1,9) which are not contained in R@,g) and meet(, and (b) the points of0.
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Incidence is that inherited from R@+ 1, ¢) plus each line of type (b) is incident with the
point (c0).

The GQT»(0) is isomorphic toQ (4, ¢) if and only if ¢ is a conic and is non-classical
otherwise (se§6]). The GQT3(0) is isomorphic toQ (5, ¢) if and only if ¢ is an elliptic
guadric ovoid and is non-classical otherwise. Each lin&,gt)) of type (b) is regular and
if g is even, then the poinix) of T>(0O) is regular (se¢26]). An oval O of PG(2, ¢), q
even, is dranslation ovalif there exists a tangeiitto ¢/ and a group of elations fixing(
each element of which has axisThe line? is called amaxisof O. It was proved by Payne
in [19] that every translation oval of R@, ¢) is projectively equivalent to an oval of the
form{(1,¢,t°) : t € GF(g)} U {(0, 0, 1)} wherec is a generator of AUGF(¢)). If O isa
translation oval with axig, then any point of type (ii) of2(®) that is a plane of P@, ¢)
meeting PG&2, ¢) in £ is a regular point and consequently= ¢ N ¢ is a coregular line of
T2(0).

We now present a construction method for GQs introduced by K&hédr

Let G be a finite group of order’s, 1 < s, 1, together with a family/ ={A; : 0<i <t} of
1+t subgroups o6, each of ordes. Assume that for each; € J, there exists a subgroup
A7 of G, orderst, containingA;. Put/*={A7 : 0<i <t} and define as follows a point-line
incidence geometry’ = (2, 4, | ) = (G, J).

Points are of three kinds: (i) the elementg{ii) the right cosetsi’ g, A* € J*, g € G,
(i) a symbol (c0).

Lines are of two kinds: (a) the right cosetsg, A; € J, g € G; (b) the symbolgA;],
A,‘ eJ.

A point g of type (i) is incident with each liné; g, A; € J; a pointA}g of type (ii) is
incident with[A;] and with each line4; i contained inA*g; the point(co) is incident with
each line[A;] of type (b).

Then Kantor[16] proved that the following holds¥ (G, J) is a GQ of order(s, 1)
provided

Ky : AjA;N A =(1}, fori, j, k distinct, and
Ky : AfNA;={1}, fori+#j.

If the conditionsK; and K> are satisfied, them} is uniquely defined byA;. Suppose
Ky and K, are satisfied. For any € G let us defing);, by ge" = gh, (Aig)()" = A;gh,
(Arg)'h = A*gh, [A;]% = [A;], (00)% = (00), With g € G, A; € J andA* € J*. Then
0y is an automorphism o’ (G, J) which fixes the poinfoo) and all lines of type (b). If
G' =({0, : h € G}, then clearlyG' =G and G’ acts regularly on the points of type (i).
The centreZ(G’) of G’ induces the group of symmetries.@f(G, J) about(oc). Hence by
Lemma 7 if|Z(G")| =t, then(oco) is a regular point.

If K1 andK; are satisfied, thedis called a 4gonal familyor Kantor familyfor G.

Now put G = {(a, ¢, ) : o, f € GF(q)Z, ¢ € GF(g)}. Define a binary operation
(o, c, ), )=+ o, c+c + BT, B+ B). This makess into a group whose
centre isZ(G) ={(0, ¢, 0) : ¢ € GF(g)}.

Let% ={A, : u € GF(q)} be a set ofy distinct upper triangular Z 2 matrices over
GF(g). Then% is called ag-clanprovidedA, — A, is anisotropic whenever # r, that is
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a(A, — A,)al =0 has only the trivial solution = (0, 0). ForA, € %, putk, = A, + AT
Let

Ay = e s Xus Yu> Zus U € GF(Q)
0 =z

Forqgodd, % is ag-clan if and only if
—det(K, — K,) = (v — )% — 40x — %) (20 — 2/) (1)

is a nonsquare of Gg) whenever, u € GF(g), r # u. Forg even,% is ag-clan if and
only if

yu #yr and Ty +x) @+ 2)Ou + )7 =1, )

whenever, u € GF(q), r # u, and Tr is the trace map from Gf) to GH?2).

Now we can define a family of subgroups®by A () = {(«, xA,ol ,aK,) € G : o €
GF(¢)?%}, u € GF(g), andA(co) = {(0,0, B) : f € GF(¢g)?}.

With G, A(u), A*(«) andJ as above, the following theorem is a combination of results
of Payne and Kantor.

Theorem 8 (Payne[21,22] and Kantor[17]). The set J is a&-gonal family for G if and
only if ¢ is a g-clan.

In [29] Thas showed that (1) and (2) are exactly the conditions for the pla/és+
zuX1+yu X2+ X3=0,u € GF(q), of PG3, ¢) to define a flockr of the quadratic conk
with equationXoX1= X% (A flockis a set of planes of PG, ¢) that partition the non-vertex
points of a quadratic cone.) [82] Thas provides an elegant geometrical description of the
flock GQ, which we denot&’ (G, €) or ¥ (), directly from the flock.

