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Abstract

We study a version of a modular functor for Turaev’s homotopy quantum )eld theories using
2-categories of surfaces. We de)ne the homotopy surface 2-category of a space X and de)ne
an SX -structure to be a monoidal 2-functor from this to the 2-category of idempotent-complete
additive k-linear categories. We initiate the study of the algebraic structure arising from these
functors. In particular we show that a unitary SX -structure gives rise to a lax tortile �-category
when the background space is an Eilenberg–Maclane space X =K(�; 1), and to a tortile category
with lax �2X -action when the background space is simply connected.
c© 2003 Published by Elsevier B.V.
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0. Introduction

The motivation for this paper was to study a version of a modular functor for
Turaev’s homotopy quantum )eld theories. A homotopy quantum )eld theory, as de-
)ned by Turaev in [13], is a variant of a topological quantum )eld theory in which
manifolds come equipped with a map to some auxiliary space X . The de)nition can
be formulated in terms of representations of categories of cobordisms in X [2,8] and
in 1 + 1 dimensions classi)cation theorems in terms of generalised Frobenius algebras
are possible [13,2]. From a geometrical point of view a 1 + 1-dimensional homotopy
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quantum )eld theory is something like a vector bundle on the free loop space of X with
a generalised Eat connection, giving “parallel transport” across surfaces. For a more
precise statement see [3]. In topological quantum )eld theory Tillmann [10,11] has pio-
neered the use of 2-categories in the study of modular functors. The relevant 2-category
is one whose objects are circles, whose morphisms are surfaces and whose 2-morphisms
are (path components of) diHeomorphisms of surfaces, and a modular functor is viewed
as a certain 2-representation of this 2-category. Tillmann’s 2-category is also an ap-
proximation to Segal’s category of Riemann surfaces appearing in the de)nition of
conformal )eld theory, in the sense that the morphism spaces consisting of Riemann
surfaces are replaced by categories whose classifying spaces have the same rational
homotopy type. In this paper, we generalise Tillmann’s work to study structure arising
from representations of a 2-category of surfaces where a background space is incorpo-
rated. For a space X , we call such a representation an SX -structure. An SX -structure
should be viewed as a version of a modular functor for homotopy quantum )eld theories
(a homotopy modular functor in Turaev’s terminology). Alternatively, an SX -structure
may be viewed as an approximation to the conformal version of a 1 + 1 homotopy
quantum )eld theory, where surfaces are given a Riemann structure (this is a homotopy
version of the category introduced by Segal [9] in the context of elliptic cohomology).
We restrict ourselves to examining the genus zero part and show how the additive
categories arising have a rich structure inherited from the underlying geometry.

In more detail the paper contains the following. In Section 1, we start by construct-
ing a 2-category SX whose objects are circles mapped into X , whose morphisms are
surfaces (with boundary) mapped to X (with deformation up to homotopy), and whose
2-morphisms are path components of diHeomorphisms between the surfaces, commut-
ing up to homotopy with the maps to X . This model is based on the construction
of Tillmann [10] in the background free case. We also introduce two operations on
the 2-category, reEection and rotation, which play a central role in the geometric ar-
guments later in the paper. In Section 2, we de)ne an SX -structure as a 2-functor
from SX to the 2-category of idempotent complete additive categories over an alge-
braically closed )eld k and de)ne unitary SX -structures using the reEection and rotation
operations.

Following topological quantum )eld theory, we study the algebraic structure inher-
ited by the categories associated by the 2-functor to maps of the circle into X . In
the case X = K(�; 1), an SX -structure gives rise to a �-graded category, assembled
from the categories associated to the homotopy classes of the circle mapped into X .
In Section 3, we display a graded version of a balanced structure on this category.
For a general space X , we show how the graded component associated to the circle
collapsed to the basepoint inherits a compatible �2X -action. With no extra assumptions
the category inherits a weak version of duality in both the above cases as de)ned
by Bakalov and Kirillov [1]. Also by a result of Tillmann [11] the above categories
are semi-simple Artinian. Note this relies on assuming idempotent completeness of the
resulting category.

In Section 4, we restrict our attention to unitary SX -structures (these can be viewed
as a version of unitary homotopy modular functors): We show how this leads to
a rigid duality. Namely, for X = K(n; 1) we obtain a graded version of a tortile
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structure. We call the resulting structure a lax tortile �-category, to emphasise that
the crossed structure and the duality interact in a looser way than that required by
Turaev [14]. For general X , we show how the duality interacts with the �2X -action.

We gather together the de)nitions of appropriate variants of balanced and tor-
tile categories in Appendix A and Appendix B recalls the basics of additive cat-
egories over k (or k-additive categories) and Tillmann’s construction of the weak
duality.

1. The homotopy surface 2-category of a space

We begin with a few recollections about 2-categories mainly to establish terminol-
ogy. Recall that a 2-category B is essentially a category in which the morphism sets
are categories and composition B(A; B)×B(B; C) → B(A; C) is functorial. The mor-
phisms of the morphism categories are called 2-morphisms. We shall denote objects
by A; B; C; : : : ; 1-morphisms by f; g; h; : : : and 2-morphisms by �; �; � : : : : By BA;B(f; g)
we mean the set of 2-morphisms between 1-morphisms f; g∈B(A; B). 2-morphisms
have two kinds of compositions ◦1 and ◦2 called vertical and horizontal composition:

◦1 :BA;B(f; g)×BA;B(g; h) → BA;B(f; h);

◦2 :BA;B(f1; g1)×BB;C(f2 · g2) → BA;C(f1f2; g1g2);

B comes equipped with associativity and identity 2-isomorphisms afgh; lf and rf for
1-morphisms f; g; h:

afgh : (fg)h → f(gh);

lf : 1Af → f;

rf :f1B → f;

where f is in B(A; B), and satisfying the associativity pentagons and identity triangles.
A strict 2-category is one in which all associativity and identity 2-isomorphisms are
identities. If G; H :D → E are 2-functors between strict 2-categories D and E then a
pseudo-2-natural transformation G → H is a collection of 1-morphisms NU :GU→HU
and 2-isomorphisms

GU

GV HV

HU

HfNfGf

NU

NV

for objects U; V ∈D and morphism f :U → V . These must satisfy

N (idU ) = idU ; N (fg) = N (f)N (g)
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and

GU

GV HV

HUGU

GV HV

HU

Hf Hf
Nf

GfGh Gh Hh
NhG� H�

NU NU

NV NV

=

for morphisms f; h :U → V and 2-morphism � :f → h.
A strict monoidal 2-category is a 2-category B with a strict 2-functor ⊗ :B×B →

B which is strictly associative and has a strict left and right identity element 1. The
monoidal structure is semi-strict if ⊗ is allowed to have non-trivial 2-isomorphisms
⊗fi;gi : (f1f2)⊗ (g1g2) → (f1 ⊗ g1)(f2 ⊗ g2) (with ⊗ being strict elsewhere; ⊗ is no
longer a 2-functor).

