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Absiract. Starting from a real-valued Markov chain X, X, ..., X;; with stationary transitior
probabilities, a random element {Y (t); t & [0, 1 ]} of the function space D} 0, 1} is coustructed
by letting Y (k/n) = Xg, k= 0, 1....,n, and assuming Y (f) constant in between. Simple tightness
criteria for sequences {Y(); t € [0, 1]},1 of such random elements in D{0, 1] are then given
in tezms of the one-step transition probabilities of the underlyinz Markov chains. Applications
are made to Galton—Watsor: branching processes.
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1. Introduction and summary

Let {X,, 0s X;1.1> Xp1.25 -o-s X, n}, b€ @ sequence of real-valued Markov
chains with stationary transition probab:lities p™(a, +); that is, for
every Borel set E, the relation

PlX, 1  €EEIX, 1 Xy g, s X 1 =X, 4 ED (1.1)

is satisfied with probability 1. With each of these Markov chains we
associate a continuous-time process Y, (¢) defined by

X, for kjn <t < (k+1)/n,
Y, ()= (1.2
X,p foret=1.

nn
Then {Y,(#); ¢t € [0, 11} can be considered as a random element of the

space D[O0, 1] consisting of all functions on [0, I] with no discontinuities
of the second kind. With the Skorokhod topology (see [1, p. 1 111), this
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space becomes a complete separaidle metric space. In this paper we will
study D -convergence of the sequence {Y,(¢); ¢ € [0, 1]],,; that is, weak
convergence of the corresponding sequence of prebability measures on
D[o, 11.

Assume that {Y,(¢+); ¢t € [0, 1]}, is D-convergent with limit
{Y(t); t € [0,1]} and let i be a functional on D! 0, 1] which is con-
tinuous with respect to the Skorokhod topology. Then we have (see [ 1,
p. 30])

h(Y,) ™ h(Y) as n=oe, (1.3)

This shows that @ -convergence can be a useful ‘ool when we want to
study properties of the provesses {¥,(¢); t € [0, 1]} and {Y(); t € [0, 1]}
that can not be expressed in terms of their finite-l'imensional distribu-
tions, If the distribution of A(Y) is known, (1.3) gives an approximate
distribution of h(Y,) for large n € V. On the other hand, if the distribu-
tion of A(¥) is unknown, we can sometimes choose the approximating
processes {¥,(1); ¢ € [0, 1]} so simple that (1.3) yields some informa-
tion about the distribution of A(Y). The last method is particularly im-
portant when simulation techniques are employed.

By a famous theorem due to Prokhorov (see [ 1, p. 37]), a sequence
{Y,}, of random elzments in D[0, 1] is conditionally compact if and
only if it is tight. This suggests a useful methcd to establish @ -conver-
gence. First we show that the finite-dimensior.al distributions converge
and then we prove that {Y,}, is tight (see [1, p. 124]). From classical
probability thecry we have a rich supply of tools for determizning con-
vergence of finite-dimensional distributions. Therefore, we will in this
paper confine our interest to tightness criteria.

@ -convergence in connection with Markov processes, in particular
diffusion processes, has been treated by Skorokhod, Gikhman, Borovkov
and others. Since the infinitesimai approach to a diffusion process is
the most convenient one, their conditions for @ -convergence usually
have been based on the asymptotic behaviour of the two first moments
of the increments within a short time-interval. Here we will mainly
emphasize ‘“‘continuity propezrties” of the transition probabilities
p™(a,) considered as functions of a. It has also been our aim to give
our tightness criteria a simple form. Therefore, they have, to the greatest
possible extent, been based on properties of the one-dimensional projec-
tions of our processes and the one-step transition protabiiitics of cur
Markov chains.
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The paun for this paper is us follows. In Section 2 we start by show-
ing how the general tightnes: conditions in [ 1] can be simplified, when
the processes {Y,(¢); t € [Q, 1]} are constructed from Markov chains us
in (1,2). At the end of the same section we make our first attempt to
relute the tightness of the sequence {Y, }, to the properties of the pro-
jections Y, (t). The main results here are generalizations of correspond-
ing results in [14].

Even if the {Y,(#); € [0, 1]} are constructed from Murkov chains,
all limit processes need not be Markov processes. In Section 3 we will
give sufficient conditions for this to occur. These conditions will take
a particularly simple form if the {Y,(¢); t € {0, 1]} are constructed
from stochastically monotone Markov chains; that is, Markov chains
such that the transition probabilities p{a, {x; x < y}) are non-increasing
in a for each fixed y.

