A Characterization of Odd Order Extensions of the Finite Simple Chevalley Groups $F_4(q)$, q Odd

MORTON E. HARRIS*

Department of Mathematics, University of Illinois at Chicago Circle,
Chicago, Illinois 60680

Communicated by W. Feit

Received April 20, 1973

INTRODUCTION

Let p denote an odd prime integer and let $q = p^f$ where f is a positive integer. Let $F_4(K) (=F_4(q))$ denote the finite simple Chevalley group of type (F_4) over a field K of q elements. Then $F_4(K)$ has two conjugacy classes of involutions (cf., [8, Section 9]).

Let D denote an automorphism of K. Then D induces an automorphism of $F_4(K)$ (cf., [11, Section 10]). In fact, the cyclic subgroup of $\text{Aut}(K)$ generated by D acts faithfully on $F_4(K)$ and one may form the natural semidirect product $\langle D \rangle F_4(K)$. If σ is an odd ordered automorphism of K, then σ centralizes a Sylow 2-subgroup of $F_4(K)$ and $\langle \sigma \rangle F_4(K)$ is an odd ordered extension of $F_4(K)$ with trivial 2-core. In fact, any odd ordered extension of $F_4(K)$ with trivial 2-core is of this form (cf., [11, Section 10]).

Let t be an involution in the center of a Sylow 2-subgroup of $F_4(K)$ that is centralized by the odd ordered automorphism σ of K. Then the centralizer $C(t)$ of t in $\langle \sigma \rangle F_4(K)$ is a semidirect product $\langle \sigma \rangle \mathcal{C}$ where \mathcal{C} denotes the centralizer of t in $F_4(K)$ and $C(t)$ has trivial 2-core. Moreover, \mathcal{C} contains a Sylow 2-subgroup of $\langle \sigma \rangle F_4(K)$ and \mathcal{C} is isomorphic to $\text{Spin}(9, K)$ (the universal Chevalley group associated with a root system of type (B_4) over the field K).

We shall prove the following result:

Theorem. Let G be a finite group with an involution t whose centralizer $C_G(t)$ in G is such that:

* This research was partially supported by National Science Foundation Grant No. GP-30511 while on leave at Rutgers University, and Grant No. GP-28420 at the University of Illinois at Chicago Circle.
(a) $O(C_G(t)) = \{1\}$ and

(b) $C_G(t)$ has a normal subgroup H of odd index ρ such that $H \cong \text{Spin}(2n + 1, K)$ for some positive integer $n \geq 2$ and some finite field K of odd characteristic (here $\text{Spin}(2n + 1, K)$ denotes the universal Chevalley group associated with a root system of type (B_n) over the field K).

Then either

(i) $G = O(G) C_G(t) O_Y$

(ii) $n = 4$ and $G \cong \langle \sigma \rangle F_4(K)$ where σ is an automorphism of $F_4(K)$ of order ρ induced by an automorphism of order ρ of the field K.

In particular, when $\rho = 1$, we obtain a characterization of $F_4(K)$.

The proof of the theorem follows a fairly standard pattern. In Section 1, we describe the construction and various properties of $\text{Spin}(2n + 1, K)$ for $n \geq 2$. Then, in Section 2, we study the fusion of involutions and we show that if Condition (i) of the theorem does not hold, then $n = 4$ and G has two conjugacy classes of involutions. This section closes with the construction of the Weyl group of the (B, N)-pair to be constructed in Section 4. In Section 3, we determine the structure of the centralizer of an involution not conjugate in G to t. In Section 4, we construct a (B, N)-pair and quote the proof of [3, Theorem C] to show that G contains a subgroup $G_1 \cong F_4(K)$. Then a standard argument implies that G satisfies Condition (ii) of the theorem.

Our notation is fairly standard and tends to follow that of [7]. In particular, if K is a field, then K^+ will denote the additive group of K and K^\times will denote the multiplicative group of nonzero elements of K.

Let X denote a finite group. If A and B are subsets of X and $x \in X$ are such that $A^x = x^{-1} A x = B$, then we shall write $x : A \rightarrow B$. Moreover, if $x : A \rightarrow B$ and $x : B \rightarrow A$, we shall write $x : A \leftrightarrow B$. If $a, b \in X$, then we shall write $a \sim b$ if there is an $x \in X$ such that $x : a \rightarrow b$. Finally, if A is a subset of X, then $\mathcal{I}(A)$ will denote the set of involutions of A.

1. SOME PROPERTIES OF SPIN GROUPS

Let n denote an integer such that $n \geq 2$ and let V denote a real Euclidean vector space of dimension n with positive definite scalar product (\cdot, \cdot) and orthonormal basis $\{e_1, e_2, \ldots, e_n\}$. As in [1], a root system Δ_n of type (B_n) consists of the $2n^2$ roots:

$$\pm e_i (1 \leq i \leq n), \quad \pm e_i \pm e_j (1 \leq i < j \leq n).$$
Also \(\mathcal{B} = \{x_1 = e_1 - e_2, x_2 = e_2 - e_3, \ldots, x_{n-1} = e_{n-1} - e_n, x_n = e_n \} \) is a system of fundamental roots or base for this root system \(\Delta_n \). Relative to this base, the positive roots \(\Delta_n^+ \) of \(\Delta_n \) are:

\[
\Delta_n^+ = \begin{cases}
\epsilon_i & (1 \leq i \leq n), \\
\epsilon_i - \epsilon_j & (1 \leq i < j \leq n), \\
\epsilon_i + \epsilon_j & (1 \leq i < j \leq n).
\end{cases}
\]

The set of negative roots \(\Delta_n^- = \{ -v | v \in \Delta_n^+ \} \) and \(\Delta_n = \Delta_n^+ \cup \Delta_n^- \).

As in [1], for \(v_1 \in V \) and \(0 \neq v_2 \in V \), we write

\[
\langle v_1, v_2 \rangle = \frac{2(v_1, v_2)}{(v_2, v_2)}.
\]

Then if \(s_1, s_2 \in \Delta_n \), we have \(\langle s_1, s_2 \rangle \in \mathbb{Z} \) and we call \(\langle s_1, s_2 \rangle \) a Cartan integer. The \(n \times n \) integral matrix with \((i, j) \) entry equal to \(\langle x_i, x_j \rangle \) for all \(1 \leq i, j \leq n \) is called the Cartan matrix. This matrix is given on [1, p. 253].

For \(0 \neq z \in V \), define \(\tilde{w}_z : V \to V \) by

\[
\tilde{w}_z(v) = v - \langle v, z \rangle z \quad \text{for all} \quad v \in V.
\]

Then \(\tilde{w}_z \) is an orthogonal transformation called the reflection associated to \(z \).

Set

\[
\tilde{W} = \langle \tilde{w}_s | s \in \Delta_n \rangle.
\]

Then \(\tilde{W} \) is called the Weyl group of \(\Delta_n \) and we have

\[
\tilde{W} = \langle \tilde{w}_\alpha | \alpha \in \mathcal{B} \rangle, \quad | \tilde{W} | = 2^{n!}
\]

and

\[
\tilde{w}_s(\Delta_n) = \Delta_n \quad \text{for all} \quad s \in \Delta_n.
\]

Also \(\tilde{W} \) has subgroups \(\tilde{W}_1, \tilde{W}_2 \) such that \(\tilde{W}_2 \triangleleft \tilde{W}, \tilde{W} = \tilde{W}_1 \tilde{W}_2, \tilde{W}_1 \cap \tilde{W}_2 = \{1\} \). \(\tilde{W}_2 \) is elementary abelian of order \(2^n \), \(\tilde{W}_2 \) operates on \(V \) by sending \(\epsilon_i \mapsto (\pm 1) \epsilon_i \) for all \(1 \leq i \leq n \) and where \(\tilde{W}_1 \) is the symmetric group on \(\{e_1, e_2, \ldots, e_n\} \).

For an arbitrary finite field \(K \), there exists a \(K \)-vector space \(M \) and elements \(x_s(k) \in GL(M, K) \) for each \(s \in \Delta_n \) and each \(k \in K \) such that we may take

\[
\text{Spin}(2n + 1, K) = \langle x_s(k) | s \in \Delta_n, k \in K \rangle.
\]
(cf., [11, Section 3]) and such that if we set

\[w_s(k) = x_s(k) x_s(-k^{-1}) x_s(k) \quad \text{and} \quad h_s(k) = w_s(k) w_s(1)^{-1} \]

for each \(s \in \Delta_n \) and each \(k \in K^\times \), (1.1)

\[\omega_s = w_s(1) \quad \text{for each} \quad s \in \Delta_n , \]

(1.2)

\[\mathcal{X}(s) = \langle x_s(k) \mid k \in K \rangle \quad \text{for each} \quad s \in \Delta_n , \]

(1.3)

and

\[L(s) = \langle \mathcal{X}(s), \mathcal{X}(-s) \rangle \quad \text{for any} \quad s \in \Delta_n , \]

(1.4)

then, for any \(r, s \in \Delta_n \), we have

\[\omega_s^2 = h_s(-1), \]

(1.5)

\[L(s) \cong SL(2, K) \quad \text{and} \quad Z(L(s)) = \langle h_s(-1) \rangle , \]

(1.6)

\[x_s(k_1) x_s(k_2) = x_s(k_1 + k_2) , \]

(1.7)

for any \(k_1, k_2 \in K \), and the map \(k \mapsto x_s(k) \) is an isomorphism of \(K^\times \) onto \(\mathcal{X}(s) \), for any \(k_1, k_2 \in K \), if \(r + s \neq 0 \), then

\[x_s(k_1) x_s(k_2) x_s(k_1)^{-1} x_s(k_2)^{-1} = \prod x_{ir+js} (c_{ij} k_1^{i} k_2^{j}) , \]

(1.8)

where the product on the right is taken over \(\{ir + js \in \Delta_n \mid i, j \text{are positive integers} \} \) arranged in some fixed order, and where the \(c_{ij} \) are integers that depend only on \(r, s \) and on the chosen ordering but not on \(k_1 \) or \(k_2 \),

\[\omega_s x_s(k) \omega_s^{-1} = x_{\omega_s}(c k) , \]

(1.9)

where \(c = \pm 1 \) is as in [11, Lemma 19(a)] for all \(k \in K \),

\[\omega_s h_s(k) \omega_s^{-1} = h_{\omega_s}(c k) \quad \text{for all} \quad k \in K^\times , \]

(1.10)

\[h_s(k_1) x_s(k_2) h_s(k_1)^{-1} = x_s(k_1^{r+s} k_2) \]

(1.11)

for all \(k_1 \in K^\times, k_2 \in K \), and

\[h_s(k_1) h_s(k_2) = h_s(k_1 k_2) \quad \text{for all} \quad k_1, k_2 \in K^\times \]

(1.12)

and the map \(k \mapsto h_s(k) \) is an isomorphism of \(K^\times \) onto \(\langle h_s(k) \mid k \in K^\times \rangle \).

Let

\[q = |K| , \]

(1.13)

so that

\[q = p^f , \]

(1.14)

where \(p \) is a prime integer and \(f \) is a positive integer.
Set
\[H_s = \langle h_s(k) \mid k \in K^X \rangle \]
for each \(s \in \Delta_n \) and \(H = \langle H_s \mid s \in \Delta_n \rangle \).

