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a b s t r a c t

In this paper, we define generalized k-Horadam sequence

Hk,n


n∈N . After that, we study

the properties of the generalized k-Horadam sequence and prove some of these properties
by means of determinant. Also, we obtain a generating function for the generalized
k-Horadam sequence.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

There are so many studies in the literature that concern about the special second order sequences such as generalized
k-Fibonacci and k-Lucas, k-Fibonacci, k-Lucas, Generalized Fibonacci, Horadam, Fibonacci, Lucas, Pell, Jacobsthal and
Jacobsthal–Lucas sequences (see, for instance, [1–13]). For rich applications of these numbers in science and nature, one
can see the citations in [14–20]. For instance, the ratio of two consecutive Fibonacci numbers converges to the Golden
section α =

1+
√
5

2 . The applications of the Golden ratio appear in many research areas, particularly in Physics, Engineering,
Architecture, Nature and Art. Physicists Naschie and Marek-Crnjac gave some examples of the Golden ratio in Theoretical
Physics and Physics of High Energy Particles.

In this paper, we define a generalization

Hk,n


n∈N of the special second order sequences such as generalized k-Fibonacci

and k-Lucas, k-Fibonacci, k-Lucas, Horadam, Fibonacci, Lucas, Pell, Jacobsthal and Jacobsthal–Lucas sequences. For these
numbers, we obtain generalized Binet formula. In addition to this definition, we investigate the some new algebraic
properties via a determinant for the generalized k-Horadam sequence.

2. Main results

In this section,wedefine a generalization

Hk,n


n∈N of the special second order sequences. Also,we obtain some equalities

related with this generalization. Now, we note that most of the following preliminary material is actually defined the first
time.

Definition 1. Let k be any positive real number and f (k) , g (k) are scaler-value polynomials. For n ≥ 0 and f 2(k)+4g(k) >
0, the generalized k-Horadam sequence


Hk,n


n∈N is defined by

Hk,n+2 = f (k)Hk,n+1 + g (k)Hk,n (1)

with initial conditions Hk,0 = a,Hk,1 = b.
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The equation in (1) is the second order linear difference equation and its characteristic equation is follows

λ2
= f (k)λ + g(k). (2)

This equation has two real roots as r1 =
f (k)+

√
f 2(k)+4g(k)
2 and r2 =

f (k)−
√

f 2(k)+4g(k)
2 (r1 > r2). It means that the following

relations hold for the numbers r1, r2:

r1 + r2 = f (k), r1 − r2 =


f 2(k) + 4g(k), r1r2 = −g(k). (3)

Particular cases of the previous definition are
• If f (k) = k and g (k) = 1, the generalized k-Fibonacci and k-Lucas sequence is obtained

Gk,n+2 = kGk,n+1 + Gk,n, Gk,0 = a, Gk,1 = b.

• If f (k) = k, g (k) = 1, a = 0 and b = 1, the k-Fibonacci sequence is obtained

Fk,n+2 = kFk,n+1 + Fk,n, Fk,0 = 0, Fk,1 = 1.

• If f (k) = k, g (k) = 1, a = 2 and b = k, the k-Lucas sequence is obtained

Lk,n+2 = kLk,n+1 + Lk,n, Lk,0 = 0, Lk,1 = k.

• If f (k) = p and g (k) = q, the Horadam sequence is obtained

Hn+2 = pHn+1 + qHn, H0 = a, H1 = b.

• If f (k) = 1, g (k) = 1, a = 0 and b = 1, the Fibonacci sequence is obtained

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1.

• If f (k) = 1, g (k) = 1, a = 2 and b = 1, the Lucas sequence is obtained

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

• If f (k) = 2, g (k) = 1, a = 0 and b = 1, the Pell sequence is obtained

Pn+2 = 2Pn+1 + Pn, P0 = 0, P1 = 1.

• If f (k) = 1, g (k) = 2, a = 0 and b = 1, the Jacobsthal sequence is obtained

Jn+2 = Jn+1 + 2Jn, J0 = 0, J1 = 1.

• If f (k) = 1, g (k) = 2, a = 2 and b = 1, the Jacobsthal Lucas sequence is obtained

jn+2 = jn+1 + 2jn, j0 = 2, j1 = 1.

We can find the more information associated with these sequences in [16,2–4,19].
Now,we give the Binet formula for the generalized k-Horadam sequence. Firstly, let us first consider the following Lemma

which will be needed for the Binet Formula.

Theorem 2. For every n ∈ N, we can write the Binet formula

Hk,n =
Xrn1 − Yrn2
r1 − r2

,

where X = b − ar2 and Y = b − ar1.

The following lemma will be used to prove the above theorem.