A monoidal 2-functor G :D → E between semi-strict monoidal strict 2-categories
comes equipped with isomorphisms MG

U;V :G(U⊗V ) → GU⊗GV , for objects U; V ∈D;
these must satisfy

G(U ⊗ V )
MG

U;V−−−−→ GU ⊗ GV

G(f⊗g)

�
�Gf⊗Gg

G(U ′ ⊗ V ′)
MG

U′ ;V ′−−−−→ GU ′ ⊗ GV ′

for morphisms f :U → U ′ and g :V → V ′ in D. We also require that via the iso-
morphisms MG; G(� ⊗ �) = G(�) ⊗ G(�) for 2-morphisms �; � (to be more precise
the equality resembles that of 2-morphisms given in the de)nition of 2-natural trans-
formation above, but with the squares now the identity 2-morphisms of the previous
diagram).

A pseudo-2-natural transformation N between monoidal 2-functors G and H is said
to be monoidal if the following diagram commutes:

G(U ⊗ V )
NU⊗V−−−−→ H (U ⊗ V )

MG
U;V

�
�MH

U;V

GU ⊗ GV
NU⊗NV−−−−→ HU ⊗ HV

We also require that for morphisms f and g; Nf⊗g =Nf ⊗Ng under the isomorphisms
MG and MF (again we omit the obvious pasting diagram). Notice the de)nitions just
given clearly admit laxer and stricter versions; for further details on 2-categories we
refer to [5,7].

The 2-categories central to this paper are ones, roughly speaking, whose objects are
collections of loops in a space X , whose morphisms are 2-manifolds (with boundary)
in X , and whose 2-morphisms are diHeomorphisms of 2-manifolds in X . In practice
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great care is needed with the de)nition and all models have their own advantages and
de)ciencies. As in topological quantum )eld theory it is extremely useful to be able to
make geometric arguments using surfaces and we will extensively use surface diagram
manipulation. For this we need a fairly explicit hold on surfaces and we generalise the
2-category of Tillmann [10] in which all surfaces are embedded in R3.

Let Sm denote m circles of radius 1
4 centred at (1; 0); (2; 0); : : : ; (m; 0) in R2, each

with basepoint (n − 1=4; 0); n = 1; : : : ; m; let S0 denote the empty set. By surface
we shall mean a smooth cobordism in R3 with boundary circles lying on the planes
z = 0 and t for some t ¿ 0. The circles are oriented counterclockwise when viewed
from z�0. We require that in some neighbourhood of each boundary component, the
surfaces be straight cylinders of radius 1

4 and further for simplicity that projection onto
the z-coordinate is a Morse function. Notice that such surfaces are canonically oriented
by choosing inward pointing normals. The boundary components in the plane z = 0
are called inputs and those on the plane z = t are called outputs. Two surfaces $1 and
$2 can be glued together by shifting $2 vertically by t1 (the height of $1) and gluing
along the boundary circles; the result is again smooth since the collars are straight
cylinders.

De�nition 1.1. Let X be a based topological space. De)ne a 2-category SD;X as fol-
lows:

• Objects: based continuous functions s : Sm → X , for m∈N (the m base-points of Sm

sent to the basepoint of X ).
• 1-Morphisms: continuous functions g :$ → X where $ is a surface (as above). The

source and target are g|z=0 and g|z=t , respectively. On the straight boundary collars
g must factor through the projection to the boundary.

• 2-Morphisms: orientation preserving diHeomorphisms T :$1 → $2 that )x boundary
collars pointwise and such that the following diagram commutes up to homotopy
relative to the boundary (the homotopy is constant on the boundary).

X

�1 �2
T

g1 g2

Composition of 1-morphisms is de)ned by gluing surfaces and taking the induced
map to X . Similarly vertical composition ◦1 of 2-morphisms is composition of dif-
feomorphisms and horizontal composition ◦2 is union of diHeomorphisms induced by
the gluing of surfaces. Where there is no ambiguity we will write s for the object
s : Sm → X and g for the morphism g :$ → X .

Strictly speaking this is not a 2-category as there are no identity morphisms. This
will be remedied in what follows where we introduce limited isotopy of surfaces needed
in order to have a well-de)ned monoidal product given by disjoint union. Again we
appeal to [10] and use Tillmann’s RS-moves which we now recall. Let $ be a surface.
By choosing 0 = t0 ¡ t1 ¡ · · · tk−1 ¡ tk = t cut up $ into slices $i ⊂ R2 × [ti−1; ti] for
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i=1; : : : ; k, with components $j
i for j=1; : : : ; ji. De)ne a rescaling to be a collection of

functions Ri;j(x; y; z)=(x; y; ri; j(z)) where ri; j : [ti−1; ti] → [ti−1; t̃i] is a smooth function
with derivative 1 in a neighbourhood of the boundary of [ti−1; ti]. Here t̃i is independent
of j, and the surfaces $i+1; : : : ; $k are shifted vertically by the appropriate amount.
De)ne a shift to be a collection of functions Si; j(x; y; z) = (x; y; z) + (f1

i; j(z); f
2
i; j(z); 0)

where fl
i; j : [ti−1; ti] → R are smooth functions vanishing on some neighbourhood of

the boundary of [ti−1; ti]. A 2-morphism T in SD;X which is de)ned by a )nite number
of rescalings and shifts is called an RS 2-morphism.

We now de)ne the homotopy surface 2-category SX by taking successive quotients
of SD;X on the 1 and 2-morphisms. De)ne an equivalence relation ≡2 on the set of
2-morphisms SD;X (g1; g2) by setting T1 ≡2 T2 if and only if they are in the same
connected component of DiHeo+($1; $2; @). Next de)ne an equivalence relation ≡1 on
the 1-morphisms by setting g ≡1 g′ if and only if g and g′ are isomorphic via an RS
2-morphism.

De�nition 1.2. The homotopy surface 2-category SX of a space X is de)ned as
the 2-category obtained by taking successive quotients of SD;X , )rst by ≡2 on the
2-morphisms sets, followed by ≡1 on the 1-morphism sets.

The quotient by ≡2 is straightforward to de)ne. We brieEy explain how to de)ne the
2-category obtained under the quotient by ≡1 (details can also be found in Tillmann
[10]).

Let B be a 2-category and ≡1 an equivalence relation on the 1-morphism sets. De)ne
the quotient OB of B by ≡1 as follows. The objects of OB are those of B. Pick represen-
tatives f0 of all equivalence classes of 1-morphisms of B, together with isomorphisms
.f :f → f0 from every 1-morphisms to its representative. Take as 1-morphisms of OB
the representatives f0, and as 2-morphisms the sets B(f0; g0) between representatives.
De)ne composition of 1-morphisms by f0 ◦ g0 = (f0g0)0. Use the isomorphisms . to
obtain the associativity and identity isomorphisms of OB from those of B (see Tillmann
[10] for details). Vertical composition of 2-morphisms is as in B; horizontal compo-
sition of 2-morphisms is de)ned using the .s in the obvious way. It is now easy to
check that OB has the structure of a 2-category.