The flock GQ¥(G, %) has order(g?, ¢) and its centreZ(G) = {(0,¢,0) € G : ¢ €
GF(g)} has ordeq and so we have the following result:

Theorem 9. The flock GQY (G, %) has regular point(co).

There are many examples of GQs of ordgt, ¢), for bothg odd and even, constructed
through this method (sg24] for example).

Next we will introduce a GQ construction that is a generalisation of the construction
T,(0) of Tits. Let.¥ = (2, 4, | ) be a GQ of orde(s, t), s # 1,t # 1. A collineationd
of ¥ is anelationabout the poinP if 0 is the identity or ifd fixes all lines incident witH
and fixes no point of?\ PL. If there is a groupG of elations abouP acting regularly on
2\ PL, then we say tha? is anelation generalized quadrang{EGQ) withelation group
G andbase point PBriefly we say that. ", G) or #P) is an EGQ. Note that if is a
4-gonal family for a grougs, then# (G, J) is an EGQ with elation grou@ and base point
(00). If for an EGQ the elation grou is abelian, then we say that the EGZ'", G) is
atranslation generalized quadrang(@ GQ) andG is thetranslation group

INPG(2n+m —1, q) consider asef (n, m, q) of g™ + 1 (n — 1)-dimensional subspaces,
every three of which generate a B85 — 1, ¢) and such that each eleménof &(n, m, g) is
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contained in arin +m — 1)-dimensional subspad@@: having no point in common with any
element ofE (n, m, ¢)\{E}. It is straightforward to check th&tz is uniquely determined
for any element of &(n, m, g). The spacd is called thetangent spacef &(n, m, q)
atE. Forn =m =1 such a set'(1, 1, ¢) is an oval in P@2, ¢) and more generally for
m =n such a se€(n, n, q) is apseudo-ovabf PG(3n — 1, ¢). Form = 2n = 2 such a set
&(1, 2, q) is an ovoid of PG3, ¢g) and more generally fon = 2n such a se€'(n, 2n, q) is
apseudo-ovoidin general we call such sed§n, m, ¢) eggs

Now embed P@n +m — 1, ¢) ina PG2n + m, g) and construct a point-line geometry
T (n, m, q) as follows:

Points are of three types: (i) the points of @& + m, ¢)\PG(2n + m — 1, ¢), called
theaffinepoints; (ii) the(n + m)-dimensional subspaces of PZ& + m, ¢) which intersect
PG(2n +m — 1, ¢) in atangent space df(n, m, q); (iii) the symbol(co).

Lines are of two types: (a) thedimensional subspaces of PZa +m, ¢) which intersect
PG(2n +m — 1, q) in an element o& (n, m, q); (b) the elements of (n, m, g).

Incidence inT (n, m, q) is inherited from P@&n + m, q) plus each line of type (b) is
incident with the pointco).

Theorem 10(8.7.1 of Payne and Th§26]). The incidence geometf(n, m, q) isaTGQ
oforder(q", ¢™) with base poinfco). ConverselyeveryTGQisisomorphicto & (n, m, g).
It follows that the theory of GQsis equivalent to the theory of the sété:, m, q).

In the case where =m =1 andé(1, 1, ¢) is an oval® of PG(2, ¢), the GQT (1, 1, ¢)
is the Tits GQT>(0). Whenm = 2n = 2 and&'(1, 2, ¢) is an ovoidQ2 of PG(3, ¢), the GQ
T(1,2, q) is the Tits GQT3(Q).

For more details on TGQ and EGQ see Chapter §261. In the m = 2n case the
T (n, m, q) construction has led to non classical TGQ of ordgt, ¢2*) with g odd (see
[24], for example).

From the above model for TGQ the following theorem is straightforward.

Theorem 11. Each line of theTGQ T (n, m, ¢) incident with(co) is regular.

Proof. Let ¢ be a line ofT (n, m, q) incident with (co). Then¢ is an element of the egg
&(n,m, q), a(n — 1)-dimensional subspace of P& + m — 1, g). The group of elations
of PG(2n + m, q) with axis PG2rn +m — 1, ¢) and centre a point id induces a symmetry
group of ordey” of T (n, m, ¢) aboutt. Hencet is regular.