Lemma 3. Let r1 and r2 be roots of Eq. (2). Then, we have

Hk,n = r1Hk,n−1 +

Hk,1 − r1Hk,0


rn−1
2 . (4)

Proof. By using (3), we write to equation in (1) as follows:

Hk,n = (r1 + r2)Hk,n−1 − (r1r2)Hk,n−2,

Hk,n − r1Hk,n−1 = r2(Hk,n−1 − r1Hk,n−2). (5)

Similarly, we can write

Hk,n−1 = (r1 + r2)Hk,n−2 − (r1r2)Hk,n−3,

Hk,n−1 = r1Hk,n−2 + r2Hk,n−2 − (r1r2)Hk,n−3. (6)

By substituting Eq. (6) into (5), we get

Hk,n − r1Hk,n−1 = r22 (Hk,n−2 − r1Hk,n−3).
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After that, by continuing this reduction procedure, we obtain

Hk,n − r1Hk,n−1 = rn−1
2 (Hk,1 − r1Hk,0),

as required. �

Proof of Theorem 2. In the above Lemma, by dividing by rn2 both sides of (4), we have

Hk,n

rn2
=

r1
r2

Hk,n−1

rn−1
2

+
Hk,1 − r1Hk,0

r2
.

Now, let us take Hk,n
rn2

= vn. Then we obtain the first order linear difference equation as follows:

vn =
r1
r2

vn−1 +
Hk,1 − r1Hk,0

r2
.

The solution of this equation is given by

vn = Hk,0


r1
r2

n

+
Hk,1 − r1Hk,0

r2


r1
r2

n
− 1

r1
r2


− 1

=
1
rn2


rn1Hk,0 +

Hk,1 − r1Hk,0

r2


rn1 − rn2


.

Finally, we get

Hk,n =


Hk,1 − r2Hk,0

r1 − r2


rn1 −


Hk,1 − r1Hk,0

r1 − r2


rn2 ,

as required. �

Theorem 4. For q > p ≥ 0, we have
n−

i=0

Hk,pi+q =
(−g(k))p(Hk,pn+q − Hk,q−p) − Hk,pn+p+q + Hk,q

(−g(k))p − rp1 − rp2 + 1
.

Proof. We will prove the above result using the Binet formula for the generalized k-Horadam sequence. Then
n−

i=0

Hk,pi+q =

n−
i=0

Xrpi+q
1 − Yrpi+q

2

r1 − r2

=
Xrq1

r1 − r2

n−
i=0

rpi1 −
Yrq2

r1 − r2

n−
i=0

rpi2 .

From the sum of the geometric sequence, we get
n−

i=0

Hk,pi+q =
Xrq1

r1 − r2


rpn+p
1 − 1
r1 − 1


−

Yrq2
r1 − r2


rpn+p
2 − 1
r2 − 1


.

By considering (3) and Theorem 2, we obtain
n−

i=0

Hk,pi+q =
(−g(k))p(Hk,pn+q − Hk,q−p) − Hk,pn+p+q + Hk,q

(−g(k))p − rp1 − rp2 + 1
. �

The following theorem gives us Cassini’s identity for the generalized k-Horadam sequence.

Theorem 5. Let the entries of each matrix Xn =


Hk,n−1 Hk,n
Hk,n Hk,n+1


be the generalized k-Horadam numbers. For n ≥ 1, we get

|Xn| = (−g(k))n−1 a2g(k) + abf (k) − b2


Proof. Let us use the principle of mathematical induction onm. For m = 1,

|X1| =

Hk,0 Hk,1
Hk,1 Hk,2

 = (−g(k))0

a2g(k) + abf (k) − b2


.
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It is easy to see that, form = 2, we have

|X2| =

Hk,1 Hk,2
Hk,2 Hk,3

 = (−g(k))

a2g(k) + abf (k) − b2


.

As the usual next step of inductions, let us assume that it is true for all positive integersm. That is,

|Xm| =

Hk,m−1 Hk,m
Hk,m Hk,m+1

 = (−g(k))m−1 a2g(k) + abf (k) − b2

. (7)

Therefore, we have to show that it is true form + 1. In other words, we need to check

|Xm+1| = (−g(k))m

a2g(k) + abf (k) − b2


. (8)

By considering elementary matrix row operations in (7), there are three steps for getting from (7) to (8). At first, the first
row is multiplied by g(k), then wemultiply the second row by f (k) so that we add the product to first row. Finally, two rows
are swapped. At the first step the determinant is multiplied by g(k), for the second step does not affect the determinant, and
the last step changes only the sign which is desired. �

When f (k) = g(k) = 1, a = 0 and b = 1, the above result reduces to a known Cassini’s identity of Fibonacci numbers.

Theorem 6. Let the entries of each matrix Yr =


Hk,n+r Hk,n

Hk,n+r+1 Hk,n+1


be the generalized k-Horadam numbers. For r ≥ 0, the

following properties hold:

(i) |Yr+2| = f (k) |Yr+1| + g(k) |Yr | ,
(ii) |Yr | = (−g(k))n (bHk,r − aHk,r+1).

Proof. Firstly, let us show that the equality in (i) is satisfied.

(i) Let A = f (k) |Yr+1| + g(k) |Yr | be the right hand side of equation (i), for r ≥ 0, we write

A = f (k)
Hk,n+r+1 Hk,n
Hk,n+r+2 Hk,n+1

+ g(k)
 Hk,n+r Hk,n
Hk,n+r+1 Hk,n+1


= f (k)


Hk,n+1Hk,n+r+1 − Hk,nHk,n+r+2


+ g(k)


Hk,n+1Hk,n+r − Hk,nHk,n+r+1


= Hk,n+1(f (k)Hk,n+r+1 + g(k)Hk,n+r) − Hk,n(f (k)Hk,n+r+2 + g(k)Hk,n+r+1).