We return to the surface 2-category. The identity 1-morphism in SX (s; s) can be
taken to be a collection of straight cylinders mapping to X via s ◦ p where p is
projection onto R2 × 0. Also, notice that by taking X to be a one point space the
resultant category is Tillmann’s. We can also form a category from the above 2-category
by identifying all 2-isomorphic 1-morphisms and this is a model for the homotopy
surface category of a space de)ned in [2].

We can now de)ne a monoidal structure SX using disjoint union. De)ne a 2-functor
� :SX × SX → SX on objects s : Sm → X and s′ : Sn → X to be the obvious map
s � s′ : Sm+n → X . On 1-morphisms g :$ → X and g′ :$′ → X let $ ∪ $′ be the
surface obtained by rescaling the height of $′ to that of $ and shifting the result by
a diHeomorphism (ẋ; y; z) �→ (x + f(z); y; z) where f : [0; t] → R is constantly k in a
neighbourhood of 0 and constantly l in a neighbourhood of t and such that result is
disjoint from $. Then g� g′ is de)ned by the induced maps. Finally, on 2-morphisms



M. Brightwell, P. Turner / Journal of Pure and Applied Algebra 185 (2003) 43–71 49

we take the disjoint union of diHeomorphisms. The analysis in [10] proves that SX is
a semi-strict monoidal strict 2-category.

The arguments in this paper rest crucially on the fact that surfaces in R3 can be
manipulated by a number of geometric operations we now de)ne. Given s : S1 → X let
s−1 be the map s precomposed with reEection in the line x=1. For s=s1�· · ·�sn : Sn →
X let s−1 = s−1

n � · · · � s−1
1 .

Re7ection: There is a contravariant monoidal equivalence of 2-categories

̂ :SX → SX

de)ned on objects by s �→ s and on a morphism g :$ → X by reEecting $ in the
plane z = 0 and then translating the result. The map to X is the induced one and we
denote the result by ĝ. Note that reEecting in the plane z = 0 leaves the object circles
and their maps to X unchanged. A 2-morphism will induce a 2-morphism on reEected
1-morphisms.

Rotation: SX has another identi)cation with its opposite by rotating surfaces by
180◦. De)ne a contravariant 2-functor

˜ :SX → SX

on objects by s �→ s−1 and on a morphism g :$ → X by rotating $ by 180◦ around
the y-axis and then adjusting by using a diHeomorphism (x; y; z) �→ (x + f(z); y; z)
where f : [0; t1] → R is as in the de)nition of monoidal product. The map to X is the
induced one. Denote the result by g̃ and again take induced 2-morphisms. Note that
this is “anti-monoidal” rather than monoidal.

The composite

SX
˜−−−−→SX

̂−−−−→SX

is given on objects by s �→ s−1 and on a morphism g :$ → X by reEecting in the
plane x = 0 and then adjusting similarly to above.

We make use of the reEection and rotation 2-functors in de)ning a unitary SX -
structure in Section 2. They will then be repeatedly used in Section 4, where we
examine unitary SX -structures and display the associated tortile structure.
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We end this section with a remark on another possible version of the 2-category of
surfaces de)ned above. In [12], Tillmann de)nes a 2-category of surfaces by consider-
ing a small generating set of surfaces, and then taking all those obtained by repeated
gluing and disjoint union. This approach can be generalised to include a background
space as in the context of this paper. This model is manifestly simpler to de)ne than
SX . However, the arguments involving reEection and rotation rely on all surfaces in
the category being embedded in R3, so that this alternative approach leads to a less
natural construction and more cumbersome proofs.

2. SX -Structures

Now for the main de)nition of the paper. Let k be an algebraically closed )eld

and let k̂-Add be the 2-category of idempotent complete k-additive categories with
monoidal structure given by the tensor product (see Appendix B for details).

De�nition 2.1. Let X be a based space. An SX -structure is a monoidal 2-functor of

strict 2-categories F :SX → k̂-Add such that the crossed cylinders are mapped to the
functor changing components.

Thus, to each collection of loops s : Sm → X we assign an additive category; to each
surface g :$ → X a functor of additive categories and to each diHeomorphism T of
surfaces we assign a natural transformation of functors. This assignment is monoidal
taking disjoint union to tensor product.

We make a few remarks on how the above de)nition relates to other notions in
homotopy quantum )eld theory. Let us )rst consider the background free case, or
topological quantum )eld theory. As was the point of view in [11], S-structures have
the Eavour of a modular functor in dimension 2, since they essentially consist of
some kind of representations of the mapping class groups. To be more precise, the
standard notion of a modular functor appears in an S-structure from those surfaces
with an empty target 1-manifold (see [11] for details). On the other hand S-structures
)t nicely into the picture of extended topological quantum )eld theories in dimension
3. This becomes clear if one considers the de)nition given in [6], where an extended
TQFT is de)ned as a representation of the double category of circles, surfaces between
these, and relative 3-cobordisms (a 2-category is a special case of a double category).
From this point of view S should be viewed as a sub-2-category of the latter (we
avoid being precise here). One could repeat the above remarks for the more general
SX -structures, comparing them to homotopy modular functors and extended homotopy
quantum )eld theories in dimension 3.

By recalling that there is a contravariant functor (−)∨ : k̂-Add → k̂-Add taking an

additive category A to its dual A∨ = k̂-Add (A; k̂), the dual of an SX -structure is
de)ned as follows.

De�nition 2.2. The dual of F :SX → k̂-Add, denoted F∨ is de)ned as the composite

SX
̂−−−−→SX

F−→ k̂-Add
(−)∨−−−−→ k̂-Add:
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Later we will restrict ourselves to theories which are unitary in a way we now make
precise. Given a )nitely generated k-additive category A i.e. one whose morphism
vector spaces are )nitely generated, one can de)ne a functor hom :A → A∨ given by
Y �→ A(Y;−). Suppose F is an SX -structure taking values among k-additive categories
that are )nitely generated (in fact this is always the case) then there is a family of
maps

{homs :F(s) → F∨(s)}s∈Ob(SX ):

De�nition 2.3. An SX -structure F is (lax) unitary if the above family provide a
monoidal pseudo-2-natural transformation N between F and F∨, and cylinders g : I →
X satisfy N (g) = F(g)−1.

Two important consequences of this de)nition are the following:

S-I. If g :$ → X is a morphism then F(ĝ) is right adjoint to F(g) i.e. there are natural
isomorphisms

B(F(g)(U ); V ) ∼= A(U; F(ĝ)(V ));

where F(g) :A → B. For the collapsed cylinders this isomorphism is the identity.
S-II. If T : g1 → g2 is a 2-morphism then the following diagram commutes:

B(F(g1)U; V ) �−−−−→ A(U; F(ĝ1)V )

F(T )U

�
�F(T̂ )V

B(F(g2)U; V ) �−−−−→ A(U; F(ĝ2)V )

where T̂ : ĝ1 → ĝ2 is obtained from T under reEection and the vertical arrows are
given by pre- and post-composition.