Note that this result implies that<m. In fact by[26, 8.7.2]we know that: = m or
n(a + 1) = ma, with aodd, and that ifj is even, them =m orm =2n. O

Whenn = m by applying Theorem 5 (see alg27]) we have the following result:
Theorem 12. TheTGQ T (n, n, ¢) has regular pointco) if and only if g is even
Note that this result implies that wheris even any egd’(n, n, g) has the property that

the tangent spaces of the egg intersect pairwise in a fixedl)-dimensional subspace of
PG(3n — 1, q).
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4. Property (G) and GQs with a regular point

Let=(2, %, | ) beaGQofordefs, s2),s # 1.By[1] we havethal{X, ¥, Z}'|=s+1
for any triple{X, Y, Z} of pairwise noncollinear points. We say th{at, Y, Z} is 3+egular
provided|{X, Y, Z}*| =5 + 1. Now let X1, Y1 be distinct collinear points. We say that
the pair{X1, Y1} hasProperty(G), or that¥ hasProperty(G) at {X1, Y1}, if every triple
{X1, X2, X3} of points, withX1, X», X3 pairwise noncollinear an#l; € {X1, X2, X3}*,
is 3-regular. The GQ” hasProperty (G) at the line¢, or the line¢ hasProperty (G), if
each pair of point$X, Y}, X # Y andX |1 £1Y, has Property (G). ItX, ¢) is a flag, that
is, if X 1 ¢, then we say that” hasProperty (G) at(X, ¢), or that(X, £) hasProperty(G),
if every pair{X, Y}, X # Y, andY | £, has Property (G).

Property (G) was introduced by Payne[#8] and is studied in detail in the series of
paperd30-32]by Thas.

Theorem 13(Thas and Van Maldeghe35]). Let¥=(2, %4, 1) beaGQ of ordetq?, q),
g even satisfying Property(G) at some point XThen X is regular in¥ and the dual net
A% defined by X is isomorphic 3.

In the previous section we saw the construction of a.8Q7) of order (g2, ¢) from a
flock # of a quadratic cone in PG, ¢). The following theorem characterizes those GQs
whose regular pointoo) has associated dual an

Theorem 14 (Thas and Van Maldeghef85]). For any GQY¥ (%) of order (42, ¢) arising
from a flock7 , the point(co) is regular. If q is eventhen the dual neWZ“OO) is isomorphic
to H3. If g is odd then the dual net/, is isomorphic toH? if and only if 7 is a
Kantor—Knuth flock

The definition of the Kantor—Knuth flocks is as follows. L#t be the quadratic cone
with equationXoX1 = X% of PG(3, ¢), g odd. Then the planesr, with equatiory Xo —
mt°X1+ X3=0,t € GF(g), ma given nonsquare of Gf), ands a given automorphism
of GF(¢). Note that ifo is the identity automorphism of Gk), then the Kantor—Knuth
flock is linear, that is the elements of the flock contain a common line, giving rise to the
classical GQH (3, ¢2).

5. Representing GQs with a regular point

In this section we introduce a general representation for a GQ of erdemith a regular
point. The ideas in this section follow on from the work of L6j48] (see also Ghinelli and
Ott[9] and the theses of Brow&] and De Bruyr{7]).

To begin we will introduce the idea of a cover of a graph and a cover of a geometry.

If I'is a graph, then &fold coverof I' is a pair(I’, p) where[ is a graph ang is a map
from the vertex set of onto the vertex set af such that

(1) for any vertexX of I the setp~1(X) consists ot pairwise non-adjacent vertices,
(2) forany edgdX, Y} of I', p~1({X, ¥}) consists ot disjoint edges, and
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(3) for any non-edgéX, Y} of I, p~1({X, Y}) is a graph with no edges.
If I'is the point-graph of a point-line geometrly = (2, %, 1) and(I', p) satisfies
(4) for any line¢ of A", if 2, ={P € 2 : P11}, thenp~1(2,) consists ot disjoint
complete graphs,

then we can form a geometry with points the vertices'pénd lines defined to be the set
of complete graphs from (4).

Let 4" = (#, #,1) be a point-line geometry with point-gragh A t-fold coverof ./~
isa pa|r(/1/ p) where /" = (2, %, T) is a point-line geometry with point- graph and
p 2 — 2 suchthat: (iXT, p) is at-fold cover ofI'; and (i) (', p) satisfies (4) giving
rise to the geometry/”.

We will abuse notation and also consigeas a map fron¥ to % induced by the map
from 2 to 2.

Remark 15. The definition oft-fold cover./” = (2, 4, T) of a geometry/" = (2, 4, 1)

above is convenient for our purposes in this paper. Perhaps a more standard definition
is that there exists a surjective map 2 x 4 — 2 x % whose restriction to any

point row or line pencil induces an isomorphism between point rows and line pencils,
respectively.

Theorem 16. Let ¥ = (#, #,1) be a GQ of order(s, t) with a re_gulip@t X and
associated net/" x = (?x, %x, Ix). Then(AN'x, p) with /'y = (Px, Bx, Ix) where
Py =P\X+, Bx =B\{t € % : £1X},andly is induced by, together withp : 2y —

Py defined by : Y — {X, Y} forY € \X+, is a tfold cover of/x.