For convenience, if \(\alpha_i \in \mathcal{O} \) for \(1 \leq i \leq n \), we set
\[\omega_i = \omega_{\alpha_i}, \quad h_i(k) = h_{\alpha_i}(k) \]
for \(k \in K^X \) and \(H_i = H_{\alpha_i} \). Then, we also have
\[H \text{ is abelian of order } (q - 1)^n \]
and
\[H = H_1 \times H_2 \times \cdots \times H_n, \]
\[\langle H, w_s(k) \mid k \in K, s \in \Delta_n, i \leq i \leq n \rangle = \langle H, \omega_i \mid 1 \leq i \leq n \rangle \]
and is the normalizer of \(H \) in \(\text{Spin}(2n + 1, K) \),
the centralizer of \(H \) in \(\text{Spin}(2n + 1, K) \) is \(H \) itself
and
the map \(w_s \mapsto \omega_s H \) for each \(s \in \Delta_n \) induces an isomorphism of
the Weyl group \(\tilde{W} \) onto \(\langle H, \omega_s \mid s \in \Delta_n \rangle / H \).

Let \(K \) be an arbitrary subfield of \(K \) and for each \(s \in \Delta_n, \) set
\[E(s) = \langle x_s(k) \mid k \in K \rangle \]
and \(E = \langle x_s(s) \mid s \in \Delta_n \rangle \).

Then
\(\tilde{G} \) is a subgroup of \(\text{Spin}(2n + 1, K) \),
\(\tilde{G} \cong \text{Spin}(2n + 1, K) \)
and
\[\langle h_s(k), \omega_s \mid s \in \Delta_n \text{ and } k \in K \rangle \subseteq \tilde{G}. \]

We shall require the following facts about the group \(\text{Aut}(\text{Spin}(4n, K)) \) with \(n \geq 2 \) and \(|K| \) odd (cf., [11, Section 10]).
Let \(A = \text{Aut}(\text{Spin}(4n, K)) \), let \(B = \text{Inn}(\text{Spin}(4n, K)) \) and let \(C \) denote the cyclic subgroup of \(A \) of order \(\log_v(|K|) \) induced by \(\text{Aut}(K) \) and set \(\overline{A} = A/B. \) Then
\[C \cong C, \]
if \(n > 2, \) then \(\overline{A} = \overline{X} \times \overline{C}, \)
where \(X \) is a dihedral group of order 8,
\[C \cong C, \]
if \(n = 2, \) then \(\overline{A} = \overline{X} \times \overline{C}, \)
where \(\overline{X} \cong \Sigma_4 \), the symmetric group on four symbols.
In both cases X is generated by the images in A of the group of "diagonal automorphisms" and the group of "graph automorphisms" of Spin$(4n, K)$. In both cases, the image in A of the group of "diagonal automorphisms" forms a normal 4-subgroup of X that is complemented in X by the image in A of the group of "graph automorphisms."

2. The Fusion of Involutions in G

From now on, we assume that G is a finite group satisfying the hypotheses of the theorem. In particular, from now on, we assume that K is a finite field of odd characteristic p.

We shall also assume:

$$G \neq O(G) C_G(t).$$

Thus it remains to prove that Condition (ii) of the theorem holds.

First, suppose that $n = 2$ and observe that Spin$(5, K) \cong Sp(4, K)$, so that $S \cong Sp(4, K)$ where $Z(S) = \langle t \rangle$. Let T denote a Sylow 2-subgroup of S. Then T is a Sylow 2-subgroup of $C_G(t)$. Since $Z(T) = \langle t \rangle$ (cf., [13, proof of Lemma 2.3]) it follows that T is a Sylow 2-subgroup of G. Then [13, Lemma 2.3] yields a contradiction to (2.1).

Next suppose that $n = 3$. Then [10, Theorem 3.4] implies that $t \in Z^*(G)$, whence $G = O(G) C_G(t)$ and again we contradict (2.1).

Thus for the remainder of this paper, we assume that $n \geq 4$.

Clearly we have the following.

Lemma 2.1. $O^\ast(C_G(t)) = S$.

Noting that $Z(S) = \langle t \rangle$, the proof of [7, Lemma 1.5] yields the following lemma.

Lemma 2.2. $C_G(S) = \langle t \rangle$.

We shall now fix an isomorphism

$$\varphi: \text{Spin}(2n + 1, K) \to S.$$

Utilizing the structure of Aut(Spin$(2n + 1, K)$) (cf., [11, Section 10]), the action of Aut(K) on Spin$(2n + 1, K)$ and the proof of [7, Lemma 1.6], we obtain the lemma.

Lemma 2.3. There exists a cyclic subgroup A of $C_G(t)$ of order p and a monomorphism $\beta: A \to \text{Aut}(K)$ such that
(i) if \(a \in \mathcal{U} \) and \(y \in \text{Spin}(2n + 1, K) \), then

\[\varphi(y^a) = \varphi(y^{\vartheta(a)}) \]

and

(ii) \(C_\mathcal{G}(t) = \mathcal{S}\mathcal{U} \) and \(\mathcal{S} \cap \mathcal{U} = \{1\} \).

Corollary 2.3.1. If \(q = 3 \), then \(\mathcal{U} = \{1\} \) and \(C_\mathcal{G}(t) = \mathcal{S} \).

For convenience, we shall suppress the isomorphism \(\varphi \) and we will identify \(\mathcal{S} \) with \(\text{Spin}(2n + 1, K) \). Thus we shall assume that \(\mathcal{S} = \text{Spin}(2n + 1, K) \) is as defined in Section 1. Then, the fact that \(Z(\mathcal{S}) = \langle t \rangle \) yields:

\[t = h_n(-1). \] (2.2)

Lemma 2.4. If \(\tau \in \mathcal{J}(C_\mathcal{G}(t)) \) and \(\tau \neq t \), then there exists a 2-element \(\theta \in \mathcal{S} \) such that \(\theta : \tau \mapsto \tau t \).

Proof. Clearly \(\tau \in \mathcal{S} \) and, since \(\text{char}(K) \) is odd, \(\tau \) is conjugate in \(\mathcal{S} \) to an involution of \(H \) (cf., [8, Section 7]). Consequently we may assume that \(\tau \in H \). Thus \(\tau \) has form \(\tau = h_{i_1}(-1) h_{i_2}(-1) \cdots h_{i_r}(-1) t^e \) where \(r \geq 1, e \in \{0, 1\} \) and \(1 \leq i_1 < i_2 < \cdots < i_r \leq n - 1 \). Let \(\nu = \prod_{j=i_r+1}^{r-1} \omega_j \). Then \(\theta = \omega_n^\nu \) is the required 2-element.

Applying [8, Sections 7 and 8], we may determine a set of representatives for the distinct conjugacy classes of involutions in \(\mathcal{S} \) and their centralizers in \(\mathcal{S} \). We conclude

\(\mathcal{S} \) contains \(\lfloor (n/2) \rfloor + 1 \) conjugacy classes of involutions \(\mathcal{R}_0 = \{t\}, \mathcal{R}_1, ..., \mathcal{R}_{\lfloor n/2 \rfloor} \) which can be indexed such that if \(\tau \in \mathcal{R}_j \) with \(1 \leq j \leq \lfloor (n/2) \rfloor \), then \(O^\circ(C_\mathcal{S}(\tau)) \) is isomorphic to the central product \(\text{Spin}(4j, K) \rtimes \text{Spin}(2(n - 2j) + 1, K) \), where \(\text{Spin}(4, K) \cong SL(2, K) \times SL(2, K) \), \(\text{Spin}(3, K) \cong SL(2, K) \) and \(\text{Spin}(1, K) \cong SL(2, K) \). (2.3)

Moreover, we have the following.

Lemma 2.5. Let \(\tau \in \mathcal{J}(C_\mathcal{G}(t)) = \mathcal{J}(\mathcal{S}) \) with \(\tau \neq t \) and set \(D = \langle t, \tau \rangle \). Then the following three conditions hold:

(i) if \(q > 3 \), then \(O^\circ(C_\mathcal{G}(D)) = C_\mathcal{S}(\tau) \) and if \(q = 3 \), then \(C_\mathcal{G}(D) = C_\mathcal{S}(\tau) \);

(ii) exactly one of the following three conditions hold:

1. the 2-layer if \(C_\mathcal{S}(\tau) \) contains a unique component (cf., [5]) \(J \) such that \(Z(J) = \langle t \rangle \) and either \(J \cong \text{Spin}(2j + 1, K) \) for some integer \(2 \leq j < n \) or \(J \cong SL(2, K) \) and \(q > 3 \).
(2) \(q = 3, \) \(O_2(O_2(C_2(\tau))) \) is a quaternion group of order 8 with \(Z(O_2(O_2(C_2(\tau)))) = \langle t \rangle, \)
(3) \(n \) is even, \(C_2(\tau) \cong \text{Spin}(2n, K) \) and \(Z(C_2(\tau)) = D; \)
(iii) if \(\tau_1 \in \mathcal{J}(C_2(t)) = \mathcal{J}(5) \) with \(t \neq \tau_1 \not\sim \tau \) in \(5, \) then \(C_2(\tau) \not\cong C_2(\tau_1). \)

We can now prove the lemma.

Lemma 2.6. \(n = 4 \) and there exists an involution \(\tau \) in \(5 \) with \(\tau \neq t \) such that \(\tau \sim t \) in \(G \) and \(C_2(\tau) \cong \text{Spin}(8, K). \) Moreover \(\tau \sim h_4(-1) h_3(-1) \) in \(5. \)

Proof. By (2.1) and [14, (2B)], there exists an involution \(\tau \) in \(5 \) such that \(\tau \neq t \) and \(\tau \sim t \) in \(G. \) Applying Lemma 2.4, we conclude that there is a 2-element \(\theta_1 \) in \(C_2(\tau) \) such that \(\theta_1 : t \mapsto tr. \) Setting \(D = \langle t, \tau \rangle, \) we conclude that \(N_2(D) \) induces the full symmetric group \(\Sigma_3 \) on \(D^* = \{t, \tau, \tau^2\} \) under conjugation. Thus there exists a 3-element \(y \in N_2(D) \) such that \(y \) is transitive on \(D^*. \) Since \(y \) normalizes \(C_2(D), \) Lemma 2.5(ii) implies that \(n \) is even, \(C_2(\tau) \cong \text{Spin}(2n, K) \) and \(Z(C_2(\tau)) = D. \)

From [8, Sections 7 and 8], conjugacy in \(5 \) implies that we may assume that \(\tau = h_4(-1) h_3(-1) \cdots h_{n-4}(-1). \) Then \([\tau, \mathfrak{A}] = \{1\} \) and \(C_2(D) = C_2(\tau) \mathfrak{A} \) where

\[
C_2(\tau) = \left\{ \mathfrak{A}(s) \mid s \in \mathcal{A}_n \cap \left(\sum_{i=1}^{n-1} Zx_i + Z2x_n \right) \right\} \cong \text{Spin}(2n, K).
\]

Clearly \(O(C_2(D)) = \{1\}. \) Since \(Z(C_2(\tau)) = D, \) the proof of [7, Lemma 1.5] yields \(C_2(C_2(\tau)) = D. \) Also \(C_2(\tau) = O^*(C_2(D)) \subseteq N_2(D); \) hence \(N_2(D)/D \) is isomorphic to a subgroup of \(\text{Aut}(C_2(\tau)) \) that contains \(\text{Inn}(C_2(\tau)) \). Note that \((N_2(D)/D)/(C_2(\tau)/D) \cong N_2(D)/C_2(\tau) \) and that \(N_2(D)/C_2(\tau) \) has \(N_2(D)/C_2(D) \cong \Sigma_3 \) as a homomorphic image.

Suppose that \(n > 4. \) Then \(\text{Aut}(\text{Spin}(2n, K))/\text{Inn}(\text{Spin}(2n, K)) \) has the property that every element of odd order is central (cf., (1.22) and (1.23)). Since \(N_2(D)/C_2(D) \cong \Sigma_3 \) does not have this property, we obtain a contradiction. Thus \(n = 4 \) and the lemma follows.