3. Balanced categories from SX -structures

Let X be a based space. An SX -structure F :SX → k̂-Add determines a collection
of categories {A�}�∈� indexed by the group � = �1X as follows. A loop � in X
determines a map s� : S1 → X , taking (1;−1=4) as basepoint of S1. For each element
of � = �1(X ) choose a representative loop � and set

A� = F(s�) A=
⊔
�∈�

A�:

The following proposition refers to the de)nitions of balanced categories in
Appendix A.

Theorem 3.1. (a) Let � be a discrete group and let X be a based Eilenberg-Maclane
space K(�; 1). The k-additive category A associated to an SX -structure is a balanced
�-category.
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(b) For any space X , the subcategory A1 is a balanced category with �2X -action.
(c) The categories above are semi-simple Artinian categories.

The proof of this proposition will take up the rest of this section.
Firstly consider part (a) in which X = K(�; 1). To de)ne a monoidal structure on

A let �; �∈ � and pick a pair of pants surface P with two inputs and one output and
let p�;� :P → X be a map inducing the maps indicated below.

��

��

1 1

Here the label indicates the map on the given line or boundary component and any
two choices of p�;� give the same 1-morphism in SX (note this is no longer true if
�2X �= 0). De)ne functors

∗�;� = F(p�;�) :A� ⊗A� → A��;

∗=
⊔

�;�∈�

∗�;� :A⊗A → A:

Now choose a disc D with one input only and let d :D → X be the collapse map
to a basepoint of X . Noting that F(d) : k̂ → A1 de)ne

1 = F(d)(k)∈A1:

It can now be seen that (A; ∗; 1) is a �-graded monoidal category by considering
the obvious diHeomorphism

which gives a natural isomorphism a : (− ∗ −) ∗ − •→ − ∗(− ∗ −) i.e. a collection
of isomorphisms aU;V;W as required. The isomorphism rU is obtained from a
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diHeomorphism

and similarly for lU . Finally, commutativity of the associativity pentagons
and identity triangles holds since by de)nition the compositions diHer by at most an
isotopy.

Next we show how to obtain structure leading to a balanced �-category.
Crossing: Let �; �∈ � and pick a cylinder I and a map i�;� : I → X as shown

below:

���−1

�

�

De)ne ’(�)� := F(i�;�) :A� → A���−1 and assemble these into a map ’ : � →
Aut(A). Note that ’(�) is invertible with inverse ’(�−1) and also that ’(�) respects
∗ as required, by the equality below.

����−1

��

�

����−1

�

���−1
���−1

� �

��

1
1

�

1
1

Furthermore, ’ is a group homomorphism by construction, and the monoidal unit
and other structure is preserved.
Braiding: Recall that the monoidal structure comes from ∗�;� = F(p�;�) for

choices of cobordisms p�;� :P → X . Let T be an untwisting diHeomorphism as
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pictured

��

���−1

��

�

�

�

�

��

��

1

1
1

1 1
1

1

Letting 7�;� : J → X be the crossed cylinders in the picture above and recalling that
F(7�;�) is the functor changing components it follows that for each � and � there is a
2-morphism

T P   (I     I )P   J

X

p�, �   ��, � p
��� −1,�   (i�,�    i�,1)

This induces a natural isomorphism (of functors A� ⊗A� → A��)

s�;� : ∗�;� ◦twist�;�
•−→ ∗���−1 ; � ◦(’(�)� ⊗ id):

Thus, for each U ∈A� and V ∈A� we get isomorphisms

sU;V :U ∗ V → ’(�)V ∗ U:

Since ’ is a homomorphism into the group of ∗ preserving automorphisms of A,
the braiding result in [11] now implies condition (1) of De)nition A.3. Condition (2)
follows immediately from the naturality of s.

Condition (3) is obtained as follows. By post-composing the two functors above with
’(�) we get two functors A� ⊗A� → A����−1 . The natural transformation s induces
a natural transformation of these two functors which for objects U ∈A� and V ∈A�

is given by ’(�)(sU;V ). On the other hand, by pre-composing by ’(�) we again get an
induced natural transformation which is given by s’(�)U;’(�)V for objects U ∈A� and
V ∈A�. However, the diHeomorphisms inducing the natural transformation above are
the same as 2-morphisms in SX so the induced natural transformations are the same
i.e. ’(�)(sU;V ) = s’(�)U;’(�)V , proving condition (3).
Twist: The Dehn twist of a cylinder D : I → I gives for each �; � a 2-morphism

D

X

I I

i�,� i�,��
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which induces a natural isomorphism ’(�)�
•−→’(��)�, which taking � = 1 gives a

natural isomorphism

9� :’(1)�
•−→’(�)�

that is, for each U ∈A� there is an isomorphism 9U :U → ’(�)U . Conditions (1) and
(2) of De)nition A.4 are satis)ed by the equivalent mapping class group identities of
[11] and the homotopy identity displayed below (where we represent a half twist by
swapping the labels of the incoming boundary components).

��

��

1 1

��

��

� 1

��

� �

�

��

��
��

��

��

sU,V

sV,U

�U *V �V  * �U

Condition (3) follows immediately from the naturality of s and condition (4) follows
by pre- and post-composing 9 with ’(�), observing that the underlying geometry is
the same in both cases, so the induced natural transformations agree. This implies
9’(�)U = ’(�)(9U ).

This completes the proof of part (a) of Theorem 3.1.
For part (b) let X be any space. We claim that A1 is a balanced category with

�2X -action (see Appendix A for de)nitions). Let c : S1 → X be the collapse map and
suppose this is the choice made to represent 1∈ �1 i.e. A1 = F(c). By restricting to
degenerate loops we obtain a monoidal product ∗, monoidal unit 1, braiding s and twist
9 in a similar way to that in part (a) and (A1; ∗; 1; s; 9) is a balanced category (note
that to obtain the braiding we must take p1;1 = id). The only genuinely new structure
in part (b) is the �2X -action. Let I be a cylinder and let I → X be a map as indicated
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below:

1

c

c

Such a map determines an element of �2(X ) and any two maps giving the same
element are homotopic and hence 2-isomorphic. For each g∈ �2(X ) choose ig : I → X
and de)ne ; : �2(X ) → Aut(A) by

;(g) = F(ig):

The composition of morphisms ig corresponds to addition in �2X and hence ; is a
group homomorphism. There is an RS-equivalence

and so F(p ◦ (ig ∪ i1)) = F(ig ◦ p) for g∈H2(X ). It follows that for U; V ∈A1

(;(g)U ) ∗ V = ;(g)(U ∗ V ) and ;(g)f ∗ h = ;(g)(f ∗ h)

and similarly

U ∗ ;(g)V = ;(g)(U ∗ V ) and ;(g)(f ∗ h) = f ∗ ;(g)h:

The proof of conditions (5) and (6) in de)nition A.7 are similar to the proofs of
A.3(3) and A.4(4) in part (a) of Theorem 3.1. Conditions (3) and (4) can also be
shown using similar arguments.

