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Abstract

LetS = (P,B, I) be a generalized quadrangle of order(s, t), s, t >1, and assume thatS has a
regular pointX. In this paper we survey some basic results on such generalized quadrangles (GQs)
as well as the known examples. We also study a general representation of such GQs using the net
associated with the regular pointX and specialise the representation to the case whereX is abelian
centre of symmetry, as in all of the known examples.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and definitions

A (finite) generalized quadrangle(GQ) is an incidence structureS= (P,B, I) in which
P andB are disjoint (non-empty) sets of objects calledpointsandlines, respectively, and
for which I ⊆ (P×B)∪ (B×P) is a symmetric point-line incidence relation satisfying
the following axioms:

(i) Each point is incident with 1+ t lines (t�1) and two distinct points are incident with
at most one line.

(ii) Each line is incident with 1+ s points (s�1) and two distinct lines are incident with
at most one point.

E-mail address:mbrown@maths.adelaide.edu.au.
1 The author is supported by the Australian Research Council.

0012-365X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2004.04.034

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82158652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disc
mailto:mbrown@maths.adelaide.edu.au


26 M.R. Brown / Discrete Mathematics 294 (2005) 25–42

(iii) If X is a point and� is a line not incident withX, then there is a unique pair(Y,m) ∈
P × B for whichX Im I Y I �.

For a comprehensive introduction to GQs see[26]. The integerssandt are theparameters
of the GQ andS is said to haveorder(s, t). If s= t , thenS is said to have orders. If S has
order(s, t), then it follows that|P| = (s + 1)(st + 1) and|B| = (t + 1)(st + 1) [26, 1.2.1].
If S = (P,B, I ) is a GQ of order(s, t), then the incidence structureS∗ = (B,P, I) is
a GQ of order(t, s) called thedualof S. By a result of Higman[12,13] (a short proof is
found in[5]), if s, t >1, thens� t2 andt�s2.
The classical GQs (withs, t >1) arise as the classical rank 2 polar spaces and are:

Q(4, q), from the parabolic quadric in PG(4, q), and,W(q), from the symplectic polarity in
PG(3, q), GQs of orderq;Q(5, q), from the non-singular elliptic quadric in PG(5, q), a GQ
of order(q, q2);H(3, q2), from the Hermitian variety in PG(3, q2), a GQ of order(q2, q);
andH(4, q2), from the Hermitian variety in PG(4, q2), a GQ of order(q2, q3). Note that
Q(4, q)�W(q)∗ andQ(4, q)�W(q) if and only if q is even, whileQ(5, q)�H(3, q2)∗
(see[26, Chapter 3]).
A (finite) net is an incidence structureN = (P,B, I) in whichP andB are disjoint

(non-empty) sets of objects calledpointsandlines, respectively, and for which I⊆ (P ×
B)∪ (B×P) is a symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1+ t lines (t�1) and two distinct points are incident with
at most one line.

(ii) Each line is incident with 1+ s points (s�1) and two distinct lines are incident with
at most one point.

(iii) If X is a point and� is a line not incident withX, then there is a unique linem such
thatX Im and there is no point incident with both� andm (that is,� andm are
non-concurrent).

Theorderof N is s + 1, while thedegreeof N is t + 1. The incidence structureN∗ =
(B,P, I) is thedual of N. Two non-concurrent lines ofN are said to beparallel and
parallelism is an equivalence relation onB. Straightforward counts show that|P|=(s+1)2,
|B| = (s + 1)(t + 1), the number of parallel classes ist + 1 and the number of lines in a
parallel class iss + 1.
Important examples of nets are the affine planes of orders, which are nets of ordersand

degrees + 1. Another important example is the dual netHn
q , n>2, which is constructed as

follows: the points ofHn
q are the points of PG(n, q) not in a given subspace PG(n−2, q) ⊂

PG(n, q), the lines ofHn
q are the lines of PG(n, q) which have no point in common with

PG(n − 2, q), the incidence inHn
q is the natural one. The axiom of Veblen for a dual net

is the following: If �1 IX I �2, �1 �= �2, m1/IX/Im2, and if�i is concurrent withmj for all
i, j ∈ {1,2}, thenm1 is concurrent withm2. In fact, the axiom of Veblen characterizes the
Hn

q in the following way.

Theorem 1 (Thas and De Clerck[34]). LetN∗ be a dual net withs + 1 points on any
line andt +1 lines through any point,wheret +1>s. If N∗ satisfies the axiom of Veblen,
thenN∗�Hn

q with n>2 (hences = q andt + 1= qn−1).
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LetS= (P,B, I) be a GQ of order(s, t). Given two (not necessarily distinct) pointsX,
X′ ofS, we writeX ∼ X′ and say thatX andX′ arecollinear, provided that there is some
line � for whichX I � IX′; henceX /∼ X′ means thatX andX′ are not collinear. Dually,
for �, �′ ∈ B, we write� ∼ �′ or � /∼ �′ according to whether� and�′ areconcurrent
or nonconcurrent. ForX ∈ P putX⊥ = {X′ ∈ P : X ∼ X′}, and note thatX ∈ X⊥.
ForX �= X′, the set{X,X′}⊥ is defined to beX⊥∩⊥

X′ . Hence|{X,X′}⊥| = s + 1 or t + 1
according asX ∼ X′ orX /∼ X′. More generally, ifA ⊂ P,A⊥ is defined to be

⋂
X∈A X⊥.

ForX �= X′, the set{X,X′}⊥⊥ is defined to be{U ∈ P : U ∈ Z⊥ for all Z ∈ X⊥ ∩X′⊥}.
We have|{X,X′}⊥⊥| = s + 1 or |{X,X′}⊥⊥|� t + 1 according asX ∼ X′ orX /∼ X′.
If X ∼ X′, X �= X′, or if X /∼ X′ and |{X,X′}⊥⊥| = t + 1, whereX,X′ ∈ P, we

say the pair{X,X′} is regular. The pointX is regular provided{X,X′} is regular for all
X′ ∈ P,X �= X′. Regularity for lines is defined dually. Note that ifX is a regular point and
Y,Z ∈ X⊥, Y �= Z, then{Y,Z} is regular.

2. Basic results on regularity

In this section we review some fundamental results concerning regularity in GQs. Many
more are to be found in Chapter 1 of[26]. LetS = (P,B, I ) be a GQ of order(s, t).

Theorem 2 (1.3.6 of Payne and Thas[26]). If S has a regular pair of points{X, Y }, then
eithers = 1 or s� t .