Corollary 2.6.1. \(O(G) = \{1\}. \)

Proof. Clearly

\[
O(G) = \langle O(G) \cap C_2(\delta) \mid \delta \in D^* \rangle \quad \text{where} \quad D = \langle t, h_4(-1) h_3(-1) \rangle.
\]

But \(O(G) \cap C_2(\delta) \subseteq O(C_2(\delta)) = \{1\}, \) since \(\delta \sim t \) in \(G \) and \(O(C_2(t)) = \{1\}, \) for each \(\delta \in D^*. \)
Consequently, we have

\[n - 4. \] \hspace{1cm} (2.4)

Set

\[t_1 = h_1(-1) h_2(-1), \quad D = \langle t, t_1 \rangle, \]

\[v = h_1(-1)t, \quad \Delta = \Delta_4, \]

and

\[\mathfrak{g} = C_8(t_1) = C_8(D). \] \hspace{1cm} (2.5)

Then

\[H \subseteq \mathfrak{g} \subseteq \mathfrak{g}, \] \hspace{1cm} (2.6)

and

\[[t_1, \mathfrak{U}] - [v, \mathfrak{U}] - 1, \quad C_6(D) - C_8(t_1)\mathfrak{U} - \mathfrak{g}\mathfrak{U}, \]

\[O^2(C_6(D)) = \mathfrak{g} \quad \text{and} \quad C_6(t, v) = C_8(v)\mathfrak{U}. \] \hspace{1cm} (2.7)

For convenience of notation, set

\[a = e_1, \quad b = e_2, \quad c = e_3 \quad \text{and} \quad d = e_4. \] \hspace{1cm} (2.8)

Set

\[\Delta(t_1) = \{ s \in \Delta \mid (s, s) = 2 \} \]

and

\[\Delta(v) = \{ \pm d, \pm c, \pm(c - d), \pm(c + d) \}. \] \hspace{1cm} (2.9)

From [8, Section 9], we conclude

\[\Delta(t_1) \] is a root system of type \((D_4)\) with base

\[\{ \alpha_1, \alpha_2, \alpha_3, \alpha_4^* = c + d \} \]

and Dynkin diagram:

\[\begin{tikzpicture}
 \node (alpha1) at (0,0) [circle, fill=black] {α_1};
 \node (alpha2) at (1,0) [circle, fill=black] {α_2};
 \node (alpha3) at (2,0) [circle, fill=black] {α_3};
 \node (alpha4) at (0,1) [circle, fill=black] {α_4^*};
 \draw (alpha1) -- (alpha2);
 \draw (alpha2) -- (alpha3);
\end{tikzpicture} \] \hspace{1cm} (2.10)

and \(\mathfrak{g} = C_8(t_1) = \langle \mathfrak{X}(s) \mid s \in \Delta(t_1) \rangle \cong \text{Spin}(8, K) \), and

\[\Delta(v) \] is a root system of type \((B_2)\) with base \(\{ \alpha_3, \alpha_4 \} \) and Dynkin diagram

\[\alpha_4 \longleftrightarrow \alpha_3. \] \hspace{1cm} (2.11)
Set
\[R = \langle x \mid s \in A(v) \rangle. \] (2.12)

Then
\[R \cong Sp(4, K), \quad Z(R) = \langle t \rangle \] (2.13)
and all involutions of \(R - \{t\} \) are conjugate in \(R \) to \(h_3(-1) \).

We also have
\[[L(a + b), L(a - b)] = [L(a + b)L(a - b), R] = \{1\} \] (2.14)
and
\[Z(L(a - b)) = \langle vt \rangle \quad \text{and} \quad Z(L(a + b)) = \langle v \rangle. \] (2.15)

Let \(\kappa \) denote a generator of the cyclic group \(K \) and \(q = |K| = p^f \)
where \(p \) is an odd prime integer and \(f \) is a positive integer. (2.16)

Then we have
\[C_{i_0}(v) = L(a + b)L(a - b)L(c + d)L(c - d)H_2 \subseteq C_{i_0}(v) \]
\[= L(a + b)L(a - b)RH_2, \] (2.17)

where \(H_2 = \langle h_3(\kappa) \rangle, \ h_3(\kappa) \not\in L(a + b)L(a - b)R \) and
\[h_3(\kappa)^2 \in L(a + b)L(a - b)L(c + d)L(c - d) \subseteq L(a + b)L(a - b)R. \]
\[O^\nu(C_G(D, v)) = C_{i_0}(v), \quad O^\nu(C_G(t, v)) = C_{i_0}(v) \] (2.18)
and
\[O^\mu(C_G(v)) = L(a + b)L(a - b)L(c + d)L(c - d) \]
and
\[O^\mu(C_{i_0}(v)) = L(a + b)L(a - b)R. \] (2.19)

We can now prove the following lemma.

Lemma 2.7. (i) \(C_G(t) \) has three conjugacy classes of involutions with representatives \(t, t_1, \) and \(v; \) and

(ii) \(t \sim t_1 \sim v \) in \(G. \)

Proof. From [8, Sections 7 and 8] and the fact that \(C_{i_0}(t_1) \cong C_{i_0}(v), \)
we obtain (i). By Lemma 2.6, we have \(t \sim t_1 \) in \(G. \) Assume that \(v \sim t \) in \(G. \)
Noting that
\[C_G(t, v) \not\cong C_G(t, t_1) \quad \text{and} \quad \langle t \rangle = Z(R) \text{ char } R \text{ char } C_{i_0}(v) \text{ char } C_G(t, v), \]
the argument of [14, (2A)] yields a contradiction, and the lemma follows.
Lemma 2.8. Let S be a Sylow 2-subgroup of \mathcal{S}. Then S is a Sylow 2-subgroup of G and $Z(S)$ is cyclic with $\Omega_1(Z(S)) = \langle t \rangle$.

Proof. Assume that $\langle t, \tau \rangle \leq Z(S)$ with τ an involution not t. Clearly we may assume that $\tau = t_1$ or $\tau = v$. Then $S \leq C_\mathcal{S}(t_1)$ or $S \leq C_\mathcal{S}(v)$. However, the power of 2 appearing in the prime factorizations of

$$|C_\mathcal{S}(t_1)| = |\text{Spin}(8, K)|$$

and

$$|C_\mathcal{S}(v)| = |\text{SL}(2, K)^2| |\text{Sp}(4, K)|$$

are both less than $|S|$ which is impossible. Thus $Z(S)$ is cyclic and $\Omega_1(Z(S)) = \langle t \rangle$. Since S is clearly a Sylow 2-subgroup of $C_\mathcal{S}(t)$, this forces S to be a Sylow 2-subgroup of G.

Corollary 2.8.1. G has two conjugacy classes of involutions represented by t and v.

Since all involutions in H with the exception of t, t_1 and tt_1 are conjugate in \mathcal{S} to v, we have the following.

Corollary 2.8.2. $\text{ccl}_G(t) \cap H = D^*$ and D is strongly closed in H with respect to G.

Lemma 2.9. Let T be a Sylow 2-subgroup of $C_\mathcal{S}(v)$. Then T is a Sylow 2-subgroup of $C_\mathcal{S}(v)$ and $Z(T) = \langle t, v \rangle$.

Proof. Noting that $C_\mathcal{S}(v) \cap C_\mathcal{S}(L(a + b)) = L(a - b)R < C_\mathcal{S}(v)$ and $C_\mathcal{S}(v)/L(a - b)R \cong \text{PGL}(2, K)$, it follows that $Z(T) \subseteq L(a + b) L(a - b)R$. Then $Z(T) \subseteq Z(T) \cap (L(a + b) L(a - b)R) = \langle t, v \rangle$. Since $\langle t, v \rangle \subseteq Z(T)$, it follows that $Z(T) = \langle t, v \rangle$. Finally $\text{ccl}_G(t) \cap Z(T) = \{t\}$ and T is clearly a Sylow 2-subgroup of $C_\mathcal{S}(v, t)$. Thus T is a Sylow 2-subgroup of $C_\mathcal{S}(v)$.

Lemma 2.10. There exists an element $y \in N_G(D)$ of order 3 such that

(i) for each $s \in \Delta(t_1)$, $\mathcal{X}(s)^y = \mathcal{X}(\gamma(s))$ where γ denotes the unique linear automorphism of the root system $\Delta(t_1)$ such that $\gamma: \alpha_2 \to \alpha_2$ and $\gamma: \alpha_1 \to \alpha_1, \alpha_1 \to \alpha_1^* \to \alpha_1$ (cf., (2.10));

(ii) $y: t_1 \to t \to tt_1 \to t_1$;

(iii) $y \in N_G(H) \cap N_G(\mathcal{H})$;

(iv) $[y, \mathcal{U}] \subseteq H$; and

(v) $y \in C_G(v)$.

Proof. Set $N_G(D) = N_G(D)/D$. In the proof of Lemma 2.6, we showed $C_G(C_\mathcal{S}(t_1)) = D$. $\mathcal{Y} = C_\mathcal{S}(t_1) < N_G(D)$ and $N_G(D)$ acts faithfully by conjugation on $\mathcal{Y} = C_\mathcal{S}(t_1)$ as a group of automorphisms of \mathcal{Y} with \mathcal{Y} corre-
sponding to $\text{Inn}(\mathfrak{g})$. Here, \mathfrak{g} is cyclic of odd order ρ and acts as a group of "field automorphisms" on $\mathfrak{g} = C_8(t_1) (= \text{Spin}(8, K))$. Thus (1.24) implies that $C_G(D)/C_G(t_1) = \mathfrak{g}/\mathfrak{h} \subseteq Z(N_G(D)/\mathfrak{g})$.

Note that $\mathfrak{h} \cong \mathfrak{g} \cong C_8(D)/C_8(t_1)$ is cyclic of order ρ and $N_G(D)/C_G(D) \cong N_G(D)/C_8(D) \cong \Sigma_4$. Thus $N_G(D)/\mathfrak{g}$ has a normal 2-complement of index 2; let Y_1 be its inverse image in $N_G(D)$ so that $C_G(D) \cap Y_1 \leq N_G(D)$, $|N_G(D)/Y_1| = 2$ and $|Y_1/C_G(D)| = 3$. From the above, it follows that Y_1/\mathfrak{g} is abelian of odd order 3ρ. It now follows that $N_G(D)$ contains a normal subgroup Y_2 such that $\mathfrak{g} \subseteq Y_2 \leq N_G(D)$ and $Y_2/\mathfrak{g} \cong \Sigma_3$, $Y_2 \cap C_G(D) = \mathfrak{g}$ and $N_G(D) = C_G(D) Y_2$. Let Y denote the unique normal subgroup of Y_2 of index 2 such that $\mathfrak{g} = C_8(t_1) \subseteq Y_2$. Then $Y/\mathfrak{g} = (N_G(D)/\mathfrak{g})'$ and $|Y/\mathfrak{g}| = 3$. Comparing this with

$$\text{Out}(\text{Spin}(8, K))' = (\text{Aut}(\text{Spin}(8, K))/\text{Inn}(\text{Spin}(8, K)))'$$

as described in (1.24) and using the fact that Σ_4 has exactly one conjugacy class of elements of order 3 and that the automorphism γ of the root system $\Delta(t_1)$ induces an element of order 3 in $\text{Out}(\text{Spin}(8, K))$, it follows that there exists an element $y \in Y - C_8(t_1)$ such that $y^3 \in D$ and such that γ induces an automorphism on $\mathfrak{g} = C_8(t_1) = \text{Spin}(8, K)$, that corresponds to a (possibly trivial) "diagonal automorphism" of $\text{Spin}(8, K)$ followed by the "graph automorphism" of $\text{Spin}(8, K)$ induced by the automorphism γ of the root system $\Delta(t_1)$. Clearly $y \in N_G(D) - C_G(D)$ and $y^3 \in D$ so that y is transitive on D^\ast. Thus $y^3 = 1$ and (i) holds. Moreover, it is clear that (iii) holds. Since $y: h_3(-1) h_4(-1) \to h_3(-1) h_4(-1) = t$, (ii) holds. Since $Z(L(a + b)) = \langle v \rangle$ and $a + b = a_1 + 2a_2 + a_3 + a_4^*$, (v) holds. Now $[y, \mathfrak{h}] \subseteq Y_2 \cap C_G(D) = C_8(t_1)$ so that $[\mathfrak{g}, \mathfrak{h}] \subseteq C_8(t_1) = \mathfrak{g}$. Also if $a \in \mathfrak{h}$, then $[\mathfrak{g}, a]$ corresponds to a diagonal automorphism which is also an inner automorphism since $C_8(t_1) = \mathfrak{g}$ corresponds to $\text{Inn}(C_8(t_1))$. Hence $[y, a] \in H$ for all $a \in \mathfrak{h}$ and (iv) holds, thereby completing the proof of this lemma.