This completes the proof of part (b) of Theorem 3.1.
To prove part (c) of Theorem 3.1 we prove A is semi-simple Artinian for the case

X =K(�; 1). A similar argument shows A1 is semi-simple Artinian for a general space
X . By the work of Tillmann (see Appendix B) we must produce a non-degenerate
form 〈−;−〉 :A� ⊗A�−1 → k̂ for each �∈ �. Let C be a cylinder with two inputs and
for �∈ � choose a map c� :C → X as indicated below:

1

�−1�
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Now de)ne

〈−;−〉� := F(c�) :A� ⊗A�−1 → k̂

and

<� := F(c̃�) : k̂ → A� ⊗A�−1

and write the image of the canonical element k ∈ k̂ as

E� := <�(k) =
n�∑
i=1

Pi
� ⊗ Qi

�−1 ;

where Pi
� ∈A�; Qi

�−1 ∈A�−1 .
Standard topological quantum )eld theory manipulations show that 〈−;−〉� and E�

provide a non-degenerate form and it follows from Appendix B that A� is semi-simple
Artinian proving part (c) of Theorem 3.1.

4. Tortile categories from unitary SX -structures

In this section, we consider under what conditions we can guarantee the category
A has (rigid) duals. In particular we show that an SX -structure that is unitary does
have duals. Balanced categories with duals are known as tortile categories (ribbon
categories) and we give appropriate variants of these in Appendix A. Referring to these
de)nitions we prove the following theorem.

Theorem 4.1. (a) Let � be a discrete group and let X be a based Eilenberg–Maclane
space K(�; 1). The k-additive category A associated to a unitary SX -structure, is a
semi-simple Artinian lax tortile �-category.

(b) For any space X , the subcategory A1 is a semi-simple Artinian tortile category
with lax �2X -action.

Until further notice let X = K(�; 1) and let F :SX → k̂-Add be a unitary SX -
structure. The key to getting duality in the category A is to use Tillmann’s involutions
(−)∗: A� → A�−1 which arise from the non-degenerate forms 〈−;−〉� of the previous
section. Non-degeneracy is courtesy of functors

I :A�−1 → A∨
� ; Y �→ 〈Y;−〉;

J :A∨
� → A�−1 ; H �→

n∑
i=1

H (Pi
�)⊗ Qi

�−1

for which there are natural transformations N : id ∼= IJ and M : id ∼= JI.
Notice that these forms satisfy a “Frobenius” condition, namely, for U ∈A�, V ∈A�

and W ∈A� with ��� = 1 there are natural isomorphisms

〈U; V ∗ W 〉� � 〈U ∗ V; W 〉�−1 ;
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which arise from the diHeomorphism indicated below:

To de)ne Tillmann’s involutions let hom :A� → A∨
� be de)ned by Y → A�(Y;−)

and set (−)∗=J◦hom. These functors satisfy (−)∗∗ ∼= id and A�(−;−) � 〈−∗;−〉�−1

and both the forms and involutions extend to tensor products. In particular we have
non-degenerate forms and involutions

〈−;−〉� :A� ⊗A�−1 → k̂ ; (−)∗� :A� → A�−1 ;

where � = (�1; : : : ; �n); �−1 = (�−1
n ; : : : ; �−1

1 ) and A� =A�1 ⊗ · · · ⊗A�n . We will write
I and J for the associated maps A� → A∨

�−1 and A∨
�−1 → A�. See Appendix B for

further discussion.
The functors J have the following property.

Lemma 4.1. Let g :$ → X be a morphism in SX . Then there is a natural isomor-
phism

tF(g) :J ◦ F(g̃)∨ •→F(g) ◦J:

Proof. By using the diHeomorphism below we have natural isomorphisms

k :J ◦ F(g̃)∨ ◦I •→F(g):

��

Pre-composing with J and using the equivalence N : id � IJ gives the required
natural isomorphisms.
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For the crossing ’ we have the following additional property:

Lemma 4.2. The following diagram commutes.

J  �(�−1)∨

J

�(�) J
t�(�)

J�∨ ��(�)J

Proof. Consider the following diagram, where H ∈A∨.

J   �(�−1)∨ (H)

J(H) J  I  J(H)

J  �(�−1)∨  I  J(H) 

J(NH) MJ(H)

J�H
∨ J�∨

IJ(H)

J�(�−1)∨ (NH) k�(�),J(H)
�(�)  J(H)

J(H)

��(�)J(H)

The left square commutes by naturality of 9 ∨ and the right square by the mapping
class group identity given below:

k

M 11

�

�

��−1

The result now follows because the map along the top is t’(�) and the bottom map
is the identity.
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Now we investigate how the involution interacts with the monoidal structure and the
crossing.

Proposition 4.1. Let U ∈A�, V ∈A� and �∈ �. There are natural isomorphisms

pU;V : (U ∗ V )∗ �−−−−→V ∗ ∗ U ∗

and

c�;U : (’(�)U )∗ �−−−−→’(�)U ∗

and moreover the pU;V and c�;U commute, that is, the following diagram commutes:

(’(�)U ∗ ’(�)V )∗
p−−−−→ (’(�)V )∗ ∗ (’(�)U )∗ c∗c−−−−→ ’(�)V ∗ ∗ ’(�)U ∗

=

�
�=

(’(�)(U ∗ V ))∗ c−−−−→ ’(�)(U ∗ V )∗
’(�)(p)−−−−→ ’(�)(V ∗ ∗ U ∗)

Proof. Let p :P → X be the map giving the monoidal product A� ⊗ A� → A��.
Notice that ˜̂p induces the opposite monoidal product A�−1 ⊗ A�−1 → A�−1�−1 . By
property S-I of unitary SX -structures we have natural isomorphisms

A(U ∗ V;−) •−→A⊗A(U ⊗ V; <−)

i.e. isomorphisms

qU;V : hom ◦ F(p)(U ⊗ V ) → F(p̂)∨ ◦ hom(U ⊗ V ):

Applying the functor J to these and composing with t :J ◦ F(p̂)∨ → F(˜̂p) ◦J we
obtain

J ◦ hom ◦ ∗(U ⊗ V )
J (qU;V )−−−−→J ◦ F(p̂)∨ ◦ hom(U ⊗ V )

thom(U⊗V )−−−−→ ∗ ◦J ◦ hom(U ⊗ V );

which de)ne a collection of natural transformations

pU;V : (U ∗ V )∗ → V ∗ ∗ U ∗:

To construct c�;U proceed as above but starting with the natural transformations

w�;U :A(’(�)U;−) •−→A(U; ’(�−1)−)

again coming from property S-I of a unitary SX -structure.
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To show c and p commute we claim the following diagram commutes where com-
position has been omitted and a superscript 2 refers to tensor product.