By using (1), if we rewrite this last equality, then we get

f (k) |Yr+1| + g(k) |Yr | = Hk,n+1Hk,n+r+2 − Hk,nHk,n+r+3

= |Yr+2| ,

as required.
(ii) We need the follow induction steps on r . For r = 0, it is easy to see that |Y0| = 0. For r = 1, by using Theorem 5, we can

write

|Y1| = (−g(k))n (b2 − a2g(k) − abf (k))
= (−g(k))n (bHk,1 − aHk,2).

As the usual next step of inductions, let us assume that it is true for all positive integers r . That is,

|Yr | = (−g(k))n (bHk,r − aHk,r+1). (9)

Therefore, we have to show that is true for r + 1. In other words,

|Yr+1| = (−g(k))n (bHk,r+1 − aHk,r+2).

By considering equation (i) and (9), we write

|Yr+1| = f (k) |Yr | + g(k) |Yr−1|

= f (k) (−g(k))n (bHk,r − aHk,r+1) + g(k) (−g(k))n (bHk,r−1 − aHk,r)

= (−g(k))n

b

f (k)Hk,r + g(k)Hk,r−1


− a


f (k)Hk,r+1 + g(k)Hk,r


= (−g(k))n (bHk,r+1 − aHk,r+2),

which ends up the induction and the proof. �

It is notable that, taking m instead of n + r in the above theorem, we get the d’Ocagne identity for the generalized k-
Horadam sequences as

Hk,mHk,n+1 − Hk,m+1Hk,n = (−g(k))n (bHk,m−n − aHk,m−n+1).
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Also, for special values of f (k), g(k), a and b, we obtain the d’Ocagne identity for all special second order sequences. For
instance, taking f (k) = g(k) = 1, a = 0 and b = 1, we get the d’Ocagne identity for the Fibonacci sequence as
FmFn+1 − Fm+1Fn = (−1)nFm−n.

Theorem 7. Let the entries of each matrix Zs =


Hk,n Hk,n−r

Hk,n+s Hk,n−r+s


be generalized k-Horadam numbers. For s ≥ 0, the following

properties hold:

(i) |Zs+2| = f (k) |Zs+1| + g(k) |Zs| ,
(ii) |Zs| = (−g(k))n−r (bHk,r−aHk,r+1)(bHk,s−aHk,s+1)

b2−a2g(k)−abf (k)
.

Proof. Proof of this theorem can be seen easily in a similar manner with Theorem 6. �

It is notable that, takingm − n + r instead of s in the above theorem, we obtain a generalization of some equalities such
as d’Ocagne’s and Catalan’s equalities for the generalized k-Horadam sequences as

B =
(−g(k))n−r bHk,r − aHk,r+1

 
bHk,m−n+r − aHk,m−n+r+1


b2 − a2g(k) − abf (k)

, (10)

where B = Hk,mHk,n − Hk,m+rHk,n−r .
Also, as applications of (10) for the generalized k-Horadam sequence, we have the following results:

• Taking n + 1 instead of n and r = 1 in (10), we obtain d’Ocagne identity in Theorem 7.
• Taking n instead ofm in (10), we obtain Catalan’s identity.

Theorem 8 (Generating Function of

Hk,n


n∈N). The generating function of this sequence is given by

∞−
i=0

Hk,ixi =
Hk,0 + x


Hk,1 − f (k)Hk,0


1 − f (k)x − g(k)x2

.

Proof. Let H(x) be a generating function for the

Hk,n


n∈N sequence. Then we write

H(x) = Hk,n = Hk,0 + xHk,1 + · · · + xnHk,n + · · · . (11)

If it is multiplying Eq. (11) with f (k)x and g(k)x2, respectively, then we have

f (k)xHk,n = f (k)xHk,0 + f (k)x2Hk,1 + · · · + f (k)xn+1Hk,n + · · · (12)

g(k)x2Hk,n = g(k)x2Hk,0 + g(k)x3Hk,1 + · · · + g(k)xn+2Hk,n + · · · . (13)

Consequently, considering (11)–(13), the following equation is obtained
1 − f (k)x − g(k)x2


Hk,n = Hk,0 + x


Hk,1 − f (k)Hk,0


∞−
i=0

Hk,ixi =
Hk,0 + x


Hk,1 − f (k)Hk,0


1 − f (k)x − g(k)x2

,

as required. �

If we take Hk,i+1 instead of Hk,i, a = 0 and b = 1 in the above theorem, the dynamic behavior of the one-dimensional
family ofmapsHf (k),g(k)(x) =

1
1−f (k)x−g(k)x2

, for specific values of the control parameters f (k) and g(k) is obtained. Besides, in
this study it is observed that, as the parameters vary, the behavior of maps progresses from periodicity through bifurcations
to a state of chaos. Period doubling bifurcations and periodic windows are visualized in a manner similar to the logistic map
in [19].
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