Proof. Forthe poin{X, Y}* of A x the setp~1({X, Y}1) ={X, Y}\{X} has size& and
no two elements are collinear #f and hence also in/"x. Next, if {X, Y} and{X, Y'}*
are two collinear points of/"x, then there is a unique poitf € X+\{X} contained
in both {X, Y} and {X, Y’}+. Each of thet lines of & incident with Z, but notX, is
incident with a point ofp~1({X, Y}*) and a distinct point ofp~1({X, Y’}*), forming
thet disjoint pairs of collinear points required for condition (2) of-fold cover. Now,
suppose thatX, Y} and{X, Y'}* are two non-collinear points of/"x. Then{X, Y}
and{X, Y'}* are disjoint sets. If there is a poidtof {X, Y} collinear with a point
7' of {X, Y}, then the lineZZ’' must meetX' in a point of {X, Y} N {X, Y'}*.
Hence itfollows thap~1({{X, Y'}*, {X, Y}*1}) is a set of 2 pairwise non-collinear points
of /'x.

If Y € X1\{X}is a line of /", then p~1(Y) consists oft disjoint complete graphs
corresponding to thelines of %, notYX incident withy.

Note that the covering geometry’y is “triangle free” in the sense that if three distinct
points are pairwise collinear, then they are incident with a common line. In fact a cover of
this type is enough to allow a reconstruction of the GQ.

Theorem 17. Let /" = (2, %, | ) be a net with order s and degree+ 1 and (N =
(2, B, 1), p) a tfold cover of./". Suppose that iV, Y, Z are three distinctpairwise
collinear, points of 4", then p(W), p(Y), p(Z) are incident with a common line of".
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Let.# (", p) be the following incidence structure

Points (i) Points of.1",
(ii) Lines of.4", and
(i) A symbol(co).

Lines (a)Lines of./", and
(b) Parallel classes off".

The incidence of/ (1", p) is as follows (i)(a), is inherited from./7; (ii)(a), a line of
A is incident with each line off” covered by it(ii)(b), a line of /" is incident with the
parallel class containing jtand (iii)(b), (c0) is incident with each line of typg).

Then&(V', p) is a GQ of order(s, ) with regular point(co).

Furthermore if # is a GQ of order(s, t) with regular point X associated net/”xy and
t-fold cover (A x, p) of ./"x, then there exists an isomorphism fratfito & (A x, p)
mapping X ta(co).

Proof. It is straightforward to check that’ (1", p) is a geometry satisfying the first two
axioms of a GQ and most of the cases for the third axiom. We consider the two problematic
cases of non-incident point-line paifg, £) of (A", p).

LetY be a point of /" and¢ a line of A", If p(Y) | p(£), thenYis collinear in% (A", p)
with the unique poinp(¢) of £ . If p(Y)} p(£), then consider thecovers of the ling) (¢) of
A (including ¢). For any such line off” the pointY is collinear with at most one point on
the line, since otherwise we have a triangle/6fnot incident with a common line. In/”
the pointp(Y) is incident with one line parallel o(¢) and witht meetingp(¢) and hence
Yis collinear in./" with t points on a cover op(£), hence exactly one per line.

Next letY be a line of /" and¢ a line of /". SinceY # p(£) we have that eithe¥ is in
the same parallel class of asp(£) or not. In the first cas¥is collinear in (", p) with
the unique poinp(¢). In the second case, as lines.of, Y and p(¢) intersect in a unique
point Q of .#". Exactly one of the cover® of Q is incident with¢, which is the unique
point of (/" p) incident with¢ and collinear in (", p) withY. O

Remark 18. From this theorem we see that considering GQs of ogded with a regular
point is equivalent to considerirtgfold covers of nets of ordesand degree + 1 with no
non-collinear triangles. This motivates the following definition.

Definition 19. Let./" be a net of ordesand degree+ 1 and(./", p) at-fold cover of /"
Then(/", p) (or just./” if pis understood) will be called a GQ-cover if for every triple of
pairwise collinear points, ¥, Z of /" the triple of pointsp(X), p(Y), p(Z) is incident
with a common line inA4”.

Note that it follows from the definition of a GQ-cover of a net of ordand degree+ 1
thats >1.

We now proceed to give a general description-&dld covers of the point-graph of a net
and calculate the conditions for such a cover to define a cover of the net and in particular a
GQ-cover.
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Let ./" be a net of ordes and degree + 1 with point-graphl” and let(T’, p) be a
t-fold cover of I". If P is a point of./", then label the elements pf 1(P) arbitrarily such
thatp‘l(P) ={(P,1),(P,2),...,(P,t)}. For P and Q collinear points of /" define a
permutationp p, of {1, 2, ..., 1} by (P, i) ~ (Q, i?ro). It follows thatq’);) =¢po. Note
that any set of permutatiorigp, : P,Q € 2, P ~ Q, P # Q}of {1,2,...,1} such
thathé}J = ¢ p defines a-fold cover ofI" as above.