Theorem 3 (Thas[28]). If s �= 1 �= t andS has a regular point X and a regular line�
withX/I �, thens = t is even.

A pointX ofS is coregularif each line incident withX is regular.

Theorem 4 (Payne and Thas[25]). If S has a coregular point X and t is odd, then
|{X, Y }⊥⊥| = 2 for all Y /∈X⊥.

Theorem 5 (Payne[20] , Payne andThas[25]). IfShas a coregular point X ands=t �= 1,
then X is regular if and only if s is even.

Perhaps themost important structural result concerning regularity inGQs is the following
theorem giving a construction of a (dual) net from a regular point of a GQ.

Theorem 6 (1.3.1 of Payne and Thas[26]). LetS have a regular point X. Then the inci-
dence structure with pointsetX⊥\{X}, with lineset the set with elements{Y,Z}⊥⊥, where
Y,Z ∈ X⊥\{X}, Y /∼ Z, and with the natural incidence, is the dual of a net of order s
and degreet + 1. If in particular s = t >1, then there arises a dual affine plane of order s.
Moreover, in this case the incidence structure�X with pointsetX⊥,with lineset the set with
elements{Y,Z}⊥⊥, whereY,Z ∈ X⊥\{X}, and with the natural incidence, is a projective
plane of order s.
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The net arising as in Theorem 6 from a regular pointX of a GQS will be referred to as
the netassociatedwith X.
The implications of this result for regularity in GQs will be investigated in great detail in

the rest of the paper.
Also important for the rest of the paper is the concept of a centre of symmetry. Let

S = (P,B, I) be a GQ of order(s, t) andX a point ofS. A symmetryof S aboutX is
a collineation ofS fixing X⊥ elementwise. Any non-trivial symmetry aboutX fixes no
point ofP\X⊥. The symmetries aboutX form a group whose order dividest (see[26,
Chapter 8]). If the symmetry group aboutXhas maximal ordert, thenX is called acentre of
symmetry. Dually we have the concept of anaxis of symmetry. If X is a centre of symmetry
with symmetry groupG andP ∈ P\X⊥, then{X,P }⊥⊥ = {X} ∪ {g(P ) : g ∈ G} and
{X,P } is a regular pair. Consequently, we have the following result:

Lemma 7. LetS = (P,B, I) be a GQ of order(s, t) and X a centre of symmetry ofS.
Then X is a regular point ofS.

3. Examples of GQs and regularity

In this section we list the known examples of GQs with regularity.
The classical GQW(q) of orderq has all points regular. Ifq is even, then all lines of

W(q) are regular, otherwiseW(q) has no regular lines (recall that forq evenW(q) is self
dual). SinceQ(4, q) is the dual ofW(q) it has all lines regular, all points regular ifq is even
and no regular points otherwise. The classical GQQ(5, q) of order(q, q2) has all lines
regular (and sincet > s may have no regular points) while its dualH(3, q2) has all points
regular. These results may be found in[26, 3.3.1].
Nowwe introduce our first examples of non-classical GQs and their regularity properties.

These examples are due to Tits, first appearing in[8] (see also[26]). For these GQs we will
need the following two definitions:
An ovalof PG(2, q) is a set ofq + 1 points, no three collinear. Lines of PG(2, q) meet

an oval in 0,1 or 2 points and are called external lines, tangent lines and secant lines,
respectively. Ifq is even, then theq + 1 tangent lines to an oval are concurrent in a point
called thenucleusof the oval. See[15] for details and references on ovals.
An ovoidof PG(3, q), q >2, is a set ofq2 + 1 points, no three collinear. An ovoid of

PG(3,2) is a set of five points no four of which are coplanar. Lines of PG(3, q) are either
external, tangent or secant to the ovoid. The tangents at the point of the ovoid form a plane
called thetangentplane at that point. Any plane of PG(3, q) not a tangent plane meets
the ovoid in an oval and is called asecantplane. See[14] for details and references on
ovoids.
Let n = 2 (respectively,n = 3) and letO be an oval (respectively, ovoid) of PG(n, q).

Further, let PG(n, q) be embedded as a hyperplane in PG(n + 1, q). We now give the
definition of the GQTn(O) of order(q, qn−1). Define points as (i) the points of PG(n +
1, q)\PG(n, q) (theaffinepoints), (ii) the hyperplanesH of PG(n + 1, q) for which |H ∩
O| = 1, and (iii) one new symbol(∞). Lines are defined as (a) the lines of PG(n +
1, q) which are not contained in PG(n, q) and meetO, and (b) the points ofO.
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Incidence is that inherited from PG(n+ 1, q) plus each line of type (b) is incident with the
point (∞).
The GQT2(O) is isomorphic toQ(4, q) if and only if O is a conic and is non-classical

otherwise (see[26]). The GQT3(O) is isomorphic toQ(5, q) if and only ifO is an elliptic
quadric ovoid and is non-classical otherwise. Each line ofTn(O) of type (b) is regular and
if q is even, then the point(∞) of T2(O) is regular (see[26]). An ovalO of PG(2, q), q
even, is atranslation ovalif there exists a tangent� toO and a group ofq elations fixingO
each element of which has axis�. The line� is called anaxisof O. It was proved by Payne
in [19] that every translation oval of PG(2, q) is projectively equivalent to an oval of the
form {(1, t, t�) : t ∈ GF(q)} ∪ {(0,0,1)} where� is a generator of Aut(GF(q)). If O is a
translation oval with axis�, then any point of type (ii) ofT2(O) that is a plane of PG(3, q)
meeting PG(2, q) in � is a regular point and consequentlyP = � ∩ O is a coregular line of
T2(O).
We now present a construction method for GQs introduced by Kantor[16].
LetGbe a finite group of orders2t , 1<s, t , together with a familyJ ={Ai : 0� i� t} of

1+ t subgroups ofG, each of orders. Assume that for eachAi ∈ J , there exists a subgroup
A∗

i ofG, orderst, containingAi . PutJ ∗ ={A∗
i : 0� i� t} and define as follows a point-line

incidence geometryS = (P,B, I ) = S(G, J ).
Points are of three kinds: (i) the elements ofG; (ii) the right cosetsA∗

i g,A
∗
i ∈ J ∗, g ∈ G;

(iii) a symbol(∞).
Lines are of two kinds: (a) the right cosetsAig, Ai ∈ J , g ∈ G; (b) the symbols[Ai],

Ai ∈ J .
A point g of type (i) is incident with each lineAig, Ai ∈ J ; a pointA∗

i g of type (ii) is
incident with[Ai] and with each lineAih contained inA∗

i g; the point(∞) is incident with
each line[Ai] of type (b).
Then Kantor[16] proved that the following holds:S(G, J ) is a GQ of order(s, t)

provided

K1 : AiAj ∩ Ak = {1}, for i, j, k distinct, and

K2 : A∗
i ∩ Aj = {1}, for i �= j.