In Section 4 we will continue to study the relations between the
properties of the projections Y, (¢) and the tigh*ness of the sequence
{Y,1,. All Markov chains considered in that section are stochastically
monotone,

Section 5 is devoted to an application of the theory in earlier sections.
We will study D -convergence of a sequence of normalized critical
Galton—Watson processes. In fact, we will be able to show that D -con-
vergence in this case is equivalent to convergence of the finite-dimensio-
nal distributions, provided we make an exception for degenerate limits,

2. Conditional compactness of a sequence of Marxov chains

From now on, {X,, ¢, X, ;, ..., X, n }, will always denote a sequence
of Markov chains with stationary transition probabilities. If nothing else
is stated, we will assume that P[ X, , =0] = 1. The one-step transition
probabilities of the n'™ Markov chain are denoted by p(a, *). Transi:
tion probabilities corresponding to several steps are denoted by
g™ (a, ), where n A is the number of steps and A is assumed to be
chosen from the set {j/n: j=0, 1, 2, ..., n}. Thus, ior every Borel set E,
the relation

P[Xn,k+n A€ E| Xn,k] = q(An)(Xn,k" E)

is fulfilled with probability 1.
The continuous-time process {Y,(#); ¢ € {0, 1]] defined by (1.2) will
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be called the process or the “random Markov line” associated with

{ Xy 00 Xn,1 oo X,,,,,}. When {Y,(¢); t € [0, 1]}, considered as a random
element of D[0, 1], converges weakly to the random elemeni {Y(7);
t€[0,1]1}of D[O, 1], we will write

Y, 2y as n-»o, (2.2)

All our theorems will be stated for Markov chains with the real line as
common state space. But there should be no difficulty to give corre-
sponding results when the state space is the half-line [0,%°) or a compact
interval.

We are now ready to give the fundamental theorem on conditional
compactness of a sequence of random Markov lines.

Theorem 2.1. Lez {X,, o, X,, b . Xn,nln be a sequence of Markov chains
with transition probabzlztzes q¥ €a E) satisfying (2.1), and let {Y ,(t):
t €[0,11}, be the associated sequence of continuous-time processes.
Assume that
(i) Plsupy< <y 1 Y,(1)1 > A] > 0 as N\ > o, uniformly in n € N;
(i) for every compact set C and every € > O there exists & = §(C,€) > (
such that

qM(a,(@—¢,a+e)¥)< e

forallne N.aeCand A <.
Then the sequence {Y,(t): t € [0,1]}, of randon: ~lements in D[0,1] is
tight.

Proof. We shall show that the conditions for tightr.ess given in [1,
Theorem 15.2] are satisfied. But this can be donr. by an almost verbatim
repetition of the arguments in {14, p. 182]. Further details are therefore
omitted.

Let p™(a,a+ dx) denote the probability measure which to each
Borel set E assigns the number p™(a, E,), where £, ={a+x;x €E}.
Intuitively, p{a,a+dx) corresponds to the conditional distribution of
X, k Xp k-1 &iven X, ;. _; =a. Although the transition probabilities

S”‘ {(a, £) always can be expressed directly in terms of the one-step
transition probabilities, it is in many cases easier to calculate the con-
volutions of the measures p(")(a,a+dx). Therefore, we shall state and



§ 2. Conditioral compaciness of a sequence cf Markov chains 339

prove two iheorems where the tightness conditions are given in terms cf
these convolutions. But first we consider the case when X,  is the k't
pertial sur: of a sequence of independent equaily distributed random
variables. Then the measures u{”(dx) = u”(dx), defined as in Theorem
2.2 below, can be taken independent of a € R, and by a theorem due to
Prokhorov (see [ 14, p. 197]), the sequence (Y, },cn in D[O, 1] is tight if
and only if { ()" *},cy it tight. The following theorem generalizes this
fact.

Theorem 2.2. Let { X, o, Xy, 1, X}y 25 --s X u}n b2 a sequence of Markov
chains with transition probabilities p‘”) (2,E), and denote the measure
p™(a,a+dx) by p(dx). Assume that
(1) {Y" " hienoer i tight.

Then the random elements {Y,(t): t € [0, 1]} associated with the Markov

chains form a tight sequence in D[0,1].

Proof. Let @™ be the characteristic function of u{™. The family

{()"* }oen oer is tight if and only if {(¢{®)" YN ser IS equicon-

tinuous at zero. Thus, for every € > 0, there exists a & = 6(e) > 0 such that
P —11<e forall t€[-5,8],a€ R, neN. (2.3)

Using the inequalities log (1 +x) < x and e* < 1+ 2x, valid for all x in
some neighbourhood of zero, we ~onclude that

W‘(z")(t)l >1-— 2¢/n forall te€[-6,6],a€eR and neN. (2.4)

Similarly, for all t € [—8,6}, a € R and n € N, there exists an inieger
j€{0,1,2,..,nr}such that

arg ¢"(t) € [2jm/n - 2¢/n, 2jm[n + 2e[n] . (2.5)

But each w(")(t) is continuous, and arg ‘p‘")(O) 0. Thus we must choose
j=0in (2.5), and it follows that

|q9,(,")(t)—ll< de/n forali i<£[-6,8], aeR, neN.

(Some of the arguments above might fail if € is large but we need only
consider sufficiently small €.)
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If Y§” denotes the characteristic function of X, ,, we can easily show
by induction that

LWE(e) =11 < dek/n  forall r€([-8,8].