From now on, let y denote an element of order 3

$$y = \text{denote an element of order } 3 \quad (2.20)$$

as in the above lemma.

From Corollary 2.8.2, we have

\textbf{Corollary 2.10.1.} \quad $N_G(H) = \bigcup_{i=0}^{2} (N_G(H) \cap C_G(t)) y^i$, where the union is disjoint.

For simplicity of notation, set

$$u = \omega_k. \quad (2.21)$$
Then

\[u^2 - t, \quad u : L(c + d) \leftrightarrow L(c - d), \]
\[[u, L(a + b)] = [u, L(a - b)] = \{1\}, \]
\[u \in N_G(H), \quad u : t_1 = h_1(-1) h_3(-1) \leftrightarrow h_1(-1) h_3(-1) h_4(-1) = t_1 t \]
\[u \text{ centralizes } v = h_1(-1) t \text{ and} \]
\[[u, \mathfrak{H}] = \{1\} = [u, L(b - c)] \]
\[(\text{since } [L(\alpha_1), L(\alpha_2)] = \{1\} \text{ and } \alpha_2 = b - c). \quad (2.22) \]

Set

\[z = u^v. \quad (2.23) \]

Then (2.22) and Lemma 2.10 yield

\[z^2 = t t_1, \quad z : L(a - b) \leftrightarrow L(c + d), \]
\[[z, L(a + b)] = [z, L(c - d)] = \{1\}, \]
\[z \in N_G(H), \quad z : t \leftrightarrow t_1, \]
\[z \text{ centralizes } v, \quad [z, \mathfrak{H}] \subseteq H \text{ and} \]
\[[z, L(b - c)] = \{1\}. \quad (2.24) \]

Note that

\[\text{if } s \in \Delta, \text{ then } H \cap L(s) = H_s. \quad (2.25) \]

Also \(\langle H_s, \omega_s \rangle \subseteq N_G(H) \cap L(s) \subseteq N_{L(s)}(H \cap L(s)) = N_{L(s)}(H_s) = \langle H_s, \omega_s \rangle, \) so that

\[\text{if } s \in \Delta, \text{ then } N_G(H) \cap L(s) = \langle H_s, \omega_s \rangle. \quad (2.26) \]

Since \([u, H_s] = \{1\} \) and \(y \in N_G(H) \cap N_G(L(b - c)) \) (where \(\alpha_2 = b - c \)), we conclude that \(y \) normalizes \(H_s \) so

\[[u, H_s] = [z, H_s] = \{1\}. \quad (2.27) \]

We have

\[N_G(H) \cap C_G(t) = N_{\mathfrak{g}}(H)^{\mathfrak{H}}, \quad (2.28) \]

and

\[u - \omega_1 \in N_{\mathfrak{g}}(H) - C_G(D). \quad (2.29) \]

Set

\[N_1 = N_{\mathfrak{g}}(H) \quad \text{and} \quad N_2 = N_{\mathfrak{g}}(H). \quad (2.30) \]

Then, since \(\mathfrak{g} \cong \text{Spin}(8, K) \) and \(\mathfrak{h} \cong \text{Spin}(9, K), \) we have

\[N_1/H \text{ is isomorphic to the Weyl group of a root system of type} \]
\((D_4) \) and \(|N_1/H| = 2^6 \cdot 3 \) (cf., [1, p. 257 (X)]), and \(N_2/H \) is isomorphic to the Weyl group of a root system of type \((B_4) \) and \(|N_2/H| = 2^7 \cdot 3 \) (cf., [1, p. 253 (X)]).

(2.31)

Also

\[N_1 \text{ is a normal subgroup of } N_2 \text{ of index 2 and } N_2 = \langle N_1, u \rangle. \]

(2.32)

Clearly Corollary 2.8.2 yields

\[D \triangleleft N_G(H), \]

(2.33)

whence

\[C_G(D) \cap N_G(H) = N_1 \mathfrak{U} \triangleleft N_G(H). \]

(2.34)

But \(\langle u, z \rangle \subseteq N_G(H) \cap N_G(N_1) \) and \(\langle u, z \rangle \) is transitive on \(D^e \), so that

\[N_G(H) = \langle N_2, \mathfrak{U}, u, z \rangle. \]

(2.35)

Since \(\mathfrak{U} \) also normalizes \(N_1 \), we have

\[N_1 \triangleleft N_G(H). \]

(2.36)

Lemma 2.11. \((zu)^8 \in \langle v \rangle \) and \(zu \) acts transitively on \(D^e \).

Proof. Clearly \(\langle z, u \rangle \subseteq N_G(H) \cap C_G(v) \cap N_G(D) \) and \(zu \) acts transitively on \(D^e \), so that \((zu)^8 \in C_G(D) \). Thus \(\langle z, u \rangle \) normalizes

\[C_\beta(v) = L(a + b)L(a - b)L(c + d)L(c - d), \]

where \(h_\beta = \langle h_\beta(z) \rangle \) and \(h_\beta(z)^8 \in L(a + b)L(a - b)L(c + d)L(c - d) = O_8(C_\beta(v)) \). Hence \(\langle z, u \rangle \) normalizes

\[O_8(C_\beta(v)) = L(a + b)L(a - b)L(c + d)L(c - d). \]

Then the argument on the first half of [13, p. 501] together with (2.22) and (2.24) yield \((zu)^8 \in C_G(O^8(C_\beta(v))) \). Then (2.17) and (2.27) imply that \((zu)^8 \in C_\beta(C_\beta(v)) \). But \(C_G(D, v) = C_\beta(v) \mathfrak{U}, C_\beta(v) \) is normal and of odd index in \(C_G(D, v), Z(C_\beta(v)) = \langle D, v \rangle \) and \(O(C_G(D, v)) = \{1\} \). A standard argument implies that \(C_G(C_\beta(v)) = \langle D, v \rangle \). Hence \((zu)^8 \in \langle D, v \rangle \). Since \(zu \) centralizes \(v \) and \(zu \) is transitive on \(D^e \), we have \((zu)^8 \in \langle v \rangle \) and we are done.

Set

\[N_3 = \langle H, z, u \rangle. \]

(2.37)

Since \(\langle u^3, z^3, v \rangle \subseteq H, (zu)^8 \in H, [u, \mathfrak{U}] = \{1\} \) and \([z, \mathfrak{U}] \subseteq H \), we have
Lemma 2.12. (i) $N_3/H \cong \Sigma_3$;
(ii) $C_G(t) \cap N_3 = H\langle u \rangle$;
(iii) $C_G(D) \cap N_3 = H$; and
(iv) \mathcal{U} normalizes N_3 and acts trivially on N_3/H.

Set
$$N = N_1N_3.$$ (2.38)

Then

Lemma 2.13. (i) $N \leqslant N_G(H) = N\mathcal{U}$ and $N \cap \mathcal{U} = \{1\}$;
(ii) $N_1 \cap N_3 = H$;
(iii) N_3/H is a split extension of N_1/H by N_3/H; and
(iv) $C_G(D) = N_1$ and $C_G(t) = N_2$.

Proof. Since $H \subseteq N_1 \cap N_3 = N_1 \cap C_G(D) \cap N_3 = N_1 \cap H = H$, we have (ii) and (iii). Also \mathcal{U} normalizes N, $N_G(H) = \langle N, \mathcal{U} \rangle$ and $N \cap \mathcal{U} = N \cap C_G(t) \cap \mathcal{U} = (N_1 \langle u \rangle) \cap \mathcal{U} \subseteq N \cap \mathcal{U} = \{1\}$ so that (i) holds. Clearly $C_G(D) = N_1C_G(D) = N_1H = N_1$ and $C_G(t) = N_1C_G_3(t) = N_1H\langle u \rangle = N_2$ so that (iv) also holds.

Set
$$\overline{N} = N/H.$$ (2.39)

Lemma 2.14. (i) $\overline{N}_1 = \langle \omega_1, \omega_2, \omega_3, \omega_{c+d} \rangle$, $\overline{N}_2 = \langle \omega_1, \omega_2, \omega_3, \bar{u} \rangle$ and $\overline{N} = \langle \omega_2, \omega_3, \bar{u}, \bar{x} \rangle$;

(ii) $\bar{u} : \omega_3 \leftrightarrow \omega_{c+d}$ and $\bar{x} : \omega_1 \leftrightarrow \omega_{c+d}$;

(iii) the elements of $\{\omega_1, \omega_2, \omega_3, \omega_{c+d}, \bar{u}, \bar{x}, \omega_1\omega_3, \omega_1\omega_{c+d}, \omega_2\omega_{c+d}, \omega_3\omega_{c+d}, \omega_1\omega_2\omega_{c+d}, \omega_1\omega_{c+d}, \omega_2\omega_{c+d} \}$ have order 2 in \overline{N}, the elements of $\{\omega_1\omega_2, \omega_2\omega_3, \omega_2\omega_{c+d}, \omega_3\omega_{c+d} \}$ have order 3 in \overline{N} and $\omega_2\omega_3$ has order 4 in \overline{N}.

(iv) \overline{N} is isomorphic to the Weyl group of a root system of type (F_4).

(v) $[\omega_3, \langle u, \bar{x} \rangle] = \{1\}$, $[\omega_3, \bar{x}] = 1$, $\bar{x}\omega_3 = \omega_3\bar{x}$ and $\bar{x}\omega_3 = \omega_3\bar{x}$.

Proof. Since $u : L(c - d) \leftrightarrow L(c + d)$ and $z : L(a - b) \leftrightarrow L(c + d)$, (2.26) yields (ii). Then (i) follows immediately. Applying (1.20) and (2.21), the orders of all elements in \overline{N}_2 are determined. Moreover, \bar{x} has order 2 and $\bar{x} \neq \bar{u}$ by (2.24). Thus $\bar{u}\bar{x}$ has order 3 by Lemma 2.11. Note that

y normalizes H and $N \leqslant N_G(H)$.