If the conditionsK1 andK2 are satisfied, thenA∗
i is uniquely defined byAi . Suppose

K1 andK2 are satisfied. For anyh ∈ G let us define�h by g�h = gh, (Aig)
�h = Aigh,

(A∗
i g)

�h = A∗
i gh, [Ai]�h = [Ai], (∞)�h = (∞), with g ∈ G, Ai ∈ J andA∗

i ∈ J ∗. Then
�h is an automorphism ofS(G, J ) which fixes the point(∞) and all lines of type (b). If
G′ = {�h : h ∈ G}, then clearlyG′�G andG′ acts regularly on the points of type (i).
The centreZ(G′) ofG′ induces the group of symmetries ofS(G, J ) about(∞). Hence by
Lemma 7 if|Z(G′)| = t , then(∞) is a regular point.
If K1 andK2 are satisfied, thenJ is called a 4-gonal familyorKantor familyfor G.
Now putG = {(�, c,�) : �,� ∈ GF(q)2, c ∈ GF(q)}. Define a binary operation

(�, c,�)(�′, c′,�′) = (� + �′, c + c′ + ��′T ,� + �′). This makesG into a group whose
centre isZ(G) = {(0, c,0) : c ∈ GF(q)}.
Let C = {Au : u ∈ GF(q)} be a set ofq distinct upper triangular 2× 2 matrices over

GF(q). ThenC is called aq-clanprovidedAu − Ar is anisotropic wheneveru �= r, that is
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�(Au −Ar)�T =0 has only the trivial solution�= (0,0). ForAu ∈ C, putKu =Au +AT
u .

Let

Au =
(
xu yu
0 zu

)
, xu, yu, zu, u ∈ GF(q).

Forq odd,C is aq-clan if and only if

−det(Ku − Kr) = (yu − yr)
2 − 4(xu − xr)(zu − zr) (1)

is a nonsquare of GF(q) wheneverr, u ∈ GF(q), r �= u. Forq even,C is aq-clan if and
only if

yu �= yr and Tr((xu + xr)(zu + zr)(yu + yr)
−2) = 1, (2)

wheneverr, u ∈ GF(q), r �= u, and Tr is the trace map from GF(q) to GF(2).
Now we can define a family of subgroups ofG byA(u)= {(�, �Au�T , �Ku) ∈ G : � ∈

GF(q)2}, u ∈ GF(q), andA(∞) = {(0,0,�) : � ∈ GF(q)2}.
With G, A(u), A∗(u) andJ as above, the following theorem is a combination of results

of Payne and Kantor.

Theorem 8 (Payne[21,22] and Kantor[17]). The set J is a4-gonal family for G if and
only ifC is a q-clan.

In [29] Thas showed that (1) and (2) are exactly the conditions for the planesxuX0 +
zuX1+yuX2+X3=0,u ∈ GF(q), of PG(3, q) to define a flockF of the quadratic coneK
with equationX0X1=X2

2. (A flockis a set of planes of PG(3, q) that partition the non-vertex
points of a quadratic cone.) In[32] Thas provides an elegant geometrical description of the
flock GQ, which we denoteS(G,C) orS(F), directly from the flock.
The flock GQS(G,C) has order(q2, q) and its centreZ(G) = {(0, c,0) ∈ G : c ∈

GF(q)} has orderq and so we have the following result:

Theorem 9. The flock GQS(G,C) has regular point(∞).

There are many examples of GQs of order(q2, q), for bothq odd and even, constructed
through this method (see[24] for example).
Next we will introduce a GQ construction that is a generalisation of the construction

Tn(O) of Tits. LetS = (P,B, I ) be a GQ of order(s, t), s �= 1, t �= 1. A collineation�
ofS is anelationabout the pointP if � is the identity or if� fixes all lines incident withP
and fixes no point ofP\P⊥. If there is a groupG of elations aboutP acting regularly on
P\P⊥, then we say thatS is anelation generalized quadrangle(EGQ) withelation group
G andbase point P. Briefly we say that(S(P ),G) orS(P ) is an EGQ. Note that ifJ is a
4-gonal family for a groupG, thenS(G, J ) is an EGQwith elation groupGand base point
(∞). If for an EGQ the elation groupG is abelian, then we say that the EGQ(S(P ),G) is
a translation generalized quadrangle(TGQ) andG is thetranslation group.
In PG(2n+m−1, q) consider a setE(n,m, q) of qm+1 (n−1)-dimensional subspaces,

every three of which generate a PG(3n−1, q) and such that each elementEofE(n,m, q) is
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contained in an(n+m−1)-dimensional subspaceTE having no point in common with any
element ofE(n,m, q)\{E}. It is straightforward to check thatTE is uniquely determined
for any elementE of E(n,m, q). The spaceTE is called thetangent spaceof E(n,m, q)

at E. For n = m = 1 such a setE(1,1, q) is an oval in PG(2, q) and more generally for
m = n such a setE(n, n, q) is apseudo-ovalof PG(3n − 1, q). Form = 2n = 2 such a set
E(1,2, q) is an ovoid of PG(3, q) and more generally form = 2n such a setE(n,2n, q) is
apseudo-ovoid. In general we call such setsE(n,m, q) eggs.
Now embed PG(2n+m− 1, q) in a PG(2n+m, q) and construct a point-line geometry

T (n,m, q) as follows:
Points are of three types: (i) the points of PG(2n + m, q)\PG(2n + m − 1, q), called

theaffinepoints; (ii) the(n+m)-dimensional subspaces of PG(2n+m, q) which intersect
PG(2n + m − 1, q) in a tangent space ofE(n,m, q); (iii) the symbol(∞).
Lines are of two types: (a) then-dimensional subspaces of PG(2n+m, q)which intersect

PG(2n + m − 1, q) in an element ofE(n,m, q); (b) the elements ofE(n,m, q).
Incidence inT (n,m, q) is inherited from PG(2n + m, q) plus each line of type (b) is

incident with the point(∞).