Hence, by a well-known inequality for characteristic functions (see [1J,
p. 651]), we get

]
PUX 1> 2671 1< 670 [11- 9P ()1dr< 8ekin.  (2.6)
-5

In order to show that condition (i) in Theorem 2.1 is satisfied we
need the Yollowing Kolmogorov type inequality.

Propositicn 2.3. Let {2y, Z,, Z,, ..., Z,} be a homogeneous Markov
chain such that, for some € >0, m € Nand Ay > 0,

Plsup{IZ;—Z;): 0 (j-DIn<tm}> Ny | Z;]<e€ as
Assume that we can choose | 2 \q so large that

sup {P1Z;1> N1 j= 1,2,...,n}t<¢€/2m .
Then we have

Plsup{iZl. j=1,2, wohi}> 201 < 2
Jorall X\ 2 \,.
Proof. We rieed only consider the case n > 2m. Let 7 be the hitting-time
for the set (2\;,0) U (—o0,--2X) and put 7 = n+1 if sup{lZ,-I: ji=1,2,....n}
< 20\,. Since n > 2m, we can choose integers #; such that (i—1)/2m <

mm<il2mfori=1,2,3, ..., 2m—1 and n,,,/n = 1. Then we get

Plr<n,supllZ,~Z|: 0L (j-1)in< 1/m}< N 1<

2m
<UPLZ, 1> N]<e. (2.7)

i=1

On the other hand,



§ 2. Conditional compactness of a sequ-nce of Markov chains 341

Pl < n,sup{lZ;—Z, 11 0< (j—7)/n<1/m} >Ny =

13
=.-§ Plr =i, sup{lZ;—Z;): 0K (j=i)/n < I/m}> Ny . (2.8)

By conditioning with B (Z,, Z,, ..., Z;) and using the Markov property
we get

Plr<n,sup{iZ;-Z,1: 0< (j-7)/In < l/m}> Xyl =

/]

=§ E{Plr=isupliZ,~ Z): 0 (j-DIn< Um}> Ny | B(Z,y,2,.....2))]}
n

21’2 E{/n) Plsup(iZ—Z;1: 0< (j—DIn < 1m}> Ny | Z,]}

<e;§ Plr=il<e. (2.9)
Hence, by (2.7) and (2.9),
Plsup{IZ;l: j=1,2,...,n}> 2\] < Pl7 < n]
=Plr<n,sup{lZ;—-Z 1: 0L (j—1)/n< I/m} <]
+Plr<n,sup{|Z;-Z,1: 0< (j-1)/n< 1/m}>N]1< 2e,
(2.10)

for ail A 2> A, and this compl~tes the proof of the proposition.

We now return to the proof of Thecrem 2.2. By the same argu ments
as those preceding Proposition 2.3, we can prove that

|Y{P(1) — 11 < dek/n forall 1£1< 8,

where ¢{” now denotes the characteristic function of X,, , — X, ¢ and
the distribution of X,, , is arbitrary. Starting from the inequality
lo(t+h) — ()| < v Zloh)—1], valid for all characteristic functions
(1), we can easily prove that

lo(O) =1 < k2T V=11, k=1,2,3,... 2.11)



342 A. Grimvall, On transition from Markov chain io continuous time process

Applying (2.11) to the characteristic function 1,(/},"), we get
WP -1<US '+ 1) j /2 dek/n  forall i€ [—j,jl, (2.12)
and from (2.12) we obtain

i
Pl X, e~ Xnol > 21 <771 [IWHO - 11de S 2418711 +1)VBek/n
-

forall jEN. (2.13)

Since the distribution of X, o is arbitrary, (2.13) is equivalent to

(n) (n) ) . , <
sup [ [ p®™(a,dx))p®(xy, dag) o p Py, dip) <
IXp—al>2/f

<2i([6~ M1+ 1)\/8ek/n . (2.14)

By Kolmogcrov’s inequality for Markov chains (see [15, p. 157]), we
can easily show that, for every j €N,

sup f : pP(a, dx ) p™ix,,dx,) ... P (x_, dxg) <

a€R gyp {|xi—a|:. (;SiSk}>4/i
< 4j (187 +1)VEekin , (2.13)

for all k/n sufficiently small. For our original Markov chains (2.15)
means that

Plsup (| Xy pai =Xyl 0L i< k}>4/j 1 X, 1 <
<4j([6"11+1)\/8ek/n as. (2.16)
That condition (i) of Theorem 2.1 is {ulfillad now follows from (2.6),
(2.16) and Proposition 2.1, while tii) follows directly from (2.14). Thus
{Y,}, is tight.

Condition (i) of Theorem 2.2 is in general too strong to be useful in
applications. Therefore, we shall prove two simple generalizations of that
theorem. The first one, Theorem 2.2', is natural to use when we are deal-
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ing with sequences of normalized branching Markov processes. The -
second one, Theorem 2.4, can be applied when we are studying conver-
gence to a Brownian motion with reflecting barrier and similar processes.