Theorem 20. Let 4" = (2, 4, 1) be a net of order s and degreet+ 1 equipped with a
set of permutation$pp, : P,Q € Z, P ~ O, P # Q} of {1,2,...,¢} such that
¢>§% = ¢pg- The permutations define a cover.df if and only if¢p o orPrp is the
identity whenP, Q, R are collinear.

Further, this cover of /" is a GQ-cover if and only i) p o ¢ o g p IS fixed point free
whenP, Q, R are non-collinear

Proof. Let I" be the point-graph off” andT the graph with vertice$P, i), P € 2,i <
(1,....t}and(P, i) ~ (Q, j)ifand only if P ~ Q andj =i®re. With p : (P, i) — P,
the pair(T, p) defines a-fold cover of I which extends to a-fold cover of /" if the
preimage undep of the pointset of a line of/” is a set of disjoint complete graphs. Now
(P,i) ~ (Q,i?P¢) ~ (R, i?Pe®%er) and so(T, p) extends to a cover ofi” if and only if
(P, i) ~ (R, i?Pe®or) for all collinear triples of point§P, O, R} andi € {1, ..., t}. That
is,ppoborPrp=1if P, O, Rare collinear. Inthis case we call the covering geomeitiy
For (LI, p) to be a GQ-cove(P, i) must not be collinear tor, i?re®er) if P, 0, R are
not collinear, since otherwise we have a non-collinear triangl?in—lence(pPQ¢QR¢RP
must be fixed point free. [J

6. Some applications to subquadrangles of GQs with a regular point

In this section we look at a couple of applications to subquadrangles of the representation
of GQs with a regular point via the cover of the associated net.

The following result has a different published proof to that given here, although equally
as short.

Theorem 21 (Thaq33]). Let¥=(Z, 4, 1) be aGQ of ordets, 1), s, t > 1,with aregular
point X and associated net"y = (?x, %4x, lx) of order s and degree+ 1. If 4"y has
a proper subnet of degree+ 1, then.¥ has a proper subquadrangle’ of order (s, t)
containing X as a regular poinEurther, the proper subnet must be an affine plasie= r)
and alsos = 2.

Proof. Let (A 'x = (Zx, Bx.1x), p) be thet-fold cover of "y defined by¥. Suppose
that /"y =(2, A, 1) is a proper subnet of"x of orders’ < s and degree+ 1. Define
the geometry/”y to be the proper subgeometry.df x defined on the pointsex‘l(,@’x),
andp’ the restriction of the map to p—l(ﬂ’x). Then(A7, p’) is necessarily a GQ-cover
of ./"y. By the construction of Theorem 17 this yields a subquadrangle of ¢rdey of
& with regular pointx.
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Now since the subquadrangle has or@érs) and a regular point, it follows that >z.
By [26, 2.2.2(ii)] it must be thas’ = 7, that is,./ "y is an affine plane, and= 2. O

Theorem 22 (Brown and Thag4]). Let.¥ = (2, #,1) be a GQ of order(s2, s) with
regular point X such that the associated net is the duatigfand ¥’ = (', #',1') is a
subquadrangle of” of orders not containing the poink. Then.#” is isomorphic to the
dual of T () for some ovalh of PG(2, s).

Proof. Suppose that the net”"x ;(Hf’)* is constructed from the liné of PG(3, s); that
is by taking as points the lines of R& s) not meeting, as lines the points of PG, s)\¢,
and the incidence from P@, s). Then each plane of PG(3, s) notcontaining¢ gives rise
to an affine plane subnet ()Hf)*, which is the dual oft with the pointz N ¢ and the lines
onzN¢removed. By Theorem 21 we see thajives rise to a subquadrangle of ordefhe
subquadrangle has poins the points ofr not on¢ and the points of?\ X - that are covers
of a line ofr not meeting. The lines of the subquadrangle are the lineg“dhcident with
X and the lines o not incident withX that are covers of a point af\ (7 N £). This gives
53 + 52 distinct subquadrangles of ordecontainingX, the maximal number possible.

Now suppose tha¥’ = (2, %', |’) is a subquadrangle of ordeof .#, not containing
X. The geometry”\ X is ans-fold cover of the ne(Hf’)* with covering mayp taking the
point P € &\ X to the point{X, P}* of 4"y = (H2)*. The subquadranglg’ contains a
unique lineym say, incident withX . The points of¥” incident withm, but distinct fromX,
form a parallel class och)* the elements of which are contained in a plane of ®
containing? which we will denote byp (m). The subguadranglé”’ containss + 1 points
of m, which we denote by. In Hf’ the set( is a set ofs + 1 points on the plang(m),
none of which is incident witld. Consider a line of %’ not concurrent witlw:. Thusp(n)
is a point of PG3, s) not on the planeg (m). Further, since no two lines a¥’ may be
incident with a common point ok not onm, it follows that the covering map gives
a one-to-one correspondence betweensthies of #’not concurrent withn and thes3
points of PG3, s)\ p(m). Each point of#” not incident withm is collinear with a unique
point of ¥ and so under the mapis a line of PG3, s) meetingp (m) in a point of@. Since
no two lines of¥” are concurrent in a point of - not onm, it must also be the case that
no two points of%”, not incident withm, correspond under to the same line of P@, s).
Thusp gives a one-to-one correspondence between th#'set and the lines of PG, s)
not in p(m) meetingp (m) in a point of. It is now a straightforward exercise to verify that
¢ is an oval and tha#”’ is isomorphic to the dual df>(0).