J hom ∗ �(�)2

*J
2 hom2 �(�)2

*J
2 �(�−1)∨

2 hom2

*J
2 �(�−1)∨ 2

(N)

J∆∨ I2J2 hom2 �(�)2

*J
2 �(�−1)∨

2
I2J2 hom2 

J∆∨ I2J2 �(�−1)∨
2 hom2

J∆∨  hom2 �(�)2

*�(�)2 J2 hom2

J�(�−1)∨  hom *
J�(�−1)∨  (N)

J�(�−1)∨ ∆∨  hom2

J�(�−1)∨ (N)

J∆∨ �(�−1)∨
2 hom2

J∆∨ (N )J∆∨ (N )

J�(�−1)∨  IJ hom * J�(�−1)∨  IJ∆∨  hom2

�(�)J hom * �(�)J∆∨  hom2

�(�)J∆∨  (N)

�(�)J∆∨  I2J2 hom2

J hom �(�)*

�(�)*
 J2 hom2�(�)(k)

=

k k

p

c*c

* (k2)

=

�(�)(p)

c

=

k k

Let m :P → X and i : I → X induce the monoidal structure and crossing ’(�) on A.
The surface diagram for the crossing in Section 3 induces an equality m◦ (i� i)= i◦m,
thus the natural transformations in S-I has two decompositions, which result in the
following commutative diagram:

A(’(�)U ∗ ’(�)V;−) −→ A2(’(�)V ⊗ ’(�)U; <−) −→ A2(V ⊗ U; ’(�−1)2<−)

=

�
�=

A(’(�)(U ∗ V );−) −→ A(U ∗ V; ’(�−1)−) −→ A2(V ⊗ U; <’(�−1)−)

Applying J shows that the central horizontal slice of the main diagram above com-
mutes. The two large central rectangles commute by naturality, and the triangles and
sections with curved arrow commute by the de)nitions of p and c. Finally the far



62 M. Brightwell, P. Turner / Journal of Pure and Applied Algebra 185 (2003) 43–71

right part of the diagram follows from identities in the mapping class group, similar
to those in Lemma 4.1.

After these preliminaries we now construct the duality. Notice that for U ∈A�;
V ∈A� and W ∈A� with � = �� there are natural isomorphisms

A�(U ∗ W; V )� 〈(U ∗ W )∗; V 〉 〈p; id〉−−−−→〈W ∗ ∗ U ∗; V 〉
� 〈W ∗; U ∗ ∗ V 〉 � A�(W; U ∗ ∗ V ):

Use these to de)ne bU and dU by

A�(U; U ) � A1(1; U ∗ ∗ U ) id �→ bU ;

A�−1 (U; U ) � A1(U ∗ U ∗; 1) id �→ dU :

Proposition 4.2. bU and dU provide A with a right duality.

Proof. Since A is a monoidal category it can be thought of as a 2-category with one
object and it follows from the de)nition of adjoints in 2-categories that bU and dU

give a right duality iH U is right adjoint to U ∗ in this category. It follows from the
theory of adjoints in 2-categories (see, for example, [4, p. 158]) that U is left adjoint
to U ∗ iH there are natural equivalences

A�(U; V ∗ W ) � A�(V ∗ ∗ U; W )

and

(U ∗ ∗ V ) ∗ U � U ∗ ∗ (V ∗ U ):

The result now follows by the natural isomorphisms above and associativity.

We now prove that the c�;U ’s de)ned above satisfy the de)nition of lax tortile
�-category, but )rst we need one result about the crossing.

Lemma 4.3. The following diagram commutes:

�(�)
A(�(�)U, �(�)U )

〈�(�)U*, �(�)U 〉 〈,U*,U 〉〈(�(�)U*, �(�)U 〉

A(U,U )

〈c�,U,id ) =

~−~−

Proof. Recalling the de)nition of w�;U from Proposition 4.1, since ’(�) is induced
from a straight cylinder, w�;U acts as the functor ’(�−1) by the de)nition of unitary



M. Brightwell, P. Turner / Journal of Pure and Applied Algebra 185 (2003) 43–71 63

SX -structure. Now consider the diagram below:

I    �(�)    J   hom(U)

�(�−1)∨    I   J    hom(U)

�(�−1)∨     hom(U)

�(�−1)∨ (N ) �(�−1)∨ (N)

(w�, U)w�, U

�(�−1)∨      hom(U)

 hom   �(�)(U) hom   �(�)(U)

�(�−1)∨    I  J   hom(U)I   J

I   J

I  J

I   J

I   J

=
I(k)

N

N

N

To see that this diagram commutes: the two top sections follow immediately by
naturality of N ; the bottom triangle is a consequence of the mapping class group
identity below:

�−1

�−1

�
I(k)

N

Now following the diagram around the right-hand path from the top left-hand corner
gives the map I(c�;U ) ◦ N by de)nition of c�;U and the left-hand side is the map
’(�−1)∨(N ) ◦ ’(�−1), by the remark made above. Evaluating the diagram of functors
on ’(�)U gives the desired result.

Proposition 4.3. A is a lax tortile �-category.
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Proof. Diagram (1) of De)nition A.6 is simply naturality of the c�;U .
To prove diagram (2) of A.6 we claim the following diagram commutes:

J   hom   �(�)(U)

J   hom(U)

Jhom(�U) J�∨
hom(U)

J   hom(U)

J   �(�−1)∨    hom(U) �(�)   J   hom(U)

��(�)J hom(U)

t�(�), hom(U)

=

J (w�, U)

The top line of this diagram is c�;U by de)nition, the left map 9∗U and the right map
9’(�)U∗ .

By the consequence S-II of the unitary property the natural transformations w�;U

satisfy

A(’(�)U;−)
w�;U−−−−→ A(U; ’(�−1)−)

A(9U ;−)

�
�A(U;9’(�−1)−)

A(U;−) −−−−→
id

A(U;−)

This is obtained from S-II by taking the diHeomorphism T to be the inverse twist,
which is mapped to the twist by reEection. The bottom map is the identity since
the identity is sent to the identity in the de)nition of pseudo-2-natural transformation.
Taking J of this diagram proves the left square above commutes.

For the triangle on the right pre compose the diagram in Lemma 4.2 with
hom.

Finally, diagram (3) for bU in De)nition A.6 is shown to commute by considering
the following diagram:

=

A(�(�)U, �(�)U )

A(id,c�,U * id)
A(�(�)1, �(�)U*

* �(�)U)A(1, (�(�)U)*
* �(�)U ) A(1,U* 

* U )

A(U , U )

〈1*,U* 
* U〉

〈1*
* U

* , U〉

〈U* , U〉

〈(U * 1)* , U〉

〈(�(�)U )*, �(�)U 〉
〈c�,U ,id〉

〈c�,U*1 ,id〉

〈c�,1*c�,U , id〉

〈c�,1,c�,U * id〉

〈 p ,id 〉〈 p ,id 〉 〈�(�)p ,id 〉

�(�)

〈(�(�)U* 
* 1)*, �(�)U 〉 〈(�(�)(U 

* 1))*, �(�)U 〉 〈�(�)(U 
* 1)*, �(�)U 〉

〈�(�)U*, �(�)U 〉

〈(�(�)1)*
* (�(�)U )∗ , �(�)U 〉 〈�(�)1* 

* �(�)U∗ , �(�)U 〉  

〈(�(�)1)*, (�(�)U )∗ ∗  �(�)U 〉 〈�(�)1*, �(�)U)∗ ∗  �(�)U 

==

=

=

−~

−~

−~

−~

−~

−~

−~ −~

�(�)
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Notice that the left and right sides of the diagram de)ne b’(�)U and bU , respectively,
as the image of the identity morphism. Thus, since ’(�) is a functor, the commutativity
of this diagram proves (3) by mapping the identity in the top right-hand corner to the
bottom left-hand corner via the two exterior paths.