Thecrem 2..". Assume that
(1) Plsup{lY,(»): 0< ¢ <1} > Al > 0as A = o, uniformly inn €NN;
(ii) {(u‘(,") ) *}aEC,neN is tight for every compact C.

Then the sequence {Y,}, is tight in D[0, 1].

Proof. Consider a Markov chain with one-step transition probabilities

p™iA,*) for a> A\,
4™ (a,) = pf")(a,-) for lal <\,
p(=\,") for a<—N\,

and let Y, (¢) be the correspending random Markov line. By Theorem 2.2,
{Y,}, is tight in D[0, 1. Observing that

Plwg(Y,) > el < Plws(Y,) > el + Plsup{|Y,(0): 0< < 1F> A,

where w'is the continuity modulus defined in [1, p. 110], and using | .,
Theorem 15.2], we can easily complete the proof.

Application. For sequences of normalized Galton—Watson processes the
conditions of Theorem 2.2’ become very simple. Let, for each n€ N,
{Zj(")}. denote the variables of a Galton—Watson process, where the
number of off-spring of one individual is determined by the probabilities
{p{"},. Define a sequence of continuous-time processes {Y, }, by

Y, ()= Z{ (b, for t€0,11; Z{=b,,

where b, > 0 are normalizing constants. If v, is a probability measure
that gives mass p}c") to the point (k—1)/b,, condition (ii) of Theorem 2.2
is satisfied if

(ii") {(v,)"""" 1, is tight.
Condition (i) can easily be checked if we observe that {V,(¢); ¢t € [0, 1]}
is a supermartingale (submartingale).

Sometimes it is convenient to consider the subspace C[0, 1] of DO, 1}.
This subspace consists of all continuous “unctions on [0, 1] and the
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Skorokhod topology relativized to C[ 0,1} is equivalent to the topology
of uniform convergence. Here we will only give an example which indi-
cates how sufficient conditions for@-convergence in C{0, 1] can be ob-
tained. As before, { X, g, Xpp.1s X 20 oo Xy 1y denotes a sequence of
Markov chains with transition probabilities p(a,+) and u(dx) =
p™(a,a+dx).

Theorem 2.4. Assume that
(i) there exists a point ay such thae, for every 8-neighbourhood Sy of
aq. the family (8" Yoe s nen 1 tght.
Then the sequence of measures on C!0,1] corresponding to the random
polygonal lines {Y,(t): t € |0, 11} defined by

Yo () = Xy gt 0t —kin) (X, g4y — Xp i) for t&k[n, (k+1)/n]

is conditionally compact, provided
(ii) for each 6> 0, n +p™(a,(a— 8,a+8)°) > 0 as n - o, uniformly
ina€R.

Proof. Let Y, denote the random clement in D{0, !} aefined by (1.2).
We shall use Theorem 2.1 to prove that {Y}, is tight. Let € > 0 be
given. From the proof of Theorem 2.2 it follows that we can choose 4
so small that

g @, (a—e,ate))<e forall A< Ay n€N and a€ S5 (aq) .
Let us now consider a Markov chain [Z, Z,, ..., Z,, o } with transition
probabilities p™(a, +) and such that P{Z,=a] = 1, where a € S, (a,).
Denote by 7, the hitting time for the set (—o, 4y — 2€) U (ag + 2¢, ). By
the assumption (ii) we get

PliT,—ayl 2 3el<e

for all sufficiently large » € N. The strong Markov property then shows
that there exists an inte_er ng such that

q'"™(a,(@—6€,a+6e)°)< 2e forall A< Ay, n<ng, a€R.

Similarly, we show that condition (i) in Theorem 2.1 is satisfied so that
{Y,}, is tight in D[O, 1]. Observing that for all n sufficiently largze the



§ 2. Conditional compactness of a sequence of Markov vhains 48

probability that {Y,(f); ¢ €[0,1]} has a jump exceeding e is less than «,
we can use [ 1, Theorems 8.2 and 15.2] to complete tie proot.

Assume that the moasures pl(dx) = p"(a, a+dx) are independent of
a; that is, X,  is the % " partial sum of a sequence of identically distri-
buted indcp;ndent random variables. Then {Y,,}, is tight if and only if
{¥Y, (1)}, is tight (see [ 14, p. 197]). We shall give a rather natural gene-
ralization of this theorem.

Theorem 2.5. +issume that
() 1 p™(a,la—1, a+11) = 0 as n = o, uniformly i a € R;
(ii) for every bounded interval (1. t,] there exists a constant
K = K(i\.ty) such that w"‘(r) w},")(m < Kin forail t€1t),1y}
and all a, b € R (here w(") iv the characteristic function of the
measure u{");
(i) {Y, (1)}, is tight.
Then the sequence {Y,}, of random elements in D[0, 1] is also tight.