7. Representing GQs with an abelian centre of symmetry

Each known example of a regular point of a GQ is also a centre of symmetry with an
(elementary) abelian symmetry group. We call such a poirdtaiian centre of symme-
try. In this section we will introduce a representation of GQs with an abelian centre of
symmetry.

Suppose tha¥ = (2, 4, 1) is a GQ of ordefs, t) with centre of symmetr¥, (additive)
abelian symmetry group, associated net” = (?x, #x, 1) andz-fold cover(_1", p). For
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each pointP of /" arbitrarily label some element of 1(P) by (P, 0), where 0 is the
identity of A. Foro € A, label the point P, 0)* of ./ by (P, «). Hence for each € A the
map

(P,p)r—> (P,oo+p) for Pe Pxandfec A

is the symmetry: of ./”. Consequently, we have that two poiii3, o) and(Q, ) of A~
are collinear if and only iff — « is a constant depending ghand Q. We define a function
¢ from pairs of collinear points of/” to A such that

(P,o) ~(Q,p) < c(P,Q)=a—pf forP~Q,P # Q, andc(P, P)=0.

Note that the functiorr is alternating, that is¢(P, Q) = —c(Q, P) for all P, 0 € 2,

P~ Q.
The functionc will often be referred to as eovering function

Remark 23. An alternative way to view the functianis as follows. Letl” be the simplicial
complex constructed from the point graph.df. Thenc is a 1-cochain o™ mapping

into the abelian groupt. We will not say anything more concerning the cohomological
aspects of this situation, except to mention that it motivates some of the considerations and
terminology/notation that follows and that more details on this aspect of covering geometries
may be found ir3].

Now for a general alternating functiemrmapping from pairs of collinear points of” to
A we can define the collinearity

(P,o) ~(Q,B) < c(P,Q)=0a—p.

If the functionc defines a-fold cover of /", then this geometry is denoted™. Since
all GQs with a centre of symmetry arise in this way we are interested which alternating
functions define a cover of” which is also a GQ-cover.

Recall the general representation of GQs with a regular point discussed in Section 5. If
instead of considering permutations of the{de®, .. ., t} we consider permutations of the
groupA, then we have

2P0 =g —c(P,Q) for P,Q e ?, P~ Qandoc A. (3)

Now applying Theorem 20 we have the following result:

Theorem 24. Let /" = (2, 4, 1) be a net of order s and degreet+ 1, A an (additive
abelian group of order t and ¢ mapping from pairs of collinear points/ofto A is an
alternating functionLet " be the graph with vertex s ={(X,0) : X € P, a € A},
adjacency(X, a) ~ (Y, f) < ¢(X,Y)=a— f,andp : Z — 2 such that(X, «) — X.
Then(T, p) gives rise to a GQ-cover of " if and only if

0c(X,Y,Z)=0 < X,Y, Z are collinear,

wheresc(X, Y, Z) = ¢(X, Y) — (X, Z) + (Y, Z).
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Proof. Using (3) we see thatdefines a cover ofl” if éc(X, Y, Z) =0 whenevelX, Y, Z
are collinear. In additior; defines a GQ-cover ibc(X, Y, Z) # 0 wheneverX, Y, Z are
non-collinear.

7.1. Covering functions for the known GQs of oreer

In this section we will consider the known examples of (abelian) centres of symmetry of
GQs of orders and give the corresponding covering functianMe restrict our attention
to GQs of orders since in the known cases the associated net is always the affine plane
AG(2, q), which is straightforward to represent and calculate with.

The GQW (¢) given by the symplectic polarity with forogy; — x1y0 +x2y3 — x3y2=0
has the property that each pointis an abelian centre of symmefrys i point ofW (¢) and
np the polar plane oP under the symplectic polarity, then the affine plane associated with
P as aregular pointd (¢) ist= (np\{P})*. The symmetries o (¢) about the poinf
are induced by the elations of P& ¢) with centreP and axisztp. Using coordinates now,
if X = (xo0, x1, x2, x3), thenny, the polar plane o¥X, has coordinates-x1, xg, —x3, x2].
If P is the point(0, 1, 0, 0) thenr, =[1, 0, 0, 0] and= has pointset[0, 1, x1, xo] N 7p :
x1, x2 € GF(g)} and the covers of the poifif, 1, x1, x2] N np are the elements of the
set{(1, o, x2, —x1) : o« € GF(g)}. If we denote[0, 1, x1, x2] N wp by (x1, x2), thenn
assumes the canonical form of A% ¢). Further, we can identify the group of symmetries
aboutP with the additive group of G&) and denot&l, «, x2, —x1) by ((x1, x2), o). Now
((x1, x2), ) ~ ((v1, y2), p) if and only if (1, o, x2, —x1) ~ (1, 3, y2, —y1), which is the
case if and only iff — o« — x2y1 + x1y2 = 0, that isx. — f = x1y2 — x2y1. In other words,
the covering function

c((x1, x2), (y1, y2)) = x1y2 — X2)1

for AG(2, g) gives rise to the classical GW (¢).