Theorem 10(8.7.1 of Payne andThas[26]). The incidence geometryT (n,m, q) is aTGQ
oforder(qn, qm)withbasepoint(∞).Conversely,everyTGQis isomorphic toaT (n,m, q).
It follows that the theory ofTGQsis equivalent to the theory of the setsE(n,m, q).

In the case wheren = m = 1 andE(1,1, q) is an ovalO of PG(2, q), the GQT (1,1, q)
is the Tits GQT2(O). Whenm = 2n = 2 andE(1,2, q) is an ovoid� of PG(3, q), the GQ
T (1,2, q) is the Tits GQT3(�).
For more details on TGQ and EGQ see Chapter 8 of[26]. In them = 2n case the

T (n,m, q) construction has led to non classical TGQ of order(qn, q2n) with q odd (see
[24], for example).
From the above model for TGQ the following theorem is straightforward.

Theorem 11. Each line of theTGQT (n,m, q) incident with(∞) is regular.

Proof. Let � be a line ofT (n,m, q) incident with(∞). Then� is an element of the egg
E(n,m, q), a (n − 1)-dimensional subspace of PG(2n + m − 1, q). The group of elations
of PG(2n+m, q) with axis PG(2n+m− 1, q) and centre a point in� induces a symmetry
group of orderqn of T (n,m, q) about�. Hence� is regular.
Note that this result implies thatn�m. In fact by [26, 8.7.2]we know thatn = m or

n(a + 1) = ma, with a odd, and that ifq is even, thenn = m orm = 2n. �

Whenn = m by applying Theorem 5 (see also[27]) we have the following result:

Theorem 12. TheTGQT (n, n, q) has regular point(∞) if and only if q is even.

Note that this result implies that whenq is even any eggE(n, n, q) has the property that
the tangent spaces of the egg intersect pairwise in a fixed(n − 1)-dimensional subspace of
PG(3n − 1, q).
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4. Property (G) and GQs with a regular point

LetS=(P,B, I )beaGQof order(s, s2), s �= 1.By[1] wehave that|{X, Y,Z}⊥|=s+1
for any triple{X, Y,Z} of pairwise noncollinear points. We say that{X, Y,Z} is 3-regular
provided|{X, Y,Z}⊥⊥| = s + 1. Now letX1, Y1 be distinct collinear points. We say that
the pair{X1, Y1} hasProperty(G), or thatS hasProperty(G) at {X1, Y1}, if every triple
{X1, X2, X3} of points, withX1, X2, X3 pairwise noncollinear andY1 ∈ {X1, X2, X3}⊥,
is 3-regular. The GQS hasProperty(G) at the line�, or the line� hasProperty(G), if
each pair of points{X, Y }, X �= Y andX I � I Y , has Property (G). If(X, �) is a flag, that
is, if X I �, then we say thatS hasProperty (G) at(X, �), or that(X, �) hasProperty(G),
if every pair{X, Y },X �= Y , andY I �, has Property (G).
Property (G) was introduced by Payne in[23] and is studied in detail in the series of

papers[30–32]by Thas.

Theorem 13(ThasandVanMaldeghem[35]). LetS=(P,B, I )beaGQoforder(q2, q),
q even, satisfying Property(G) at some point X. Then X is regular inS and the dual net
N∗

X defined by X is isomorphic toH 3
q .

In the previous section we saw the construction of a GQS(F) of order(q2, q) from a
flockF of a quadratic cone in PG(3, q). The following theorem characterizes those GQs
whose regular point(∞) has associated dual netH 3

q .

Theorem 14(Thas andVanMaldeghem[35]). For anyGQS(F) of order(q2, q) arising
from a flockF, the point(∞) is regular. If q is even, then the dual netN∗

(∞) is isomorphic

to H 3
q . If q is odd, then the dual netN∗

(∞) is isomorphic toH 3
q if and only ifF is a

Kantor–Knuth flock.

The definition of the Kantor–Knuth flocks is as follows. LetK be the quadratic cone
with equationX0X1 = X2

2 of PG(3, q), q odd. Then theq planes�t with equationtX0 −
mt�X1 + X3 = 0, t ∈ GF(q),ma given nonsquare of GF(q), and� a given automorphism
of GF(q). Note that if� is the identity automorphism of GF(q), then the Kantor–Knuth
flock is linear, that is the elements of the flock contain a common line, giving rise to the
classical GQH(3, q2).

5. Representing GQs with a regular point

In this sectionwe introduce a general representation for aGQof order(s, t)with a regular
point. The ideas in this section follow on from the work of Löwe[18] (see also Ghinelli and
Ott [9] and the theses of Brown[2] and De Bruyn[7]).
To begin we will introduce the idea of a cover of a graph and a cover of a geometry.
If � is a graph, then at-fold coverof � is a pair(�, p) where� is a graph andp is a map

from the vertex set of� onto the vertex set of� such that

(1) for any vertexX of � the setp−1(X) consists oft pairwise non-adjacent vertices,
(2) for any edge{X, Y } of �, p−1({X, Y }) consists oft disjoint edges, and
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(3) for any non-edge{X, Y } of �, p−1({X, Y }) is a graph with no edges.
If � is the point-graph of a point-line geometryN = (P,B, I) and(�, p) satisfies

(4) for any line� of N, if P� = {P ∈ P : P I �}, thenp−1(P�) consists oft disjoint
complete graphs,

then we can form a geometry with points the vertices of�, and lines defined to be the set
of complete graphs from (4).
LetN = (P,B, I) be a point-line geometry with point-graph�. A t-fold coverof N

is a pair(N, p) whereN = (P,B, I ) is a point-line geometry with point-graph� and
p : P → P such that: (i)(�, p) is a t-fold cover of�; and (ii) (�, p) satisfies (4) giving
rise to the geometryN.
We will abuse notation and also considerp as a map fromB toB induced by the map

fromP toP.

Remark 15. The definition oft-fold coverN= (P,B, I ) of a geometryN= (P,B, I)
above is convenient for our purposes in this paper. Perhaps a more standard definition
is that there exists a surjective mapp :P × B → P × B whose restriction to any
point row or line pencil induces an isomorphism between point rows and line pencils,
respectively.

Theorem 16. Let S = (P,B, I) be a GQ of order(s, t) with a regular point X and
associated netNX = (PX,BX, IX). Then(NX, p) with NX = (PX,BX, IX) where
PX =P\X⊥,BX =B\{� ∈ B : � IX}, andIX is induced byI, together withp : PX →
PX defined byp : Y �→ {X, Y }⊥ for Y ∈ P\X⊥, is a t-fold cover ofNX.