Proof. Since p™(a, [a—1,a+1]°) = o(1/n), it is no restriction to assume
:hat p™(a,la—1,a+1]°) = 0. Let Y™ be the characteristic function of
the measure

doh@dx,)= [ o [ p™a,dx) p™ ey, dxg) e PPy, Ay
x1€ER  x,-1€ER

Some simple calculations show that
WM - [ (O1" I < mKn (2.17)

foralla,b€Randall t € [1,,:5,].

Put a},") =[x ufP(dx) and (6%)? = f (x —af)? pf (dx) and let
Sinm) = g1 7, where { Z;}; are independent random variables, eack one
with dmrlbutlon u$?. Then by the Berry—Esseen theorem on normal
approximation {see [6, p. 542]1) we have (notice that | Z; — a}| < 2)

WM (j(0f/m)) exp [—itm ol /(0f/m)]

— 1P (t /(o3 mNI™ exp [—itm ol [(o}v/m)]I <'mK/n
(2.19)
foralla,5€Ranrd all 1 € [¢, o} \/m, t; o} V/m].
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Let us now consider A = sup {1 (6§)?: b € R.n € N}. Assume that .
is infinite. By st itable choicesof b€ Rand m.n € N, we can then
ﬁimultanec}uﬁly make m/n arbitrarily small and m wa,) arbitrarily large.
Thus, by (2.18) and (2.19),

lgiatadrir€xh) i - maf o vmNi< e
forailia€R and y€R.

provided m/n is small eneugh and a¥ /m is large enough. But this im-
plies that, for any given € > 0 and bounded interval /, we can choose
., 1 € N so that

quf}u(ﬁ,l)é; € forall a€ R,

Obviously this contradicts the assumpton (iit) and so A must be finite.
By Chebyshev's inequality,

PUS™ el > el <mAlne (2.20)

IT 8 = sup{n(a] -ag): a € R, n € NJ weore infinite, we would be able to
chooie subsequences {a'} € Rand {m'}, {n'} € N such that m'/n’ - 0 and

' ogaat B ' i'p’ 'l ip
SUm) ol = 0, S a2 0.

However, this contradicts (2.17). Thus, B must be finite and

{8 — &))" "} sem nen i8 tight. By Theorem 2.2, the random Markov
lines Z,,(r) = Yu(1) ~ [nilaf) form a tight sequence in D(0, 1]. By the
assumption (iii), this is possible only if C = sup {Inagl: n € N} is finite.
Hence {Y, },, is aso tight in D{0, 1),

Remark In Theorem 2.5 it was proved that{Y,}, is tight in D{0,1] if
{(uimy" }:@n neN i tight. The converse is not true in general. However,
we can see irom the proof of Theorem 2.5 that tightness of {Y,}, implies
tightness of {(u{)"*} ek nen if we make the additional assuraptions (i)
and (ii).
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3. The Markavian eharacter of the limit process
Asméie that we have established the convergence
I O
in B[O, i]. For any continuous tunctional & on D0, 1} . then get
MY NS MYY a8, (3.1

Ax we pointed out in the Introduction. (3. 1) is useral mainly in the case
when we can compute the distribution of 4t ¥Y). Therefore, it is interest-
ing to see i, unrder genvral and simple couditions, we van show that the
timit procesa {Y (7} 7 € [0, 1]} must be ol a particularly simple type. In
this section we shall give sufticient conditions for the limit process to be
& Markov process. In our theoroms all the approximating Markov chains
are assumed to be stochastically monotone. In a remark at the end of
this section we will indicate how the general case can be treated. The
notation is the sume as in the previous sections.

We start by giving some measure-theoretical facts.

Proposition 3.1. Let F, und Fy, be any two prodability distributions with
finite mean-valies a, and ap, respectively. Assume that

Fo(x) 2 Fp(x) forall x€R.
Then
0< fulx) Fy(dx) - [ ux: F,idx)

<lap—ay) sup{(uly)--u@x))/(y—x): x,yER, x #y}

for all increasing functions u such that sup {(u(y)—u(x))/(y —x):
X,y €R,x # ylis finite.

Proof. Let ¢ = sup {(u(y)—u(x))/(y—x): x,y € R, x # y} and put
v(x) = ¢ x. For the two functions u(x) and v(x) it then holds that
u(y) —uix) <uv(y) —uv(x) for all x < y. Observing that

(ap —a,) sup{(u(y)-u(x))/(y-x): x,yER,x#y:=

= f u(x) Fp(dx) - f v(x) F,(dx) ,
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and approximaiing the integrals by sums we can easily complete the proof.