Now we considerthe GQx(0). If g is odd, therT> () = W (¢)* and has no regular points,
so we will suppose thatis even. Let be the oval (1, ¢, f(¢)) : t € GF(g)} U{(0, 0, 1)}
of PG(2, ¢) with nucleusN = (0, 1, 0) and with (0) =0 andf (1) = 1. Embed P@, gq)
in PG(3, ¢) as the hyperplanes = 0 and construct»(() in the usual way.

The point(co) is regular and the associated affine plane is
PG, ¢) \ PG(2, q)

N N

Tl(o0) =

~AG(2,q) .

The symmetry group of»(() about(co) is induced by the group of elations of P&¢)
with axis PG2, ¢) and centreV. Identifying the symmetry group with the additive group
of GF(q) and representing ) in canonical form we have thatxi, x2), «) represents
the point(xy, o, x2, 1). It follows that ((x1, x2), &) ~ ((y1, y2), p) if and only if the point
(x1+y1, o+ 5, x2+ y2) is a point of the ovall. Hence the corresponding covering function
of AG(2, q) is given by

0 if x1=y1,

(x1+y)ft (M> if x1 # y1.

c((x1,x2), V1. y2)) = {
X1+
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Each pointP of ¢ is an axis of symmetry df>(() with associated affine plan®G(3, ¢)/
P)*\(N P/ P)* and symmetry group induced by the elations of BG) with axis PG2, ¢)

and centreP. By similar considerations to above we can calculate the corresponding cov-
ering functions of AG2, ¢). If P = (0, 0, 1), then the covering function is

0 if x2=y2,

. — + .

€012, 0L 32D =) TR (6 ) 4 £y i 22 # 2
X2+ y2

If P=(1,¢t, f(¢)), then the covering function is
0 if x2 = yo,
= + _ _ .

c((x1, x2), (¥1, y2)) 1 yl(ft Yxo) + £ (y2) if xo # v

X2+ y2

wheref; (x) = (f 1 ((x + 772 + f 1772 /x.

In the special case wheteis a translation oval, that ig;(r) =¢?, wheregs is a generator
of Aut(GF(q)), each planer of PG(3, ¢), not the plane of?, that meets P@, ¢) in the
axisxp =0 of ¢ is a centre of symmetry df((). By [26, 12.5.2]T»(0) is self-dual with a
duality interchanging the lin€0, 0, 1) of 7»>(() with the point(co) andz with an element
of O\{(0, 0, 1)}. Hence the covering function associated witls one of those above.

In the classical case, whenis even, the formulae above give a number of different
covering functions. These includeyz+x2y1, +/(x1 + y1) (x2 + y2) and(x1+y1) (x2+y2).
In the next section we shall investigate when different covering functions give rise to the
same GQ.

Remark 25. An interesting question is whether any such covering functions can be found
for non-desarguesian affine planes. This would immediately yield a new GQ ofsorder

7.2. Equivalence of covering functions and the group of a GQ fixing an abelian centre of
symmetry

Let¥ = (2, %,1) ands’ = (Z', #',1") be two GQs of orde(s, 1) with abelian centres
of symmetryX and X', respectively. Suppose th& has symmetry groupt aboutX,
associated netl”y and covering functiom, while &’ has symmetry groug’ aboutXx’,
associated net/"y, and covering functior’. Then we are interested in determining under
what conditions there is an isomorphism frgfto .%” mappingX to X’.

Soleti : ¥ — %’ be anisomorphism such th&f = X’. We first observe thatmust
induce an isomorphism from "y to /", so we will assume that” = ./ x» = A "x and
thati induces a collineatio” of .4". Also, sinceA =i~1 o A’ o i we will assume that
A’ = A and that forx € A we have that 1 o o 0 i = «° for some automorphism of A.
Now any GQ is uniquely determined by the geometry remaining after removing a point,
all lines incident with that point and all points incident with those lines. Hence the&Qs
and.¥”’ are isomorphic with an isomorphism mappikigo X’ if and only if the covering
geometries/ and./"¢ are isomorphic. Thus we now determine whéff and./ are
isomorphic.