Also $\omega_2\bar{x} = \omega_2\bar{u} = (\omega_2\bar{u})^y = \omega_2H$ by (2.26) since y normalizes $L(x_2)$. Thus $\omega_2\bar{x}$ has order 2 and similarly $\omega_2\bar{x}$ has order 2. This
proves (iii). We have $|\bar{N}| = |\bar{N}_1| |\bar{N}_3| = 273^2$ (since $|\bar{N}_3| = 6$ and $|\bar{N}_1| = 2^3$ by (2.31)), $\bar{N} = \langle \bar{\omega}_3, \bar{\omega}_5, \bar{u}, \bar{z}\rangle$ and these involutions $\bar{\omega}_3, \bar{\omega}_5, \bar{u}, \bar{z}$ satisfy (iii). On the other hand, the Weyl group of a root system of type (F_4) also has order 273^2, is generated by 4 involutions satisfying relations [6, (2.2)] and (with these involutions) forms a Coxeter system in the sense of [1, Chapter 4, Definition 31]. Now (iv) is immediate.

We conclude this section with the lemma.

Lemma 2.15. There exists an element $w_0 \in N_1 - H$ such that

(i) $w_0^2 = 1$;

(ii) $Z(N) = Z(N_1) = Z(N_3) = \langle \bar{w}_0 \rangle$; and

(iii) $X(s)^{w_0} = X(-s)$ for all $s \in A$.

Proof. Applying (2.31) and [1, p. 257 (X) and p. 253 (X)], there exists an element $w_0 \in N_1 - H$ satisfying (i) and (iii) and such that $\langle \bar{w}_0 \rangle = Z(\bar{N}_1) = Z(\bar{N}_3)$. But the structure of \bar{N} forces $Z(\bar{N})$ to be in \bar{N}_1 and, since $\bar{N}_1 \vartriangleleft \bar{N}$, (ii) holds.

3. The Structure of $C_G(\nu)$

In this section, we determine the structure of $C_G(\nu)$.

Set

$$J = C_G(L(a + b)).$$

Clearly

$$\langle z, L(a - b) \times R \rangle \subseteq J.$$

Lemma 3.1. (i) $J \cong Sp(6, K)$ and $Z(J) = \langle \nu \rangle$;

(ii) $C_J(t) = L(a - b) \times R$; and

(iii) $J = \langle L(a - b), R, z \rangle$.

Proof. Since $\langle \nu \rangle = Z(L(a + b)) \subseteq Z(J)$, we have

$$C_J(t) = C_G(t, \nu) \cap C_G(L(a + b)) = L(a - b) \times R$$

by (2.14); thus (ii) holds. Let J_1 be any subgroup of J containing $\langle L(a - b), R, z \rangle$ and set $J_1 = J_1/\langle \nu \rangle$. Since $C_{J_1}(t) = C_J(t)$, we have $O(C_{J_1}(t)) = \{1\}$. Also $\langle z, u, D \rangle \subseteq J_1$ and $\langle z, u \rangle$ acts transitively on D^*. Now the argument used to prove Corollary 2.6.1 yields $O(J_1) = \{1\}$; whence $O(J_1) = \{1\}$. Since $t \not\sim vt$ in G, we have

$$C_{J_1}(t) = C_{J_1}(t, \nu) = L(a - b) \times \bar{R}$$
and \(\tilde{x} : i \to i_1 \neq i \). Then [13, Theorem] implies that \(\tilde{\mathcal{J}}_1 \cong \text{PSp}(6, K) \). Since \(\langle v \rangle \subseteq (L(a - b)R) \subseteq \mathcal{J}_1 \), we have \(\mathcal{J}_1 = \tilde{\mathcal{J}}_1 \). But \(\text{Sp}(6, K) \) is the unique covering group of \(\text{PSp}(6, K) \) so that \(\mathcal{J}_1 \cong \text{Sp}(6, K) \). Now (i) and (iii) are immediate.

From [14, (1A)], we have

\[\mathcal{J} \text{ has 3 conjugacy classes of involutions represented by } v, t, vt. \quad (3.3) \]

Clearly

\[\mathcal{H} \supseteq N_G(L(a + b)) \cap N_G(\mathcal{J}), \quad (3.4) \]

and

\[[L(a + b), \mathcal{J}] = \{1\}, \quad (3.5) \]

\[\mathcal{J} \cap L(a + b) = \langle v \rangle = Z(\mathcal{J}) = Z(L(a + b)) \]

and

\[L(a + b) \mathcal{J} = L(a + b) \ast \mathcal{J}. \]

Note also that

\[H_2 = \langle h_2(\kappa) \rangle \text{ is normalized by } \mathfrak{H} \text{ and } \]

\[h_2(\kappa)^2 = h_2(\kappa^2) \in L(a + b) L(a - b) R \subseteq L(a + b) \mathcal{J}. \quad (3.6) \]

Since \(\mathfrak{H} \) is of odd order and \(H_2 \) is cyclic of order \(q - 1 \), we have

\[[\mathfrak{H}, O_q(H_2)] = \{1\}. \quad (3.7) \]

Also

\[L(a + b) \mathcal{J} \mathfrak{H} = L(a + b) \mathcal{J} H_2. \quad (3.8) \]

Lemma 3.2. (i)

\[N_G(L(a + b)) = L(a + b) \mathcal{J} H_2 \mathfrak{H} \quad \text{and} \quad (L(a + b) \mathcal{J} H_2) \cap \mathfrak{H} = \{1\}; \]

(ii) \(L(a + b) \mathcal{J} \lhd N_G(L(a + b)) \);

(iii) \(O^2(N_G(L(a + b))) = L(a + b) \mathcal{J} H_2 \);

(iv) \(O^2(N_G(L(a + b))) = L(a + b) \mathcal{J} \mathfrak{H} \text{ is of index 2 in } N_G(L(a + b)); \)

(v) \(N_G(L(a + b)) \cap C_G(t) = C_G(v, t) = C_G(v) \mathfrak{H}; \) and

(vi) \(N_G(L(a + b)) \subseteq C_G(v). \)

Proof. Clearly \(\mathcal{J} \lhd N_G(L(a + b)) \) and \(v \not\sim t \not\sim vt \) in \(G \). Then, the Frattini argument and (3.3) yield \(N_G(L(a + b)) = \mathcal{J}(N_G(L(a + b)) \cap C_G(t)). \)

On the other hand, \(N_G(L(a + b)) \subseteq C_G(v) \) since \(\langle v \rangle \) char \(L(a + b) \), so that

\[N_G(L(a + b)) \cap C_G(t) \subseteq C_G(v) \cap C_G(t) \]

\[-L(a + b)L(a - b)R \mathfrak{H} H_2 \subseteq N_G(L(a + b)). \]
Thus (v) holds and \(N_c(L(a + b)) = L(a + b) \mathcal{J} H_2 \mathfrak{A} \). Moreover,

\[
(L(a + b) \mathcal{J} H_2) \cap \mathfrak{A} = (L(a + b) \mathcal{J} H_2) \cap C_c(t) \cap \mathfrak{A} = (L(a + b) C_c(t) H_2) \cap \mathfrak{A} \subseteq \mathfrak{H} \cap \mathfrak{A} = \{1\}
\]

so that (i), (ii) and (vi) hold. Also

\[
L(a + b) \mathcal{J} H_2 = L(a + b) \mathcal{J} O_2(H_2) \subseteq N_c(L(a + b)),
\]

\[
L(a + b) \mathcal{J} \mathfrak{A} \lhd N_c(L(a + b)) \text{ and } \vert N_c(L(a + b)) : L(a + b) \mathcal{J} \mathfrak{A} \vert = 2. \text{ On the other hand } \langle L(a + b), \mathcal{J}, \mathfrak{A} \rangle \subseteq O^2(N_c(L(a + b))) \text{ and } \langle L(a + b), O_2(H_2), \mathcal{J} \rangle \subseteq O^2(N_c(L(a + b)))
\]

since \(O_2(H_2) \) acts as a "diagonal outer automorphism" on \(L(a + b) \) even when \(q = 3 \). Thus (iii) and (iv) hold, and we are done.

Since \(C_c(v, t) = C_c(v, vt) \), (3.3) implies

\[
\text{if } g \text{ is an involution of } \mathcal{J} \text{ and } g \neq v, \text{ then } \]

\[
C_c(g) \cap C_c(v) = C_c(g) \cap N_c(L(a + b)). (3.9)
\]

Since \(L(a + b) \) has exactly one conjugacy class of elements \(x \) such that \(x^2 = v \) and similarly for \(\mathcal{J} \) by [14, (1A)], we have

All involutions of \(L(a + b) \times \mathcal{J} - \mathcal{J} \) are conjugate in \(L(a + b) \mathcal{J} \) and are of form \(\lambda = \lambda_1 \lambda_2 \) where \(\lambda_1 \in L(a + b) \), \(\lambda_2 \in \mathcal{J} \) and \(\lambda_1^2 = \lambda_2^2 = v \). (3.10)

Let

\[
\lambda = \lambda_1 \lambda_2 \quad \text{where} \quad \lambda_1 \in L(a + b), \quad \lambda_2 \in L(a + b) \times R \subseteq \mathcal{J} \cap \mathfrak{H},
\]

and

\[
\lambda_1^2 = \lambda_2^2 = v. (3.11)
\]

Lemma 3.3.

(i) \(v \not\sim t \not\sim \lambda \) in \(G \); and

(ii) \(\lambda \not\sim vt \) in \(C_c(v) \).

Proof. Let \(K \) denote a quadratic extension field of \(K \) and view \(\mathfrak{H} = \text{Spin}(9, K) \) as a subgroup of \(\overline{\mathfrak{H}} = \text{Spin}(9, \overline{K}) \) as in (1.21). Since \(q^2 \equiv 1 \pmod{4} \), there exists an element \(\xi \) in \(K^\times \) such that \(\xi^q = -1 \). Note that \([L(r), L(s)] = \{1\} \) and \(L(r) \subseteq C_{\overline{\mathfrak{H}}}(v) \) for all

\[
r, s \in \{a + b, a - b, c + d, c - d\} \quad \text{with} \quad r \neq s.
\]
Also \(\lambda_1 \sim \omega_{a+b} \) in \(L(a+b) \) so that we may assume \(\lambda_1 = \omega_{a+b} \). Similarly by [14, (1A)], we may assume that
\[\lambda_2 = \omega_{a+b} \cdot h_{a+b}(\xi) h_{a+b}(\xi) h_{c+d}(\xi) h_{c+d}(\xi) = m \in L(a+b)L(a-b)L(c+d)L(c-d) \subseteq C_\mathfrak{g}(v). \]
But \(m = h_1(-1) h_2(-1)t \) in \(L(a+b)L(a-b)L(c+d)L(c-d) \) so that \(\lambda \sim h_1(-1) h_2(-1)t \) and \(\lambda v \sim h_2(-1) h_2(-1) v = h_2(-1) \) in \(C_\mathfrak{g}(v) \). Since \(h_1(-1) h_2(-1)t \sim v \sim h_2(-1) \) in \(\mathfrak{g} \), it follows that \(\lambda \sim v \sim \lambda v \) in \(\mathfrak{g} \). Hence (i) holds. If \(\lambda \sim vt \) in \(C_c(v) \), then \(\lambda v \sim i \) in \(C_c(v) \). Since \(\lambda v \sim v \) in \(\mathfrak{g} \), (ii) also holds.

Lemma 3.4. \(C_c(v) = N_c(L(a+b)) \).

Proof. We already know that \(N_c(L(a+b)) \subseteq C_c(v) \) by Lemma 3.3. We shall now apply the clever argument used to prove [9, (3.3)].