Proposition 3.2. Assumie that
(i) there is a constant X such that

b—a)! f x 2™ (b, dx) — fxp("’(a', dx) <1+K/n
foralln € Nanda< b,
(i) p™(a,{x; x < y}) is non-increasing in a € R jor fixed n € N and
yeR
Then we have
C<(b-a)! [ uCx) (b, dx) — [ ulx)q$a, dx)
< eKdgup () —ux))/y -x): x,y €R . x # )
foF ail incredsing fun :tions u.
Proof. Apply Proposition 3.1.
Ih Section 4 we shali also need the following result.
Proposition 3.3 Let {p™ (¢, 1)} jep, nen Ve d family of transition prob-
abilities satisfying conditions (i} and (i) ef Proposition 3.2, ane disume
that, foF some ¢ > 0 and 1 € R,
g (a, (a*e,®) S € .
Then there exists 6> 0, depending oly on € and K, sueh that
gi(b (b+ie =) >4
forall b € la= & a+8]. Similarly,
e, (==,a=€) > ¢

implies that
an(b: (—es, bh— J;fz)) > Z‘i'ﬁ

for all h € [a- 8,a+ 81, where b depends only on ¢ and K.
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Proof. It is enough to prove the first assertion. Applying Proposition 3.2
to the function

| for x> a+e,
ux)={ (x—a)le for a<x<a+e,
0 tor x<a,

we can easily ckoose 6 > 0 depending only on € and A, such that
[g'P(b,dx)i(x) > e for oll b € [a— 8, a]. Some simple estimations then
h(,w that

P, (b+yed 1> e

for all b € [a— 6, a]. On the other hand, for b € [a, a t i€], it follows
fromi the stochastical monotonicity that

Wb, (b+1e?, =) 2> g P(b. (a+e,)) > €

Remarl. Fot simplicity, we will always assu:ne that the transition
probatilitics p™(a, *) have {inite mean values. Actually, if there is a
eonstant &' such that

gup (", (0 — K, a+K')): ae R} =otl/n)

neither the convergence ner the limit is changed i we let p"a ¢ give
all its tnass to the finite interval (a= K'. ¢ +K').

Under eonditions (i) and /i) of Propesitien 3.2. '\ 1s possible to prove
that the weak limit in DO, 1] of a sequenwe {Y,}, of 1andom Markov
lines must be a stochastically continuous Murkev process. However, the
proof of the stochastical eentinuity is quite technical unless we mabe the
additional assuraption that for every € > 0,

¢, (-e.ateF)=0 a5 A=0, id.0)

u»nif@fmly in y ¢ N and a € C, for each compact set €. In view ot
Theorem 2.1, the agiumptien (3.2) is rather natural. 1t wili also peral
us to give a direct construction of the semi-group coresponding to the
limit process.
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Theorem 3.4. Let {Y,}, be a tight sequence of random Markoy lines.
Assurne that the transition probatiliiies satisfy condition (3.2) above as
well as

(i) there exists a constant K such that

b—a)! [ [xp™(®,dx) - [ xp™(a, dx)] <1+Kin

forallneNanda< b,
(i) p"(a,{x;x < y}) is non-increasing in a & R for fixed n € N and
y €R.
Then every limit process of {Y,},, ic a stochastically continuous Markoy
process having a Feller semi-group.

Proof. By Prokhorov’s theorem, {Y,}, is relatively compact in D[0, 1],
s0 we can without restriction zssume that {Y,}, converges weakly to
some random ¢lement Y in D[0, 1]. From condition (3.2) above, it is
asily deduced that {Y(r); r €10,1]1} is stochastically continuous. Let us
then consider the projection m, taking x(+) € [0, 1] into x(¢) € R. m, is
continuous at x(-) € D{0,1} if and only if x(-) is continuous at ¢. Thus,
the stochastical continuity of {Y(¢); ¢t € [0, 1]} implies that

Y, )5 Y(t)  as neo (3.3)

for all € [0, 1]. In terms of the transition probabilities, (3.3) can be
written

g"™(0,)5 Y(r)  as noeo.
Applying Proposition 3.2, we can then immediately show that
{q"'(a,*)}en is tight for évery ac R and te 0,1].
By taking a subsequence {n'} C N if necessary, we get:
{g"a, )}, is weakly convergent forall a€Q andall i €QnN[0,1],
(3.4)
where Q defiotes the rational numbers. Using exactly the same method

as in the proof of ii’ropcsiftibn‘f’;.?,, we can show that the covergen:e in
(3.4) st hold for all @ € B By the Markov propetty and the assump-
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tion (3.2), we cai even show that
{qﬁ""(a, *)},» is weakly convergent forall a€ R and re[0,1]. (3.5)

Let @' denote thz class of all bounded increasing functions f such that
sup{(f() - FxP/(y—x): x,y €R, x # y}is finitc. We can then define
a linear mapping of @' into itself by the relation

H f@y= lim [ q{ @, dx)f ).
n'—oo =

Applying the Markov property and the assumption (3.2) once again, it
is i routine o0 prove that

H... fa)=H H, f(a)
foralla€ R, fe€ ¢" and s, t,s+t€ [0, 1]. Furthermore,

Hopy<H fy W5 hhhee

H, f(Y{5)) = E{f(Y(s+) | Y()} us.. Jee'.