The top and bottom parts of the diagram commute by Lemma 4.3 and naturality.
The left part of the central section commutes by Lemma 4.1. The remaining sections
of the diagram commute by naturality.

To complete the proof it remains to check diagram (3) for dU . The arguments are
essentially the same as those for the bU case, so we simply give the corresponding
diagram without further comment:

A((�(�)U)*, (�(�)U )* ) A(�(�)U*, �(�)U*) A(U*, U*)

A(�(�)U * (�(�)U )* , 1) A(�(�)U * �(�)U* , 1) A(U * U* , 1)

〈(�(�)U )*
*, (�(�)U)* 〉 〈(�(�)U*)*, �(�)U* 〉 〈�(�)U**, �(�)U* 〉

〈(�(�)U )**, (�(�)U)** 1〉 〈(�(�)U*)*, �(�)U*
* 1〉 〈�(�)U**, �(�)U*

* 1〉

〈(�(�)U )** * (�(�)U)*, 1〉 〈(�(�)U*)* * (�(�)U)*, 1〉 〈�(�)U** * �(�)U*, 1〉 〈U** * U*, 1〉

〈U** , U* 
* 1〉

〈U** , U*〉

〈(�(�)U * (�(�)U)*)*, 1〉 〈(�(�)U * �(�)U*)*, 1〉 〈�(�)(U * U*)*, 1〉 〈(U * U*)*, 1〉

A〈c�,U , c�
−1

,U)

A〈id*c�,U ,id)

〈c*
�,U

−1, c�,U〉

〈c*
�,U

−1, c�,U * id〉

〈c*
�,U

−1
 * id, id 〉

〈(id*c�
−1

,U)*, id 〉 〈c�,U* U*, id 〉

〈c�,U* c�,U, id 〉

〈c�,U, id 〉

〈c�,U, id 〉

�(�)

−~

−~

−~

−~ −~

−~

−~ −~

−~

−~

−~

=

=

=

=

�(�)

〈 p ,id 〉〈�(�)p ,id 〉〈 p ,id 〉〈 p ,id 〉

This )nishes the proof.

Now let X be an arbitrary space and claim that A1 is a lax tortile category with
�2(X )-action. Methods similar to those used for X = K(�; 1) above, produce a duality
on A1. We need to relate this to the �2(X )-action.

Lemma 4.4. For all U ∈A1 and g∈ �2X there are natural isomorphisms

hg;U : (;(g)U )∗ → ;(g−1)U ∗:

Proof. The maps ig : I → X giving �2(X )-action satisfy îg = ig−1 so, by property S-1,
the unitary property induces natural isomorphisms

vg;U : A(;(g)U;−) •−→A(U; ;(g−1)−):

Applying the functor J and composing with the equivalence t of 4.1 we get

J ◦ hom ◦ ;(g)(U )
J (vg;U )−−−−→J ◦ ;(g−1)∨ ◦ hom(U )

t;(g);hom(U )−−−−→ ;(g−1) ◦J ◦ hom(U )

giving the desired natural isomorphisms.

Proposition 4.4. A1 is a lax tortile category with �2(X )-action.



66 M. Brightwell, P. Turner / Journal of Pure and Applied Algebra 185 (2003) 43–71

Proof. Diagram (1) of De)nition A.8 is naturality of the hg;U ’s. To prove the diagrams
in (2) for bU and dU , proceed as in the proof of Proposition 4.3 replacing c�;U with
hg;U .

Combining Propositions 4.2, 4.3 and 4.4 with the results of Section 3 completes the
proof of Theorem 4.1.
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Appendix A. Balanced and tortile structures

This appendix contains the variants of balanced and tortile categories that we need.
Our lax tortile �-categories are lax versions of the ribbon �-categories de)ned by
Turaev in [14].

De�nition A.1. Let � be a discrete group. A monoidal category (A; ∗; 1) is said to
be �-graded if it splits as a disjoint union of full subcategories A = ��∈�A� such
that objects belong to a unique grading, there are no morphisms between objects of
diHerent grading and the monoidal structure multiplies gradings (in the group �).

We denote the set of invertible functors on A by Aut(A). A functor is monoidal
if the monoidal product, unit and all structure morphisms are preserved.

De�nition A.2. A �-graded monoidal category is said to be crossed if it comes
equipped with a group homomorphism ’ : � → Aut(A) with ’(�) :A� → A���−1

such that each ’(�) is a monoidal functor.

De�nition A.3. A braiding on a crossed �-graded monoidal category A is a collection
of isomorphism sU;V :U ∗ V → ’(�)V ∗U for objects U of A�; V of A�, such that

(1) For U ∈A�; V ∈A� and W ∈A� the following two diagrams commute:

U * V * W �(��)W * U * V

U * �(�)W * V

sU*V,W

sU,�(�)W * idid*sV,W
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U * V * W �(�)V * �(�)W * U

�(�)V * U * W

sU,V *W

sU,V * id id * sU,W  

(associativity morphisms have been suppressed; insert them and one gets the
hexagons expected by the reader).

(2) for U; U ′ ∈A� and V; V ′ ∈A� and morphisms f :U → U ′ and g :V → V ′ the
following diagram commutes

U ∗ V
f∗g−−−−→ U ′ ∗ V ′

sU; V

�
�sU′ ; V ′

’(�)V ∗ U
’(�)g∗f−−−−→ ’(�)V ′ ∗ U ′

(3) for U ∈A� and V ∈A� and �∈ �,

s’(�)U;’(�)V = ’(�)(sU;V ):

De�nition A.4. A twist on a braided crossed �-graded monoidal category A is a
collection of isomorphisms 9U :U → ’(�)U for U ∈A� such that:

(1) 91 = id1,
(2) for U ∈A� and V ∈A�,

9U∗V = s’(��)V;’(�)U ◦ (9’(�)V ∗ 9U ) ◦ sU;V

(3) for U; V ∈A� and morphism f :U → V the following diagram commutes:

U
f−−−−→ V

9U

�
�9V

’(�)U
’(�)f−−−−→ ’(�)V

(4) for �∈ � and V ∈A,

9’(�)V = ’(�)(9V ):

De�nition A.5. A balanced �-category is a braided crossed �-graded monoidal cate-
gory with twist.