First, we claim that no involution of \(N_c(L(a+b)) \) is conjugate in \(C_c(v) \) to an involution of \(\mathfrak{g} \). For, assume that \(x \in N_c(L(a-b)) \) is such that \(x^g = t \) for some \(g \in C_c(v) \). Since \(t \) is a central involution in \(N_c(L(a+b)) \) by Lemma 2.9 (using \(C_\mathfrak{g}(v) \subseteq N_c(L(a+b)) \)), the conjugacy class of \(t \) in \(N_c(L(a+b)) \) contains an odd number of involutions. Thus \(x \) centralizes some involution, say \(i \), with \(i \sim t \) in \(N_c(L(a+b)) \). Similarly \(x \) centralizes some involution \(j \) with \(j \sim vt \) in \(N_c(L(a+b)) \). Then \(i^g, j^g \in C_c(t) \cap C_c(v) = N_c(L(a+b)) \cap C_c(v) \). Also \(i \not\sim j \) in \(G \) so that \(\langle ij \rangle \) contains an involution \(k \). By Lemma 3.2(iv) and the fact that \(O^\mathfrak{g}(L(a+b), \mathfrak{g}) \subseteq L(a+b) \mathfrak{g} \), at least one of \(i^g, j^g, k^g \), say \(k^g \), lies in \(L(a+b) \mathfrak{g} \). Moreover, \(i, j \in \mathfrak{g} \) since \(t, vt \in \mathfrak{g} \cap N_c(L(a+b)) \) and hence \(h \in \mathfrak{g} \). Then Lemma 3.3 and (3.3) imply that \(h^g \in \mathfrak{g} \). But \(h^g \sim h \) in \(C_c(v) \) so that (3.3) implies that there exists an element \(g' \in \mathfrak{g} \) such that \(h^g \sim h \). But then \(gg' \in C_c(h) \cap C_c(v) \subseteq N_c(L(a+b)) \) so that \(g \in N_c(L(a+b)) \). Since \(t \in \mathfrak{g} \cap N_c(L(a+b)) \) while \(x \in N_c(L(a+b)) \) is not conjugate in \(\mathfrak{g} \), we have a contradiction. Similarly \(x \not\sim vt \) in \(C_c(v) \), and our claim is proved.

Now let \(c \in C_c(v) \). Since \(t \) and \((vt)^c \) are not conjugate in \(G \), \(\langle t(vt)^c \rangle \) contains an involution \(\tau \) such that \(t, (vt)^c \in C_c(\tau) \) and either \(\tau t \sim t \) or \(\tau t \sim vt \) in \(C_c(v) \) by [14, (21)]. Since \(\tau \in C_c(v, t) = N_c(L(a+b)) \cap C_c(t) \), the claim above forces \(\tau t \sim t \) in \(\mathfrak{g} \). Hence \(\tau \in \mathfrak{g} \) and \((vt)^c \in C_c(\tau, v) \subseteq N_c(L(a+b)) \). Since \(vt \in \mathfrak{g} \), the claim above forces \((vt)^c \) to lie in \(\mathfrak{g} \). Hence, as above, there is an element \(c' \in \mathfrak{g} \) such that \((vt)^c \sim vt \) and, as above, \(c \in N_c(L(a+b)) \). Then \(C_c(v) \subseteq N_c(L(a+b)) \) and the proof is complete.

4. The \((BN) \)-pair

In this section we construct a \((B, N)\)-pair of type \(F_4(K) \) and apply the proof of [3, Theorem C] to show that \(G \) has a subgroup \(G_1 \) isomorphic to \(F_4(K) \). A standard argument then forces \(G \) to satisfy condition (ii) of the theorem.
Let
\[\mathcal{P}_1 = \mathcal{X}(a + b) \mathcal{X}(a + c) \mathcal{X}(a + d) \mathcal{X}(b + c) \mathcal{X}(b + d) \mathcal{X}(c + d) \mathcal{X}(a - b) \]
\[\cdot \mathcal{X}(a - c) \mathcal{X}(a - d) \mathcal{X}(b - c) \mathcal{X}(b - d) \mathcal{X}(c - d), \]
(4.1)
\[\mathcal{P} = \mathcal{P}_1 \mathcal{X}(a) \mathcal{X}(b) \mathcal{X}(c) \mathcal{X}(d), \]
(4.2)
\[\mathcal{L} = \mathcal{X}(a + b) \mathcal{X}(a + c) \mathcal{X}(a + d) \mathcal{X}(a - c) \mathcal{X}(a - d) \mathcal{X}(b + c) \mathcal{X}(b - c) \]
\[\cdot \mathcal{X}(b + d) \mathcal{X}(b - d) \mathcal{X}(a) \mathcal{X}(b), \]
(4.3)
and
\[\mathcal{L}_1 = \mathcal{L} \cap \mathcal{P}. \]
(4.4)

Then we have
\[\mathcal{P}_1 \text{ is a Sylow } p\text{-subgroup of } \mathfrak{F} = C_{\mathfrak{G}}(t_1), \]
(4.5)
\[|\mathcal{P}_1| = q^{12} \quad \text{and} \quad N_{\mathfrak{G}}(\mathcal{P}_1) = \mathcal{P}_1 \mathcal{H}, \]
(4.6)
\[\mathcal{P} \text{ is a Sylow } p\text{-subgroup of } \mathfrak{G}, \quad |\mathcal{P}| = q^{16} \]
(4.6)
\[\text{and } N_{\mathfrak{G}}(\mathcal{P}) = \mathcal{P} \mathcal{H} \text{ and } \mathfrak{G} = \mathcal{P} \mathcal{N}_2 \mathcal{P}, \]
(4.6)
\[Z(\mathcal{P}_1) = Z(\mathcal{P}) = \mathcal{X}(a + b), \]
(4.7)
\[\mathcal{L} \text{ is a normal subgroup of } \mathcal{P} \text{ and } |\mathcal{L}| = q^{11}, \]
(4.8)
\[\mathcal{L}_1 = \mathcal{X}(a + b) \mathcal{X}(a + c) \mathcal{X}(a + d) \mathcal{X}(a - c) \mathcal{X}(a - d) \mathcal{X}(b + c) \]
\[\cdot \mathcal{X}(b - c) \mathcal{X}(b + d) \mathcal{X}(b - d), \]
(4.9)
and \(\mathcal{L}_1 \) is an elementary abelian normal subgroup of \(\mathcal{P}_1 \) with \(|\mathcal{L}_1| = q^8 \), and
\[\mathcal{H} \mathfrak{H} \text{ normalizes } \mathcal{P}, \mathcal{P}_1, \mathcal{L} \text{ and } \mathcal{L}_1. \]
(4.10)

Let
\[M = O(C_\mathfrak{G}(\mathcal{X}(a + b))). \]
(4.11)
Clearly
\[M \trianglelefteq N_\mathfrak{G}(\mathcal{X}(a + b)) \quad \text{and} \quad \mathcal{X}(a + b) \subseteq M, \]
(4.12)
and
\[\mathcal{J} \subseteq C_\mathfrak{G}(\mathcal{X}(a + b)) \text{ and } \mathcal{H} \mathfrak{H} \text{ normalizes } M. \]
(4.13)

Let
\[Q_1 \text{ and } Q_2 \text{ be Sylow 2-subgroups of } L(a - b) \text{ and } L(c - d) \]
respectively.
(4.14)

Then \(Q_1 \) and \(Q_2 \) are isomorphic generalized quaternion 2-groups, \(Z(Q_1) = \langle vt \rangle \) and \(Z(Q_2) = \langle h_3(-1) \rangle \). Set
\[Q_3 = Q_2^u. \]
(4.15)
Thus Q_3 is a Sylow 2-subgroup of $L(c + d)$, $Z(Q_3) = \langle h_3(-1)t \rangle$ and $u: Q_3 \leftrightarrow Q_3$. Also

\[
\langle Q_2, Q_3, u \rangle \text{ is a Sylow 2-subgroup of } R \text{ and } Z(\langle Q_2, Q_3, u \rangle) = \langle t \rangle.
\]

(4.16)

Set

\[
T := \langle Q_1, Q_2, Q_3, u \rangle.
\]

(4.17)

Then

\[
T = Q_1 \times \langle Q_2, Q_3, u \rangle \text{ is a Sylow 2-subgroup of both } L(a - b) \times R \text{ and } \mathcal{J},
\]

(4.18)
of both $L(a - b) \times R$ and \mathcal{J}, and

\[
Z(T) = Z(Q_1) \times Z(\langle Q_2, Q_3, u \rangle) = \langle v \rangle \times \langle t \rangle.
\]

Lemma 4.1. (i) $N_G(\mathfrak{X}(a + b)) \cap C_G(t) = N_G(\mathfrak{X}(a + b))\mathfrak{X}$ where $N_G(\mathfrak{X}(a + b)) = 2(L(a - b) \times R)H$ and $2 \cap ((L(a - b) \times R)H) = \{1\}$;

(ii) $\mathfrak{X} < N_G(\mathfrak{X}(a + b)) \cap C_G(t)$;

(iii) $C_G(\mathfrak{X}(a + b)) \cap C_G(t) = 2(L(a - b) \times R)$; and

(iv) T is a Sylow 2-subgroup of $C_G(\mathfrak{X}(a + b))$.

Proof. Since $Z(\mathcal{P}) = \mathfrak{X}(a + b)$, we have $\mathcal{P}H = N_G(\mathcal{P}) \subseteq N_G(\mathfrak{X}(a + b))$.

Thus $N_G(\mathfrak{X}(a + b))$ contains the Borel subgroup $\mathcal{P}H$ of \mathcal{S} and hence $N_G(\mathfrak{X}(a + b)) = \mathcal{P}H(\omega_1, \omega_3, u)\mathcal{P}$ by [12, Théorème 2]. Then, it readily follows that $N_G(\mathfrak{X}(a + b)) = 2(L(a - b) \times R)H$ and (i) holds. Also $\mathfrak{X} = O_{\mathfrak{X}}(N_G(\mathfrak{X}(a + b)))$ and $N_G(\mathfrak{X}(a + b)) \leq N_G(\mathfrak{X}(a + b)) \cap C_G(t)$ so that (ii) holds. Since $C_G(\mathfrak{X}(a + b)) = H_1 \times H_3 \times H_4 \subseteq L(a - b) \times R \subseteq \mathcal{J} \subseteq C_G(\mathfrak{X}(a + b))$, an easy calculation yields (iii). Finally, T is a Sylow 2-subgroup of $C_G(\mathfrak{X}(a + b)) \cap C_G(t)$, $Z(T) = \langle v, t \rangle$ and $c_{\mathcal{C}}(t) \cap Z(T) = \{t\}$, whence (iv) also holds.

Since $D = \langle t, t_d \rangle$ normalizes \mathfrak{X},

\[
D \subseteq H \cap R \quad \text{and} \quad \mathfrak{X} \cap ((L(a - b) \times R)H) = \{1\},
\]

it follows that

\[
N_G(\mathfrak{X}(a + b)) \cap C_G(D) = N_G(\mathfrak{X}(a + b)) = C_G(D)(L(a - b) \times C_G(D))H.
\]

Since $C_G(D) = \mathfrak{X}^1$ and $C_G(D) = L(c - d) \times L(c + d)$, we have:

Lemma 4.2. (i) $N_G(\mathfrak{X}(a + b)) \cap C_G(D) = N_G(\mathfrak{X}(a + b))\mathfrak{X}$ where

\[
N_G(\mathfrak{X}(a + b)) = \mathfrak{X}^1(L(a - b) \times L(c - d) \times L(c + d))H;
\]
(ii) \(\mathcal{A}_1 \triangleleft N_G(\mathfrak{X}(a + b)) \cap C_G(D) \); and
(iii) \(C_G(\mathfrak{X}(a + b)) \cap C_G(D) = \mathcal{A}_1(L(a - b) \times L(c - d) \times L(c + d)) \).