Until now we have only defined H, f(a) for € @'. But we can im-
mediately extend the definition to the lincar space D consisting of all
differences of functions in @'. Then H, becomes a positive linear opera-
tor on . Since D is dense in the space €, consisting of all bounded
continuous functions with limits at +o and —o>, w2 can extend H,
unicuely to a positive linear operator on € such that 4, | = 1. By
Riesz’ represzntation theorem, there exists, for every fixeda and r, a
unique probability measure p,(a, <) such that

H, fla)= fp,(a,dx)f(x) {3.0)

for all f€ @,. It is a routire to prove that the 5,(a. ) form a family of
transition probabilities generating our limit process {¥Y{z); r € {0, i} }.
From (3.5} aud the stochastical monotonicity it follows immedic tely
that the famnily [Py, *)} et Of probability measures is tight for every
boutided :niterval 7. Hence (3.6) defines a Felter semi-group, i.2., i, 1 is
hounded and +intinuous for all bounded and continuous fune %mm f
Thiie completes the proof of Theorem 3.4.
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Remark. In this seetion we have assumed that the spproximating Markoy
chains all have transition probabilities satistying condition (i) and (i) of
Proposition 3.2. These twa conditions can he replaced hy the weaker
condition

(i") there exisis a constant K such that

lb—at=H Fo¢h dx) fix) — t o' g« ' ,
a,sz}%; [lh “l ‘fp b, dx) fix) - | p™(a, Jx).{(x)v'}ﬂ
a#

< (i HE/n) sup{lf(B) ~ fi@)ll1b~al: a,bER, a5 b)

for all bounded continuous functions fand all n € N.
A repetition of the arguments in this section shows that Theorem 3.4
will continue to ! old true.

4. Tightness concitions for sequences of stochastically monotone
random Markov lines

In this section the random Markov lines {Y,(); ¢ € [0, 1]} will always
be constructed from a sequence {X, o, X, ), Xy 5, s Xy p}y Of stochas-
tically mionctone Markov chains. If {Y,}, is T -convergent with limit
{Y(2); t € 10,11}, we know that the one-dimensional projecticns ¥,(¢)
converge weakly to Y(¢) with a possible exception for a countable set of
time-points. It is our intention to find out to what extent we can argue
in the opposite direction. Actually wz shail show that, under rather
general conditiors, it is possible to deduce tightness of {Y,}, directly
from the properties of the projections Y, (i) and Y(¢). The main tools
will be some well-known theorems on mariingales. Therefore, we shall
start by proving a lernma on the converger.ce of a sequence of martingales
that might be useful even if we can not establish tightness of the corre-
sponding sequence of random elements in D[ 0, 1. The notation is the
same as in the previous sections.

Lemma 4.1. Assume that

@@ sup{E{IY, (DI} neEN} =K < o0,

(ii) S x p™(a,dx) =a.
Then every subsequence of {Y,}, contains a further subsequence
{Y,},y such that

(a) {Y (1)}, is weakly convergent for all t € [0,1].

(b) The limit distributions F, of {¥ (1)}, defire a function from
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10 1] fnta the space P of ane-dimensionat probabilicy distributions,
Whici is contivuous gt gl 1 €01, i P bas the Lévy metric.

Proof. Canditions (i) and (i) show that (X kK =g 15 0 martingale. Thus
for 4l A > 0,

Plsup{lY (01 1€ 10,11} > N = P{sup {1 X, ): k=0, 1,2, .0} > A}

iA

ZE1X, pIHA = 2E(1Y,(1)[}/A

<

2K/\ (4.1)

The family {F,"},en 10,1 Of distributions corresponding 1o the Y, ()
is therefore tight and we can immediately find a subsequence { Y1,
such that {Y,«(r)}, is weakly convergent to some distribution F, foy all
re Qn[0,1]. Here Q denotes the set of rational numbers.

Let us now assume that we can find a time-point ¢ € (0, 1] such that

w-lim {F,: rt1,r € Q} does not exist. Then, for sume > 0, there is a
sequence {lk}k - Q which is increasing to ¢ and such that the Lévy dis-
tance p(F, ) exceeds 6 for all k. For every fixed m we obtain

i\

Pk’ "cl

p(F N FEYys§.  k=1,2..m. (4.2)

Fk+y

for all sufficier tly large n' € N.
Because {F,(”)},,EN',E[O'” is tight, we can find a constant K|, such that

F™Ky) — FP(-Ky) > 1--8 (4.3)
forallre Qn [0,1] and n € N. By (4.2) and the definition of the Lévy

metric we can, for k= 1,2, ..., m and all sufficiently large »" € N, choose
Xy  $0 that either

Fr(:') (an"k) o> JF"‘(z;)l(xn',k +6)+ 86 (4.4)
or
F,.(Z')(xn"k) < Ff;)l(xn',k— 5!) -8 . ‘45)

By (4.3), x, = [— Ky, Kyl. Let us now cover the interval [ K, -8,
Ky+8] with f1r|1tely many intervals I; = [g;, b;], each one having a iength
between 48 and 18. Denote by Uf™ and D, respectively, the number
of up-crossings and dc»wn-crossings by the function {Y,(¢); t € [0,11} of
the interval I. Then by (4.4) and (4.5) we obtain
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llglg}ﬁ far spme o' < N. By Praposition 3.3, we cip choase b, < byte) <.
5. £ 50 it
abihih o het et e (4.