Proof. For the point{X, Y }⊥ ofNX the setp−1({X, Y }⊥)={X, Y }⊥⊥\{X} has sizet and
no two elements are collinear inS and hence also inNX. Next, if {X, Y }⊥ and{X, Y ′}⊥
are two collinear points ofNX, then there is a unique pointZ ∈ X⊥\{X} contained
in both {X, Y }⊥ and {X, Y ′}⊥. Each of thet lines ofS incident withZ, but notX, is
incident with a point ofp−1({X, Y }⊥) and a distinct point ofp−1({X, Y ′}⊥), forming
the t disjoint pairs of collinear points required for condition (2) of at-fold cover. Now,
suppose that{X, Y }⊥ and {X, Y ′}⊥ are two non-collinear points ofNX. Then{X, Y }⊥
and {X, Y ′}⊥ are disjoint sets. If there is a pointZ of {X, Y }⊥⊥ collinear with a point
Z′ of {X, Y ′}⊥⊥, then the lineZZ′ must meetX⊥ in a point of {X, Y }⊥ ∩ {X, Y ′}⊥.
Hence it follows thatp−1({{X, Y ′}⊥, {X, Y }⊥⊥}) is a set of 2t pairwise non-collinear points
ofNX.
If Y ∈ X⊥\{X} is a line ofNX, thenp−1(Y ) consists oft disjoint complete graphs

corresponding to thet lines ofS, notYX, incident withY.
Note that the covering geometryNX is “triangle free” in the sense that if three distinct

points are pairwise collinear, then they are incident with a common line. In fact a cover of
this type is enough to allow a reconstruction of the GQ.

Theorem 17. Let N = (P,B, I ) be a net with order s and degreet + 1 and (N =
(P, B, I), p) a t-fold cover ofN. Suppose that ifW,Y,Z are three distinct, pairwise
collinear, points ofN, thenp(W), p(Y ), p(Z) are incident with a common line ofN.
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LetS(N, p) be the following incidence structure:

Points: (i) Points ofN,
(ii) Lines ofN, and
(iii) A symbol(∞).

Lines: (a)Lines ofN, and
(b)Parallel classes ofN.

The incidence ofS(N, p) is as follows: (i)(a), is inherited fromN; (ii)(a), a line of
N is incident with each line ofN covered by it; (ii)(b), a line ofN is incident with the
parallel class containing it; and(iii)(b), (∞) is incident with each line of type(b).
ThenS(N, p) is a GQ of order(s, t) with regular point(∞).
Furthermore, if S is a GQ of order(s, t) with regular point X, associated netNX and

t-fold cover(NX, p) of NX, then there exists an isomorphism fromS to S(NX, p)

mapping X to(∞).

Proof. It is straightforward to check thatS(N, p) is a geometry satisfying the first two
axioms of a GQ and most of the cases for the third axiom.We consider the two problematic
cases of non-incident point-line pairs(Y, �) ofS(N, p).
LetYbe a point ofN and� a line ofN. If p(Y ) I p(�), thenY is collinear inS(N, p)

with the unique pointp(�) of � . If p(Y )/I p(�), then consider thet covers of the linep(�) of
N (including�). For any such line ofN the pointY is collinear with at most one point on
the line, since otherwise we have a triangle ofN not incident with a common line. InN
the pointp(Y ) is incident with one line parallel top(�) and witht meetingp(�) and hence
Y is collinear inN with t points on a cover ofp(�), hence exactly one per line.
Next letYbe a line ofN and� a line ofN. SinceY �= p(�) we have that eitherY is in

the same parallel class ofN asp(�) or not. In the first caseY is collinear inS(N, p) with
the unique pointp(�). In the second case, as lines ofN,Yandp(�) intersect in a unique
pointQ of N. Exactly one of the coversQ of Q is incident with�, which is the unique
point ofS(N, p) incident with� and collinear inS(N, p) withY. �

Remark 18. From this theorem we see that considering GQs of order(s, t) with a regular
point is equivalent to consideringt-fold covers of nets of ordersand degreet + 1 with no
non-collinear triangles. This motivates the following definition.

Definition 19. LetN be a net of ordersand degreet +1 and(N, p) a t-fold cover ofN.
Then(N, p) (or justN if p is understood) will be called a GQ-cover if for every triple of
pairwise collinear pointsX, Y,Z of N the triple of pointsp(X), p(Y ), p(Z) is incident
with a common line inN.

Note that it follows from the definition of a GQ-cover of a net of ordersand degreet +1
thats� t .
We now proceed to give a general description oft-fold covers of the point-graph of a net

and calculate the conditions for such a cover to define a cover of the net and in particular a
GQ-cover.
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Let N be a net of orders and degreet + 1 with point-graph� and let(�, p) be a
t-fold cover of�. If P is a point ofN, then label the elements ofp−1(P ) arbitrarily such
thatp−1(P ) = {(P,1), (P,2), . . . , (P , t)}. ForP andQ collinear points ofN define a
permutation�PQ of {1,2, . . . , t} by (P, i) ∼ (Q, i�PQ). It follows that�−1

QP =�PQ. Note
that any set of permutations{�PQ : P,Q ∈ P, P ∼ Q, P �= Q} of {1,2, . . . , t} such
that�−1

QP = �PQ defines at-fold cover of� as above.

Theorem 20. LetN = (P,B, I) be a net of order s and degreet + 1 equipped with a
set of permutations{�PQ : P,Q ∈ P, P ∼ Q, P �= Q} of {1,2, . . . , t} such that

�−1
QP = �PQ. The permutations define a cover ofN if and only if�PQ�QR�RP is the

identity whenP,Q,R are collinear.
Further, this cover ofN is a GQ-cover if and only if�PQ�QR�RP is fixed point free

whenP,Q,R are non-collinear.

Proof. Let � be the point-graph ofN and� the graph with vertices(P, i), P ∈ P, i ∈
{1, . . . , t} and(P, i) ∼ (Q, j) if and only ifP ∼ Q andj = i�PQ . With p : (P, i) �→ P ,
the pair(�, p) defines at-fold cover of� which extends to at-fold cover ofN if the
preimage underp of the pointset of a line ofN is a set oft disjoint complete graphs. Now
(P, i) ∼ (Q, i�PQ) ∼ (R, i�PQ�QR) and so(�, p) extends to a cover ofN if and only if
(P, i) ∼ (R, i�PQ�QR) for all collinear triples of points{P,Q,R} andi ∈ {1, . . . , t}. That
is,�PQ�QR�RP =1 if P,Q,R are collinear. In this casewe call the covering geometryN.