When �={1} the usual notion of a balanced category is obtained. Now we introduce
duality into balanced �-categories. A right duality assigns to an object U ∈A� an
object U ∗ ∈A�−1 and morphisms

bU : 1 → U ∗ ∗ U dU :U ∗ U ∗ → 1
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such that the following compositions are the identity:

U ∗ � 1 ∗ U ∗ bU∗id−−−−→ (U ∗ ∗ U ) ∗ U ∗ � U ∗ ∗ (U ∗ U ∗) id∗dU−−−−→U ∗ ∗ 1 � U ∗;

U � U ∗ 1 id∗bU−−−−→U ∗ (U ∗ ∗ U ) � (U ∗ U ∗) ∗ U
dU∗id−−−−→ 1 ∗ U � U:

The above duality is also called rigid duality, and U ∗ is a rigid dual, to distinguish it
from weaker versions. By duality we shall always mean rigid duality.

De�nition A.6. A lax tortile �-category is a balanced �-category with right duality
and a collection of isomorphisms c�;U : (’(�)U )∗ → ’(�)U ∗ for U ∈A and �∈ � such
that:

(1) For U ∈A� and f :U → V the following diagram commutes:

(’(�)U )∗
c�;U−−−−→ ’(�)U ∗

(’(�)f)∗
�

�’(�)f∗

(’(�)V )∗
c�;V−−−−→ ’(�)V ∗

(2) For U ∈A� the following diagram commutes:

�(�)U*(�(�)U)*

U*
��(�)U*

c�,U

(�U)*

(3) For U ∈A� the following diagram commutes:

�(�)(bu)b�(�)U

(�(�)U)*
* �(�)U �(�)U *

* �(�)U
c�,U * id

1

and similarly for du.

Note that a strict tortile �-category is one for which all c�;U ’s are identities, and is
the same thing as a ribbon crossed �-category (satisfying 91 = id1).

Now we introduce an ungraded version with an action of a group G.

De�nition A.7. A balanced category with G-action is a balanced category (A; ∗; 1; s; 9)
together with a homomorphism ; :G → Aut(A) such that:

(1) ;(g)U ∗ V = ;(g)(U ∗ V ) = U ∗ ;(g)V ,
(2) for f :U → U ′ and h :V → V ′ we have ;(g)f ∗ h = ;(g)(f ∗ h) = f ∗ ;(g)h,
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(3) ;(g)(aU;V;W ) = a;(g)U;V;W = aU;;(g)V;W = aU;V;;(g)W ,
(4) ;(g)(rU ) = r;(g)U and ;(g)(lU ) = l;(g)U ,
(5) s;(g)U;V = ;(g)(sU;V ) = sU;;(g)V ,
(6) 9;(g)U = ;(g)(9U ).

Note that ; factors through the centre of Aut(A) and on objects ;(g) is determined
by ;(g)1 since ;(g)(U ) = (;(g)1) ∗ U . Incorporating duals we have the following
de)nition.

De�nition A.8. A tortile category with lax G-action is a balanced category with
G-action with right duality and a collection of isomorphisms hg;U : (;(g)U )∗ →
;(g−1)(U ∗) such that the following diagrams commute:

(1) For U; V ∈A and f :U → V ,

(;(g)U )∗ hU−−−−→ ;(g−1)U ∗

(;(g)f)∗
�

�;(g−1)f∗

(;(g)V )∗ hV−−−−→ ;(g−1)V ∗

(2)

b�(g)U bU

(�(g)U)*
* �(g)U U*

* U
hg,U * id

1

and similarly for dU .

Appendix B. k-Additive categories

Let k be an algebraically closed )eld. A additive category over k, or k-additive
category is a category with the following properties:

(1) morphism spaces are complex vector spaces and composition is bilinear,
(2) there is a )nite direct sum on objects,
(3) there is a zero object 0 such that hom(U; 0) = hom(0; U ) = 0 for all U ∈A.

k-additive functors between k-additive categories are additive functors acting linearly
on the morphism spaces. The tensor product of two k-additive categories is de)ned in
the usual way. For more details on additive categories we refer to [7].

The idempotent completion Â of a category A has objects pairs (U; e) where
e :U → U is an idempotent in A and morphisms f : (U; e) → (U ′; e′) where f :U →
U ′ such that fe=f= e′f. The idempotent completion of an additive category over k
remains an additive category over k. Any functor from A to an idempotent complete
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category B can be completed to a functor on Â; this construction yields a natural
equivalence between the categories of such functors.

De�nition B.1. Let k̂-Add be the 2-category with objects idempotent complete ad-
ditive small categories over k, 1-morphisms k-additive functors between these and
2-morphisms natural transformations.

The tensor product of k-additive categories induces a monoidal structure on k̂-Add:
since k is algebraically closed the tensor product of idempotent complete k-additive
categories remains idempotent complete. The category k̂ of )nite dimensional vector
spaces over k is the monoidal unit.

The set of k-additive functors between A and B is denoted k̂-Add (A;B) and
this is again an idempotent k-additive category if both A and B are small, and B
is idempotent complete. If a k-additive category is small its dual can be de)ned as

A∨ =k̂-Add (A; k̂).
An object X of an additive category is simple if A(X; X ) is one dimensional and

A is semi-simple if every object is isomorphic to a )nite sum of simple objects. A
is Artinian if there are )nitely many isomorphism classes of simple objects.

We now discuss Tillmann’s work on duality in idempotent complete k-additive cat-
egories. A non-degenerate form consists of a k-additive functor 〈−;−〉 :A ⊗B → k̂
and an object

∑n
i=1 Pi ⊗ Qi in B⊗A such that the functors

I :A → B∨ by Y �→ 〈Y;−〉;

J :B∨ → A by H �→
n∑

i=1

H (Pi)⊗ Qi

provide an equivalence of categories. Her methods prove that given a non-degenerate
form and letting X =

∑
Qi and A =A(X; X ) then the following hold:

(1) A is equivalent to the category of )nite-dimensional projective A-modules.
(2) A(Y; Z) is a )nitely generated vector space.

She also de)nes a contravariant functor (−)∗ :B → A and similarly a contravariant
functor (−)∗ :A → B with the property that (−)∗ ◦ (−)∗ is naturally isomorphic to
idA. To de)ne these involutions consider the contravariant functor

hom : B → B∨ Y → B(Y;−);

which is de)ned since by the above B(Y; Z) is a )nitely generated vector space and
hence an object of k̂. Set (−)∗=J◦hom. Tillmann proves that there is a natural equiv-
alence B(−;−) � 〈−∗;−〉 and her methods also show that A and B are semi-simple
Artinian categories.

If we are given a collection of non-degenerate forms 〈−;−〉�i :A�i ⊗ B�i → k̂ for
i = 1 : : : n we can construct a non-degenerate form

〈−;−〉� :A�1 ⊗ · · · ⊗A�n ⊗B�n ⊗ · · · ⊗B�1 → k̂
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and similarly an involution

(−)∗ :B�n ⊗ · · · ⊗B�1 → A�1 ⊗ · · · ⊗A�n ;

which satis)es B�n ⊗ · · · ⊗B�1 (−;−) � 〈(−)∗;−〉�.
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