First we consider a useful normalisation @f Suppose thab is a function from the
pointset of./" to A anddb acts on pairs of points aoff” by éb(P, Q) = b(P) — b(Q),
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then for any fixed elemerit of A we have that/*¢ is isomorphic tayetob by the map
(P, o) — (P,o.+b(P)+k).

Note that for a fixed functiob there are exactly functionsd : 2 — A such that
ob(P, Q) =d(P) — d(Q), namely the functionsb(P) + k fork € A.

Lemma 26. The geometries/™ and A< are isomorphic if and only if
J(PT, 0Ty =c(P, 0)° + 6b(P, Q) for P and Q collinear points off,

whereT is some collineation off”, ¢ some automorphism of and db is an alternating
function that may be written in the forob (P, Q) =b(P) — b(Q) for some map from the
points of /" to A.

Further, for such a fixedl' the automorphisna and the functionbb are unique Alsg,
the isomorphisms from/* to .4 that induce the collineatio™ on /" are (P, o) >
(PT, 0% + b(P) + k) fork € A.

Proof. Suppose that : A4 — A< is an isomorphism such thatinducesT on A~
and foro € A, i~loooi =a’ for some fixed automorphism of A. Theni must act by
(P, )" = (PT, tp(a)) for some permutatiorp of A. Now

(P, o) = (P,0 = (PT,1p(0)) " = (PT,1p(0) + ).
Definingb(P)=1p(0) we have thatP, o)) =(P", b(P)+ o) and consequently faP ~ Q

(P,o) ~(Q,B) < (PT,b(P)+ %) ~ (QT,b(Q)+ B,

which is the case if and only if (PT, QT) = ¢(P, Q)? + 6b(P, Q).

Conversely, ifc’(PT, QT) = c(P, Q)% + db(P, Q), then it is straightforward to check
that(P, o)) = (PT, a® + b(P)) is an isomorphism from/“ to VAl

Suppose that we havee Aut(A) andb : # — Asuchthat/(PT, QT)=c(P, Q)7 +
Sb(P, Q) = c(P, Q)° + 6b(P, Q). Now for P, Q, R pairwise collinear points off” we
have

5c/(PT, QT, RT) =C/(PT, QT) —C/(PT, RT)—}-C/(QT,RT)
= (0c(P, @, R))” — (6c(P, Q. R))” =0.

It follows from this that = ¢ and consequentl§b = 5b. Hences andédb are unique for
a givenT. If b is fixed, then recall that the functioas: 2 — A such thatd = Jb are
exactlyd(P)=b(P)+k, k € A, so all possible isomorphisms from to A< thatinduce
T on ./ have the form(P, &) — (PT,a% + b(P) + k) for k € A.

Now we consider the special case in which ¢’, that is automorphisms of the geometry
A€ T is a collineation of /" such that there exists a (necessarily unique) automorphism
ar of A and functiondbr satisfying

c(PT, 0Ty =c(P, 0)°T +0br(P, Q) forall P,Qe? P~ Q,P+0Q,

then we say thal' is admittedby c¢. The set of collineations ofl” admitted byc forms a
group which we denote Aut./"). 0O
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Lemma 27. The full collineation group of the geometry“ comprises the elements
(P, o) = (PT, 0T +k + br(P)),

wherek € A, T € Aut.(/") ander andby are fixed such that(PT, Q7)) =c(P, 0)°T +
obr (P, Q).

Hence we have the corresponding result on the collineation group of a GQ with a centre
of symmetry.

Theorem 28. Let.¥ =(2, 4, |) be a GQ of orde(s, r) with an abelian centre of symmetry
X with symmetry groug. Suppose that X has associated nietand covering functio.
Then the group of collineations of fixing X is induced by the full collineation group of
A€ which comprises the elements

(P,o) > (PT,0°T + k4 br(P)),

wherek € A, T € Aut.(/") andar andby are fixed such that(PT, Q7)) =c(P, Q)°T +
obr (P, Q).

Corollary 29. Let¥=(2, 4, |) be a GQ of ordefs, t) with an abelian centre of symmetry
X with symmetry groupl. ThenA is normal inAut(%) y and Aut(¥)y is the semidirect
product ofAut. (") with A.

Any elation of ¥ aboutX induces a collineation ofl"x fixing each parallel class. I¥
is an EGQ with base point and elation grougs, then the group of/"x induced byG is
transitive on points and is a translation group if and only i a centre of symmetry with
symmetry group contained i@i. In this case/ " is called askew translation generalized
guadrangle(see[23)).

In [33] Thas proves that it is an EGQ with regular base poiktand gcds — 1, 1) =1,
then eitherX is a centre of symmetry with symmetry group contained in the elation group
of &, or & contains a proper subquadrangle of ordand consequently = 2.

If & is an EGQ with base poiribo), then the Kantor family contains a subgroup normal
in the elation group if and only if the corresponding line incident with) is an axis of
symmetry with symmetry group contained in the elation group (see, for insti@nte,11]
for studies of such Kantor families).
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