For (N, p) to be a GQ-cover(P, i) must not be collinear to(R, i�PQ�QR) if P,Q,R are
not collinear, since otherwise we have a non-collinear triangle inN. Hence�PQ�QR�RP

must be fixed point free.�

6. Some applications to subquadrangles of GQs with a regular point

In this section we look at a couple of applications to subquadrangles of the representation
of GQs with a regular point via the cover of the associated net.
The following result has a different published proof to that given here, although equally

as short.

Theorem 21(Thas[33]). LetS=(P,B, I)beaGQof order(s, t), s, t >1,with a regular
point X and associated netNX = (PX,BX, IX) of order s and degreet + 1. If NX has
a proper subnet of degreet + 1, thenS has a proper subquadrangleS′ of order (s′, t)
containing X as a regular point. Further, the proper subnet must be an affine plane(s′ = t)

and alsos = t2.

Proof. Let (NX = (PX,BX, IX), p) be thet-fold cover ofNX defined byS. Suppose
thatN′

X = (P′
X,B′

X, I ′X) is a proper subnet ofNX of orders′ <s and degreet +1. Define

the geometryN′
X to be the proper subgeometry ofNX defined on the pointsetp−1(P′

X),

andp′ the restriction of the mapp top−1(P′
X). Then(N′

X, p′) is necessarily a GQ-cover
of N′

X. By the construction of Theorem 17 this yields a subquadrangle of order(s′, t) of
S with regular pointX.
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Now since the subquadrangle has order(s′, t) and a regular point, it follows thats′ � t .
By [26, 2.2.2(ii)] it must be thats′ = t , that is,N′

X is an affine plane, ands = t2. �

Theorem 22(Brown and Thas[4] ). Let S = (P,B, I) be a GQ of order(s2, s) with
regular point X such that the associated net is the dual ofH 3

s andS′ = (P′,B′, I ′) is a
subquadrangle ofS of order s not containing the pointX. ThenS′ is isomorphic to the
dual ofT2(O) for some ovalO ofPG(2, s).

Proof. Suppose that the netNX�(H 3
s )

∗ is constructed from the line� of PG(3, s); that
is by taking as points the lines of PG(3, s) not meeting�, as lines the points of PG(3, s)\�,
and the incidence from PG(3, s). Then each plane� of PG(3, s) notcontaining� gives rise
to an affine plane subnet of(H 3

s )
∗, which is the dual of� with the point� ∩ � and the lines

on�∩� removed. ByTheorem 21we see that� gives rise to a subquadrangle of orders. The
subquadrangle has pointsX, the points of� not on� and the points ofP\X⊥ that are covers
of a line of� not meeting�. The lines of the subquadrangle are the lines ofS incident with
X and the lines ofS not incident withX that are covers of a point of�\(� ∩ �). This gives
s3 + s2 distinct subquadrangles of orders containingX, the maximal number possible.
Now suppose thatS′ = (P′,B′, I ′) is a subquadrangle of orders ofS, not containing

X. The geometryS\X⊥ is ans-fold cover of the net(H 3
s )

∗ with covering mapp taking the
pointP ∈ S\X⊥ to the point{X,P }⊥ ofNX�(H 3

s )
∗. The subquadrangleS′ contains a

unique line,m say, incident withX. The points ofS incident withm, but distinct fromX,
form a parallel class of(H 3

s )
∗ the elements of which are contained in a plane of PG(3, s)

containing� which we will denote byp(m). The subquadrangleS′ containss + 1 points
of m, which we denote byO. In H 3

s the setO is a set ofs + 1 points on the planep(m),
none of which is incident with�. Consider a linen ofS′ not concurrent withm. Thusp(n)
is a point of PG(3, s) not on the planep(m). Further, since no two lines ofS′ may be
incident with a common point ofX⊥ not onm, it follows that the covering mapp gives
a one-to-one correspondence between thes3 lines ofS′not concurrent withm and thes3

points of PG(3, s)\p(m). Each point ofS′ not incident withm is collinear with a unique
point ofO and so under the mapp is a line of PG(3, s)meetingp(m) in a point ofO. Since
no two lines ofS′ are concurrent in a point ofX⊥ not onm, it must also be the case that
no two points ofS′, not incident withm, correspond underp to the same line of PG(3, s).
Thusp gives a one-to-one correspondence between the setP′\m and the lines of PG(3, s)
not inp(m)meetingp(m) in a point ofO. It is now a straightforward exercise to verify that
O is an oval and thatS′ is isomorphic to the dual ofT2(O).

7. Representing GQs with an abelian centre of symmetry

Each known example of a regular point of a GQ is also a centre of symmetry with an
(elementary) abelian symmetry group. We call such a point anabelian centre of symme-
try. In this section we will introduce a representation of GQs with an abelian centre of
symmetry.
Suppose thatS= (P,B, I) is a GQ of order(s, t)with centre of symmetryX, (additive)

abelian symmetry groupA, associated netN= (PX,BX, I) andt-fold cover(N, p). For
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each pointP of N arbitrarily label some element ofp−1(P ) by (P,0), where 0 is the
identity ofA. For� ∈ A, label the point(P,0)� ofN by (P, �). Hence for each� ∈ A the
map

(P,�) �→ (P, � + �) for P ∈ PX and� ∈ A

is the symmetry� of N. Consequently, we have that two points(P, �) and(Q,�) of N
are collinear if and only if� − � is a constant depending onP andQ. We define a function
c from pairs of collinear points ofN toA such that

(P, �) ∼ (Q,�) ⇐⇒ c(P,Q) = � − � for P ∼ Q,P �= Q, andc(P, P ) = 0.

Note that the functionc is alternating, that is,c(P,Q) = −c(Q, P ) for all P,Q ∈ P,
P ∼ Q.
The functionc will often be referred to as acovering function.

Remark 23. An alternative way to view the functionc is as follows. Let� be the simplicial
complex constructed from the point graph ofN. Thenc is a 1-cochain on� mapping
into the abelian groupA. We will not say anything more concerning the cohomological
aspects of this situation, except to mention that it motivates some of the considerations and
terminology/notation that followsand thatmoredetails on this aspect of coveringgeometries
may be found in[3].

Now for a general alternating functionc mapping from pairs of collinear points ofN to
A we can define the collinearity

(P, �) ∼ (Q,�) ⇐⇒ c(P,Q) = � − �.