Next we prove:

Lemma 4.3. (i) \(C_G(\mathfrak{X}(a + b)) = M \mathcal{J} \) with \(M \cap \mathcal{J} = \{1\} \); (ii) \(M \mathcal{J} H \leq N_G(\mathfrak{X}(a + b)) = M \mathcal{J} H \mathfrak{U} \) and \((M \mathcal{J} H) \cap \mathfrak{U} = \{1\} \); (iii) \(C_M(v) = \mathfrak{X}(a + b) \) and \(N_G(\mathfrak{X}(a + b)) \cap C_G(v) = \mathfrak{X}(a + b) \mathcal{J} H \mathfrak{U} \); (iv) \(C_M(t) = 2 \); and (v) \(C_M(D) = 2_1 \).

Proof. Lemmas 3.2 and 3.4 imply that \(N_G(\mathfrak{X}(a + b)) \cap C_G(v) = \mathfrak{X}(a + b) \mathcal{J} H \mathfrak{U} \) with
\[
\mathfrak{X}(a + b) \mathcal{J} H \leq N_G(\mathfrak{X}(a + b)) \cap C_G(v) \quad \text{and} \quad (\mathfrak{X}(a + b) \mathcal{J} H) \cap \mathfrak{U} = \{1\}.
\]
Then \(C_G(\mathfrak{X}(a + b)) \cap C_G(v) = \mathfrak{X}(a + b) \mathcal{J} \) since \(C_H(\mathfrak{X}(a + b)) \subseteq \mathcal{J} \). Setting \(L = C_G(\mathfrak{X}(a + b)) \) and \(\mathcal{L} = L/M \), we have \(C_L(v) = C_L(\mathfrak{X}(a + b)) = \mathcal{J} \approx \mathcal{J} \approx \text{Sp}(6, K) \) (since \(\mathfrak{X}(a + b) \subseteq M \)). Also
\[
Z(\mathcal{J}) = \langle \bar{v} \rangle \quad \text{and} \quad T \cong T = \overline{Q}_1 \times \langle \overline{Q}_2, \overline{Q}_3, \bar{u} \rangle
\]
is a Sylow 2-subgroup of \(L \). But \(Z(Q_1) = \langle \bar{v}t \rangle \) and \(Z(\langle \overline{Q}_2, \overline{Q}_3, \bar{u} \rangle) = \langle t \rangle \), thus [2, Corollary 4.3] implies that \(\bar{v} \in Z(L) \). Thus
\[
C_G(\mathfrak{X}(a + b)) = M(C_G(\mathfrak{X}(a + b)) \cap C_G(v)) = M \mathcal{J}
\]
and
\[
N_G(\mathfrak{X}(a + b)) = M(N_G(\mathfrak{X}(a + b)) \cap C_G(v)).
\]
Since \(O(\mathcal{J}) = \{1\} \), we have \(M \cap \mathcal{J} = \{1\} \). Also \(C_G(\mathfrak{X}(a + b)) \cap C_G(v) = C_M(v) \mathcal{J} - \mathfrak{X}(a + b) \mathcal{J} \) and \(\mathfrak{X}(a + b) \subseteq C_M(v) \), so that \(C_M(v) = \mathfrak{X}(a + b) \).

Then
\[
(M \mathcal{J} H) \cap \mathfrak{U} = (M \mathcal{J} H) \cap C_G(v) \cap \mathfrak{U} = (C_M(v) \mathcal{J} H) \cap \mathfrak{U} = (\mathfrak{X}(a + b) \mathcal{J} H) \cap \mathfrak{U} = \{1\}
\]
by Lemma 3.2(i). We have proved (i), (ii) and (iii). Since \(v \) inverts \(2/\mathfrak{X}(a + b) \) and \(Z(L) = Z(\mathcal{J}) = \langle \bar{v} \rangle \), we have \(2_1 \subseteq 2 \subseteq M \). Also
\[
L(a - b) \times L(c - d) \times L(c + d) \subseteq L(a - b) \times R \subseteq \mathcal{J} \quad \text{and} \quad \mathcal{J} \cap M = \{1\};
\]
so that Lemma 4.1(iii) and Lemma 4.2(iii) imply (iv) and (v), and we are done.
We have
\[u: \mathfrak{X}(a + b) \leftrightarrow \mathfrak{X}(a - d), \]
\[u: \mathfrak{X}(b + d) \leftrightarrow \mathfrak{X}(b - d), \]
\[u: \mathfrak{X}(c + d) \leftrightarrow \mathfrak{X}(c - d), \]
and \(u \) normalizes \(\mathfrak{X}(a + b), \mathfrak{X}(a - b), \mathfrak{X}(a + c), \mathfrak{X}(a - c), \mathfrak{X}(b + c), \mathfrak{X}(b - c), \mathfrak{X}(a), \mathfrak{X}(b) \) and \(\mathfrak{X}(c) \).

Since \(z = u^y \) with \(y \) as in Lemma 2.10, we also have
\[x: \mathfrak{X}(a + c) \leftrightarrow \mathfrak{X}(a - c), \]
\[x: \mathfrak{X}(a - c) \leftrightarrow \mathfrak{X}(b + d), \]
\[x: \mathfrak{X}(a - b) \leftrightarrow \mathfrak{X}(c + d), \]
and \(z \) normalizes \(\mathfrak{X}(a + b), \mathfrak{X}(c - d), \mathfrak{X}(a + c), \mathfrak{X}(b - d), \mathfrak{X}(a + d) \) and \(\mathfrak{X}(b - c) \).

Thus
\[\langle u, z \rangle \text{ normalizes } \mathcal{P}_1 \text{ and } \mathcal{P}'_1. \]

We can now prove the following.

Lemma 4.4. (i) \(M = \mathcal{P}_1 \mathfrak{X}(a) \mathfrak{X}(b) \mathfrak{X}(a)^x \mathfrak{X}(b)^x \mathfrak{X}(a)^{zu} \mathfrak{X}(b)^{zu} \) and \(|M| = q^{15}; \)

(ii) \(C_M(t_1) = \mathcal{P}_1 \mathfrak{X}(a)^x \mathfrak{X}(b)^x \) and \(C_M(tt_1) = \mathcal{P}_1 \mathfrak{X}(a)^{zu} \mathfrak{X}(b)^{zu}; \) and

(iii) \(\mathcal{P}_1 \leq M. \)

Proof. Clearly \(D = \langle t, t_1 \rangle \) normalizes \(M \) and

\[\langle \ast \rangle \quad \mathcal{P}_1 \triangleleft C_M(t) = \mathcal{P}_1 \mathfrak{X}(a) \mathfrak{X}(b). \]

Also \(\langle z, u \rangle \subseteq J \subseteq C_G(\mathfrak{X}(a + b)) \) so that \(\langle z, u \rangle \) also normalizes \(M. \) Conjugating \(\langle \ast \rangle \) by \(z \) and \(zu \) yields (ii), \(\mathcal{P}_1 \triangleleft C_M(t_1) \) and \(\mathcal{P}_1 \triangleleft C_M(tt_1). \) Then a lemma of R. Brauer (cf., [13, top of p. 510]) yields (i) and (iii).

Since \(\langle z, u \rangle \) normalizes \(H \mathfrak{U} \) and \(H \mathfrak{U} \) normalizes \(\mathfrak{X}(s) \) for any \(s \in \Delta, \) we have

\[H \mathfrak{U} \text{ normalizes } \mathfrak{X}(r)^g \text{ for } r \in \{a, b, c, d\} \text{ and } g \in [s, su]. \]

Let
\[\mathcal{P}_2 = \mathfrak{X}(a - b) \mathfrak{X}(c + d) \mathfrak{X}(c - d) \mathfrak{X}(e) \mathfrak{X}(d)^x \mathfrak{X}(e)^x \mathfrak{X}(d)^{zu} \mathfrak{X}(e)^{zu} \mathfrak{X}(d)^{zu}. \]
Lemma 4.5. (i) P_2 is a Sylow p-subgroup of I normalized by H and $|P_2| = q^6$;

(ii) $C_{P_2}(t) = \langle a - b \rangle \langle c + d \rangle \langle c \rangle \langle d \rangle$,
 $C_{P_2}(t_1) = \langle a - b \rangle \langle c + d \rangle \langle c \rangle \langle c \rangle^u \langle d \rangle^u$,
 $C_{P_2}(t t_1) = \langle a - b \rangle \langle c + d \rangle \langle c \rangle \langle c \rangle^u \langle d \rangle^u$, and
 $C_{P_2}(D) = \langle a - b \rangle \langle c + d \rangle \langle c \rangle$.

Proof. First observe that $C_{G}(\langle a - b \rangle \langle c \rangle \langle d \rangle) \cap C_{P_2}(t) =$ \langle a - b \rangle \langle c \rangle \langle c \rangle \langle c \rangle \langle d \rangle$.
Then an argument similar to the proof of [13, Lemma 2.2] implies that θ is elementary abelian and is the normal 2-complement of

$$C_{G}(\langle a - b \rangle \langle c \rangle \langle d \rangle \langle c \rangle)$$

Since $C_{G}(\langle a - b \rangle) \cap C_{G}(t) = \langle a - b \rangle \langle c \rangle \langle d \rangle$ is a Sylow 2-subgroup of this group with $Z(T_1) = \langle v, t \rangle$. Thus t is strongly closed in $Z(T_1)$ and hence T_1 is a Sylow 2-subgroup of $C_{G}(\langle a - b \rangle)$. Then [2, Theorem 4.2] implies that $C_{G}(\langle a - b \rangle) = \langle v \rangle \times R$ where $X = O(C_{G}(\langle a - b \rangle))$. Clearly $C_{X}(t) = \langle a - b \rangle$ so t inverts $X/\langle a - b \rangle$.
As in the proof of [13, Lemma 2.4], we have $C_{X}(t_1) = \langle a - b \rangle \langle c \rangle \langle c \rangle \langle d \rangle$ and $C_{X}(t t_1) = \langle a - b \rangle \langle c \rangle \langle c \rangle \langle d \rangle$.
Again, by Brauer's lemma, we have

$$X = \langle a - b \rangle \langle c \rangle \langle c \rangle \langle d \rangle \langle c \rangle \langle d \rangle$$

Since $C_{G}(\langle a - b \rangle) = \langle v \rangle \times (XR)$, where $XR = RX$ and $X \cap R = \{1\}$, and since $\langle c \rangle \langle d \rangle \langle c \rangle \langle d \rangle \langle c \rangle \langle d \rangle$ is a Sylow p-subgroup of R, (i) follows. Since D normalizes R and X, (ii) follows also.

Set

$$U = M_{P_2}. \quad \quad \quad (4.24)$$

Lemma 4.6. (i) U is a Sylow p-subgroup of $C_G(\langle a + b \rangle)$ which is normalized by $H \Psi$ and $|U| = q^{24}$;

(ii) $C_U(A) = C_M(A) C_{P_2}(A)$ for all subgroups $A \subseteq H \Psi$;

(iii) $C_H(U) = \{1\}$.

Proof. We already know (i) and (ii). Since \(\mathcal{P} \subseteq U \) and \(C_H(\mathcal{P}) = \langle t \rangle \) (as can be seen in \(\mathcal{S} \)), we have \(C_H(U) \subseteq \langle t \rangle \). But \(t \) does not centralize \(U \), so that (iii) also holds.

Set
\[
B = UH.
\]
(4.25)

Clearly

\[U < B, \ U \text{ is a normal Sylow } p\text{-subgroup of } B \text{ and } H \text{ is a Hall } p'\text{-subgroup of } B. \]
(4.26)

Lemma 4.7. \(B \cap N = H < N. \)

Proof. Clearly \(H \subseteq B \cap N \) and \([U \cap N, H] \subseteq [U, H] \cap [N, H] \subseteq U \cap H = \{1\} \). Thus \(U \cap N \subseteq U \cap C_N(H) \subseteq U \cap \mathcal{S} \cap C_G(H) \) by Lemma 2.13. But \(C_G(H) = H \) and hence \(U \cap N \subseteq U \cap H = \{1\} \). Then \(B \cap N = (U \cap N)H = H \), and we are done.