If the functionc defines at-fold cover ofN, then this geometry is denotedNc. Since
all GQs with a centre of symmetry arise in this way we are interested which alternating
functions define a cover ofN which is also a GQ-cover.
Recall the general representation of GQs with a regular point discussed in Section 5. If

instead of considering permutations of the set{1,2, . . . , t}we consider permutations of the
groupA, then we have

��PQ = � − c(P,Q) for P,Q ∈ P, P ∼ Q and� ∈ A. (3)

Now applying Theorem 20 we have the following result:

Theorem 24. LetN = (P,B, I) be a net of order s and degreet + 1, A an (additive)
abelian group of order t and c mapping from pairs of collinear points ofN to A is an
alternating function. Let� be the graph with vertex setP = {(X, �) : X ∈ P, � ∈ A},
adjacency(X, �) ∼ (Y,�) ⇔ c(X, Y ) = � − �, andp : P → P such that(X, �) �→ X.
Then(�, p) gives rise to a GQ-cover ofN if and only if

	c(X, Y,Z) = 0 ⇐⇒ X, Y,Z are collinear,

where	c(X, Y,Z) = c(X, Y ) − c(X,Z) + c(Y, Z).
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Proof. Using (3) we see thatc defines a cover ofN if 	c(X, Y,Z) = 0 wheneverX, Y,Z

are collinear. In addition,c defines a GQ-cover if	c(X, Y,Z) �= 0 wheneverX, Y,Z are
non-collinear.

7.1. Covering functions for the known GQs of orders

In this section we will consider the known examples of (abelian) centres of symmetry of
GQs of orders and give the corresponding covering functionc. We restrict our attention
to GQs of orders since in the known cases the associated net is always the affine plane
AG(2, q), which is straightforward to represent and calculate with.
The GQW(q) given by the symplectic polarity with formx0y1−x1y0+x2y3−x3y2=0

has the property that each point is an abelian centre of symmetry. IfP is a point ofW(q) and
�P the polar plane ofP under the symplectic polarity, then the affine plane associated with
P as a regular point ofW(q) is�= (�P \{P })∗. The symmetries ofW(q) about the pointP
are induced by the elations of PG(3, q) with centreP and axis�P . Using coordinates now,
if X = (x0, x1, x2, x3), then�X, the polar plane ofX, has coordinates[−x1, x0,−x3, x2].
If P is the point(0,1,0,0) then�p = [1,0,0,0] and� has pointset{[0,1, x1, x2] ∩ �P :
x1, x2 ∈ GF(q)} and the covers of the point[0,1, x1, x2] ∩ �P are the elements of the
set {(1, �, x2,−x1) : � ∈ GF(q)}. If we denote[0,1, x1, x2] ∩ �P by (x1, x2), then�
assumes the canonical form of AG(2, q). Further, we can identify the group of symmetries
aboutP with the additive group of GF(q) and denote(1, �, x2,−x1) by ((x1, x2), �). Now
((x1, x2), �) ∼ ((y1, y2),�) if and only if (1, �, x2,−x1) ∼ (1,�, y2,−y1), which is the
case if and only if� − � − x2y1 + x1y2 = 0, that is� − � = x1y2 − x2y1. In other words,
the covering function

c((x1, x2), (y1, y2)) = x1y2 − x2y1

for AG(2, q) gives rise to the classical GQW(q).
Nowweconsider theGQT2(O). If q is odd, thenT2(O)�W(q)∗ andhasno regular points,

so we will suppose thatq is even. LetO be the oval{(1, t, f (t)) : t ∈ GF(q)} ∪ {(0,0,1)}
of PG(2, q) with nucleusN = (0,1,0) and withf (0) = 0 andf (1) = 1. Embed PG(2, q)
in PG(3, q) as the hyperplanex3 = 0 and constructT2(O) in the usual way.
The point(∞) is regular and the associated affine plane is

�(∞) = PG(3, q)

N

∖
PG(2, q)

N
�AG(2, q) .

The symmetry group ofT2(O) about(∞) is induced by the group of elations of PG(3, q)
with axis PG(2, q) and centreN . Identifying the symmetry group with the additive group
of GF(q) and representing�(∞) in canonical form we have that((x1, x2), �) represents
the point(x1, �, x2,1). It follows that((x1, x2), �) ∼ ((y1, y2),�) if and only if the point
(x1+y1, �+�, x2+y2) is a point of the ovalO. Hence the corresponding covering function
of AG(2, q) is given by

c((x1, x2), (y1, y2)) =
{
0 if x1 = y1,

(x1 + y1)f
−1

(
x2 + y2

x1 + y1

)
if x1 �= y1.
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Each pointP of O is an axis of symmetry ofT2(O) with associated affine plane(PG(3, q)/
P )∗\(NP/P )∗ and symmetry group induced by the elations of PG(3, q)with axis PG(2, q)
and centreP . By similar considerations to above we can calculate the corresponding cov-
ering functions of AG(2, q). If P = (0,0,1), then the covering function is

c((x1, x2), (y1, y2)) =
{
0 if x2 = y2,
x1 + y1

x2 + y2
(f (x2) + f (y2)) if x2 �= y2.

If P = (1, t, f (t)), then the covering function is

c((x1, x2), (y1, y2)) =
{
0 if x2 = y2,
x1 + y1

x2 + y2
(f−1

t (x2) + f−1
t (y2)) if x2 �= y2,

whereft (x) = (f−1((x + t)q−2) + f−1(tq−2))/x.
In the special case whereO is a translation oval, that is,f (t)= t�, where� is a generator

of Aut(GF(q)), each plane� of PG(3, q), not the plane ofO, that meets PG(2, q) in the
axisx0= 0 ofO is a centre of symmetry ofT2(O). By [26, 12.5.2]T2(O) is self-dual with a
duality interchanging the line(0,0,1) of T2(O) with the point(∞) and� with an element
of O\{(0,0,1)}. Hence the covering function associated with� is one of those above.
In the classical case, whenq is even, the formulae above give a number of different

covering functions.These includex1y2+x2y1,
√
(x1 + y1)(x2 + y2) and(x1+y1)(x2+y2).

In the next section we shall investigate when different covering functions give rise to the
same GQ.

Remark 25. An interesting question is whether any such covering functions can be found
for non-desarguesian affine planes. This would immediately yield a new GQ of orders.

7.2. Equivalence of covering functions and the group of a GQ fixing an abelian centre of
symmetry

LetS= (P,B, I) andS′ = (P′,B′, I ′) be two GQs of order(s, t) with abelian centres
of symmetryX andX′, respectively. Suppose thatS has symmetry groupA aboutX,
associated netNX and covering functionc, whileS′ has symmetry groupA′ aboutX′,
associated netNX′ and covering functionc′. Then we are interested in determining under
what conditions there is an isomorphism fromS toS′ mappingX toX′.
So leti : S → S′ be an isomorphism such thatXi = X′. We first observe thati must

induce an isomorphism fromNX toNX′ , so we will assume thatN = NX′ = NX and
that i induces a collineationT of N. Also, sinceA = i−1 ◦ A′ ◦ i we will assume that
A′ = A and that for� ∈ A we have thati−1 ◦ � ◦ i = �� for some automorphism� of A.
Now any GQ is uniquely determined by the geometry remaining after removing a point,
all lines incident with that point and all points incident with those lines. Hence the GQsS
andS′ are isomorphic with an isomorphism mappingX toX′ if and only if the covering
geometriesNc andNc′

are isomorphic. Thus we now determine whenNc andNc′
are

isomorphic.
First we consider a useful normalisation ofc. Suppose thatb is a function from the

pointset ofN to A and	b acts on pairs of points ofN by 	b(P,Q) = b(P ) − b(Q),
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then for any fixed elementk of A we have thatNc is isomorphic toNc+	b by the map
(P, �) �→ (P, � + b(P ) + k).
Note that for a fixed function	b there are exactlyt functionsd : P → A such that

	b(P,Q) = d(P ) − d(Q), namely thet functionsb(P ) + k for k ∈ A.

Lemma 26. The geometriesNc andNc′
are isomorphic if and only if

c′(P T ,QT ) = c(P,Q)� + 	b(P,Q) for P andQ collinear points ofN,

whereT is some collineation ofN, � some automorphism ofA and	b is an alternating
function that may be written in the form	b(P,Q)= b(P )− b(Q) for some mapb from the
points ofN toA.
Further, for such a fixedT the automorphism� and the function	b are unique. Also,

the isomorphisms fromNc to Nc′
that induce the collineationT onN are (P, �) �→

(P T , �� + b(P ) + k) for k ∈ A.

Proof. Suppose thati : Nc → Nc′
is an isomorphism such thati inducesT onN

and for� ∈ A, i−1 ◦ � ◦ i = �� for some fixed automorphism� of A. Theni must act by
(P, �)i = (P T , tP (�)) for some permutationtP of A. Now

(P, �)i = (P,0)�◦i = (P T , tP (0))i
−1◦�◦i = (P T , tP (0) + ��).

Definingb(P )=tP (0)wehave that(P, �)i =(P T , b(P )+��) and consequently forP ∼ Q

(P, �) ∼ (Q,�) ⇐⇒ (P T , b(P ) + ��) ∼ (QT , b(Q) + ��),

which is the case if and only ifc′(P T ,QT ) = c(P,Q)� + 	b(P,Q).
Conversely, ifc′(P T ,QT ) = c(P,Q)� + 	b(P,Q), then it is straightforward to check

that(P, �)i = (P T , �� + b(P )) is an isomorphism fromNc toNc′
.

Suppose that we have� ∈ Aut(A) andb : P → A such thatc′(P T ,QT )= c(P,Q)� +
	b(P,Q) = c(P,Q)� + 	b(P,Q). Now for P,Q,R pairwise collinear points ofN we
have

	c′(P T ,QT ,RT ) = c′(P T ,QT ) − c′(P T , RT ) + c′(QT ,RT )

= (	c(P,Q,R))� − (	c(P,Q,R))� = 0.

It follows from this that� = � and consequently	b = 	b. Hence� and	b are unique for
a givenT . If b is fixed, then recall that the functionsd : P → A such that	d = 	b are
exactlyd(P )=b(P )+k, k ∈ A, so all possible isomorphisms fromNc toNc′

that induce
T onN have the form(P, �) �→ (P T , �� + b(P ) + k) for k ∈ A.
Now we consider the special case in whichc= c′, that is automorphisms of the geometry

Nc. If T is a collineation ofN such that there exists a (necessarily unique) automorphism
�T of A and function	bT satisfying

c(P T ,QT ) = c(P,Q)�T + 	bT (P,Q) for all P,Q ∈ P, P ∼ Q,P �= Q,

then we say thatT is admittedby c. The set of collineations ofN admitted byc forms a
group which we denote Autc(N). �
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Lemma 27. The full collineation group of the geometryNc comprises the elements

(P, �) �→ (P T , ��T + k + bT (P )),

wherek ∈ A, T ∈ Autc(N) and�T andbT are fixed such thatc(P T ,QT )= c(P,Q)�T +
	bT (P,Q).

Hence we have the corresponding result on the collineation group of a GQ with a centre
of symmetry.

Theorem 28. LetS=(P,B, I) be aGQof order(s, t)with an abelian centre of symmetry
X with symmetry groupA. Suppose that X has associated netN and covering functionc.
Then the group of collineations ofS fixingX is induced by the full collineation group of
Nc which comprises the elements

(P, �) �→ (P T , ��T + k + bT (P )),

wherek ∈ A, T ∈ Autc(N) and�T andbT are fixed such thatc(P T ,QT )= c(P,Q)�T +
	bT (P,Q).

Corollary 29. LetS=(P,B, I) be aGQof order(s, t)with an abelian centre of symmetry
X with symmetry groupA. ThenA is normal inAut(S)X andAut(S)X is the semidirect
product ofAutc(N) withA.

Any elation ofS aboutX induces a collineation ofNX fixing each parallel class. IfS
is an EGQ with base pointX and elation groupG, then the group ofNX induced byG is
transitive on points and is a translation group if and only ifX is a centre of symmetry with
symmetry group contained inG. In this caseNX is called askew translation generalized
quadrangle(see[23]).
In [33] Thas proves that ifS is an EGQ with regular base pointX and gcd(s −1, t)=1,

then eitherX is a centre of symmetry with symmetry group contained in the elation group
ofS, orS contains a proper subquadrangle of ordert and consequentlys = t2.
If S is an EGQwith base point(∞), then the Kantor family contains a subgroup normal

in the elation group if and only if the corresponding line incident with(∞) is an axis of
symmetry with symmetry group contained in the elation group (see, for instance,[6,10,11]
for studies of such Kantor families).
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