Let \(w_0 \) be as in Lemma 2.15
\(\) (4.27)

and set
\[V = U^{w_0}. \]
(4.28)

Since \(w_0^2 \in H \), we have
\[w_0 : U \leftrightarrow V. \]
(4.29)

Lemma 4.8. \(U \cap V = \{1\}. \)

Proof. Set \(X = U \cap V \) and observe that \(H \) normalizes \(X \). Also \(w_0 \in N_1 = C_N(D) \) so that \(C_X(t) = (C_U(t)) \cap (C_V(t))^{w_0} = \mathcal{P} \cap \mathcal{P}^{w_0} = \{1\} \) in \(\mathcal{S} \) by Lemma 2.15(iii) and [11, Corollary 3 of Lemma 18]. Since \(C_U(t_1) = \mathcal{P}^z \) and \([w_0, z] \in H \), we have \(C_X(t_1) = \mathcal{P}^z \cap \mathcal{P}^{w_0} = (\mathcal{P} \cap \mathcal{P}^{w_0})^z = \{1\} \) and similarly \(C_X(t_t) = \{1\} \). But \(X = \langle C_X(\tau) \mid \tau \in D^{\infty} \rangle \) and the lemma follows.

Set
\[\mathcal{U} = \{ \mathfrak{X}(s), \mathfrak{X}(r)^x \mid s \in \Delta^+, r \in \{a, b, c, d\} \text{ and } x \in \{z, zu\} \} \]
(4.30)

and
\[\mathcal{V}^c = \{ \mathfrak{X}(s), \mathfrak{X}(r)^z \mid s \in \Delta^c, r \in \{-a, -b, -c, -d\} \text{ and } x \in \{z, zu\} \}. \]
(4.31)

Clearly
\[U = \langle \mathcal{U} \rangle \text{ and } V = \langle \mathcal{V}^c \rangle. \]
(4.32)

Set
\[\mathcal{Y} = \mathcal{U} \cup \mathcal{V}^c \text{ and } \mathcal{P} = \{\omega_3, \omega_2, u, z\}. \]
(4.33)
Lemma 4.9. (i) \(N \), acting by conjugation, permutes the elements of \(\mathcal{Y} \) and \(H \) fixes each element of \(\mathcal{Y} \). Thus we may view \(\tilde{N} = N/H \) as permuting the elements of \(\mathcal{Y} \);

(ii) \(\omega_4 : \mathcal{X}(b - c) \rightarrow \mathcal{X}(c - b) \), \(\omega_3 : \mathcal{X}(c - d) \rightarrow \mathcal{X}(d - c) \),

\[u : \mathcal{X}(d) \rightarrow \mathcal{X}(-d) \]

and \(z : \mathcal{X}(d)^{zu} \rightarrow \mathcal{X}(-d)^{zu} \);

(iii) \(\omega_2 , \omega_3 , u , z \) each send exactly one element of \(\mathcal{Y} \) into an element of \(\mathcal{Y} \) (these are given in (ii)).

Proof. Clearly \(H \) fixes each element of \(\mathcal{Y} \) so that, by Lemma 2.14(i), it suffices to examine the action of the elements of \(\mathcal{S} \) on \(\mathcal{Y} \). By (1.9), we know that \(\omega_2 , \omega_3 \) and \(u = \omega_4 \) permute the elements of \(\{ \mathcal{X}(s) \mid s \in \Delta \} \) with the action given by (1.9). Since \([\omega_3 , u] \) and \([\omega_2 , z] \) lie in \(H \) (Lemma 2.14(iii)), we have \(\mathcal{X}(r)^{zuo} = (\mathcal{X}(r)^{uo})^z \) for all \(r \in \{a, b, c, d\} \) and \(x \in \{z, uz\} \) and the statements made about \(\omega_3 \) hold. Similarly using Lemma 2.14(v), one checks that the statements about \(\omega_2 , u \) and \(z \) also hold and we are done.

Since \(U = O_2(B) \) and \(U^w \cap V \neq \{1\} = U \cap V \) for \(\omega \in \mathcal{S} \), we have

Corollary 4.9.1. \(\omega B \omega \neq B \) for all \(\omega \in \mathcal{S} \).

Lemma 4.10. (i) \(\mathcal{X}(b - c)^{uo} \subseteq B \cup B\omega_2 \mathcal{X}(b - c) \);

(ii) \(\mathcal{X}(c - d)^{uo} \subseteq B \cup B\omega_2 \mathcal{X}(c - d) \);

(iii) \(\mathcal{X}(d)^{u} \subseteq B \cup Bu \mathcal{X}(d) \); and

(iv) \(\mathcal{X}(d)^{zu} \subseteq B \cup Bu \mathcal{X}(d)^{zu} \).

Proof. Since \(L(b - c) = \mathcal{X}(b - c) H_a \cup \mathcal{X}(b - c) H_a \omega_2 \mathcal{X}(b - c) \), (i) holds. A similar argument using \(L(c - d) \) and \(L(d) \) yields (ii) and (iii). Finally \(\mathcal{X}(d)^{zu} = \mathcal{X}(-d)^{zu} \) by Lemma 4.9(ii) and

\[\mathcal{X}(-d) \subseteq L(d) = \mathcal{X}(d) H_a \cup \mathcal{X}(d) H_a u \mathcal{X}(d). \]

Thus

\[\mathcal{X}(d)^{zu} = \mathcal{X}(-d)^{zu} \subseteq \mathcal{X}(d)^{tu} H_d^u \cup \mathcal{X}(d)^{zu} H_d^u u \mathcal{X}(d)^{zu}. \]

Since \(u^{zu} \in uzu \mathcal{H} II \sim z \mathcal{H} II \sim H_x \), (iv) follows.

Lemma 4.11. If \(\omega \in N \) and \(\omega \in \mathcal{S} \), then \(\omega B \omega \subseteq B \omega B \cup B \omega \omega B \).

Proof. Since \(U = M\mathcal{P}_2 \) with \(M \cap \mathcal{P}_2 = \{1\} \), every element of \(U \) has a unique expression as a product of an element of \(M \) and an element of \(\mathcal{P}_2 \). But Lemma 4.4(i) and Lemma 4.5(i) imply that every element of \(U = M\mathcal{P}_2 \) has a unique expression as a product of elements from each subgroup of \(\mathcal{U} \) in the order prescribed by: \(U = M\mathcal{P}_2 \), (4.23) and Lemma 4.4(i). Calling this unique expression the “standard form” of an element of \(U \), the analog

Set

$$G_1 = BNB.$$ (4.34)

We conclude the proof of the theorem with:

Lemma 4.12. (i) G_1 is a normal simple subgroup of G and $G_1 \cong F_4(K)$;

(ii) $G = G_1 \mathcal{H}$ where $G_1 \cap \mathcal{H} = \{1\}$; and

(iii) G satisfies condition (ii) of the theorem.

Proof. Applying [1, Théorème 1 of Chapter IV Section 2], Lemmas 2.14, 4.7, 4.11 and Corollary 4.9.1, we conclude that $\langle B, N \rangle = BNB = G_1$ and that (B, N) is a Tits system for G. We claim that $F(B) = U$ (the Fitting subgroup of B). For, $U = O_p(B)$ so that $U \subseteq F(B)$. If $U \neq F(B)$, then $F(B) = U \times X$ where $\{1\} \neq X$ is a normal p'-subgroup of B. Since H is a Hall p'-subgroup of B, $X \subseteq C_H(U) = \{1\}$ by Lemma 4.6(iii) which is a contradiction; hence $F(B) = U$. Next note that $J' = J$, $J' = J$, $J = P^pN^p \subseteq G_1$ and $J' = \langle C_p(t), z \rangle \subseteq G_1$. Thus $\langle J, J' \rangle \subseteq G_1'$. But $G_1 \subseteq \langle J, z \rangle$ and hence $G_1 = G_1' = \langle J, J' \rangle$. Since $J = \langle \varphi_h | h \in J \rangle$ and $J = \langle \varphi_j | j \in J \rangle$, we have $G_1 = \langle U^g | g \in G_1 \rangle$. Also $\bigcap_{h \in J} H^h = \langle t \rangle$ and $t^x \neq t$, so that $\bigcap_{h \in G_1} H^h = \{1\}$. Setting $Z = \bigcap_{h \in G_1} B^h$, we have $O_p(Z) \triangleleft G_1$ and $O_p(Z) \subseteq U$ so that $O_p(Z) \subseteq \bigcap_{h \in G_1} U^h = \{1\}$ by Lemma 4.8. Thus Z is a p'-group. Then $Z \subseteq H$; whence $Z \subseteq \bigcap_{h \in G_1} H^h = \{1\}$ and $Z = \{1\}$. Applying [1, Théorème 5 of Chapter IV, Section 7], we conclude that G_1 is simple. Moreover, setting $X = \bigcap_{x \in H} B^x$, we have $H \subseteq X$ and $O_p(X) = \{1\}$ by Lemma 4.8. This forces $X = H = R \cap N$, so that (R, N) is saturated. Observing that we are in case (a) of [3, (11E)] by Lemma 4.9(iii), the proof of [3, Theorem C] implies that $G_1 \cong F_4(K)$.

On the other hand, \mathcal{H} normalizes B and N and hence \mathcal{H} normalizes G_1. Also

$$G_1 \cap \mathcal{H} \subseteq N_{G_1}(U) \cap \mathcal{H} = B \cap \mathcal{H} = B \cap C_G(t) \cap \mathcal{H} = (C_G(t)H) \cap \mathcal{H} \cap \mathcal{H} = \{1\},$$

so that $G_1 \cap \mathcal{H} = \{1\}$. Since $\langle J, J', \mathcal{H} \rangle \subseteq G_1 \mathcal{H}$, we have $\langle C_G(t), C_G(v) \rangle \subseteq G_1 \mathcal{H}$ by Lemmas 2.3(ii), 3.2(i) and 3.4. Also $G_1 \cong F_4(K)$ so that G_1 and hence $G_1 \mathcal{H}$ has two conjugacy classes of involution which must be represented by t and v. By Lemma 2.8, if S is a Sylow 2-subgroup of J, then S is a

1*Note added in proof:* Alternatively, (i) easily follows from the main result of J. Tits, Buildings and (B, N)-pairs of spherical type, unpublished.
Sylow 2-subgroup of G and $N_G(S) \subseteq C_G(t) \subseteq G_t$. Since G has two conjugacy classes of involutions, [4, Theorem 9.2.1] implies that $G_t\mathcal{U}$ contains the set, $\mathcal{J}(G)$, of all involutions of G. But then $\langle \mathcal{J}(G) \rangle \subseteq G_1$, whence $G_1 = \langle \mathcal{J}(G) \rangle$ since G_1 is simple. This implies that $G_1 \leq G$ and $G = G_1 C_G(t) = G_1 \mathcal{J} \mathcal{U} = G_t \mathcal{U}$ by the Frattini argument and hence both (i) and (ii) hold. Finally $|G/G_1| = |\mathcal{U}| = \rho$ and $O(G) = \{1\}$ by Corollary 2.6.1, so that the results of [11, Section 10] force G to satisfy condition (ii) of the theorem.

This concludes the proof of the theorem.

REFERENCES

7. M. E. Harris, A characterization of odd order extensions of the finite simple groups $PSp(4, q), G_2(q), D_{4s}(q)$, Nagoya Math. J. 45 (1972), 79-96.