forall b < g &) qt ;). Sipce wlimidyirt .t €QE= i und a €W (()),
we can wlso determipe A( Ay(6).¢,4) 80 that

im ind EX a8, at8)) 2 Eylla 8),at8) > 4G (e bjatd 0
n'
(4. l())

ranonal pomta, r < r2 K gy in lhe imervul (1- Ag. 0. Kt-eping
(4.9) and (4.10) in mind, it is not very difficult 1o see that from each
interval 7y, ryq:t we get a contribution exceeding § G,((a—8,,a+8,))}e
to the valu:e of

n'
EIUMY a3n0. 3600 Y Pl 3ei32,0 - 2132y
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pends only o 1. Qoviously. S, (M0G0 has protyiiity cero with

respect 10 the distribution (7. Since w-im b, vl e e Q)= Gy, we can
also assume that we hyve tuken &) so smull that

lim wp FYLS, (MG VS F y(8, (MG < hn (415)

forallt -8 € Q- A0 Itis then cusy toshow that (4.13) (4.15)
impsy that

lim sup P10 () = YUt -8l 2] <1 (4.16)

n-+ee

for e}l 1-A € Q1 (1— Ay, 1), Finally, s get
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li't!p_iup p(F™, 7)< lim sup p(F™), FM)) + lim -up p(FP), F,_y)

<n (4.17)
forall t—A = QN (r—-A4, 1), which implies that

wlim F'=G,, te€(0,1].

n —»oo

Similar arguinents show that

w-lim F") =H, , te(0,1),

n—»oo

and this completes the proof of Lemmaz 4.1.

Remark. In t1e proof of Lemma 4.1 we have used theorems on the num-
ber of up-crossings and down-crossings of a martingale. Similar theoteins
hold for supermaftingalus and su omartingales Under conditions (i) and
(ii) of Theotetn 4.2 below, thete is a cotistant ¢ such that
[Xpi—Cokin}.gisa superrrartiﬁgaie (stibmattingale) for dil » € N.
Cohditioh (iii) elow is then sufficietit for the lemtnd to reiriain trie

also i that czse.
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ing Lemma 4.1, we can choose a subsequence {Y,},» such that

Y, (1) s F, forall € [0,1] and w-lim{F,: ¢ 11} —Fl The assumption
(1v) shows that ‘M (F,) = R. Repeating the arguments leading to (4.12)
in the sroof of .emma 4.1, we can show that

q""(a, (a—e, ate)) > as A~ 0,

uniforinly in " € N and a € C, for every compact set C and every € > 0.
Supermartingale (submartingale) inequalities show that

sup Plsup{lY,(Ol: t =10,11} > A] >0 as A—>oo .
ne

Thus, ty Theorem 2.1, {Y,}, is weakly conditionally compact and
{Y,}, must contain a convergent subsequence.

Applicstion. Let {Z,}, be a Galton—Watson branching process governed
by certain fixed probablhties (Db Here py, is the probability that one
individiial in the /th getietation gives tise to k individuals it the jH1st
petierdt otl. We will assiime that {p;} consideted ds d brobability distti-
utiotl 1ds tean 1 and finite sttictly pcsitive variance 42. Defite, for
edch » & N, 4 contifitiolis-tite ptocess
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This means that, for all functionals 2 on D[0, 1] which are continvous
with respect to the Skorokhod topology, we have shown that

n(Y,) > h@B+b) as n-w,

The @ -convergence in (4.18) has been proved by other methods in [13].
In Section 5 we shall give a more detailed discussion of D -convergence
of sequences of branching processes.

Proceeding in the same spirit as in Lemma 4.1 and Theorem 4.2, we get:

Theorem 4.3. Let {Y,}, be a sequence of random Markov lines corre-
sponding to a sequence of stochastically monotone Mai kov chains. As-
sume that
(i) sup{E{1Y,(1)I}: 7 €N} < oo;
(i) sup{(1/n)"1f(x —a) p"(a,dx): a ER,nEN} < +oo, or
inf{(1/n)~Vj(x—a) p™(a,dx): a€R,n €N} > —oo;
(ii1) for every t € (0, 1], the projection Y, (t) converges weakly tc some
distribution F, with strictly increasing distribution function.
Then the sequence {Y,}, of random elements in D[0, 1] is weakly condi-
tionally compac! and every limit corresponds to a stochastically cor-
tinuous process on the interval [0,1].

Froof. Using exactly the same method as in Lemma 4.1, we ecan imme-
diately see that lim{F,: r* ¢, » € Q} exists for all ¢ € (0, 1]. Denote this
limit by G,. We shall show that G, = F; for at least one time-point ¢.
Assume that the converse holds. Since the Lévy distance p(F,, G,)> 0
for uncountably many values of ¢, we can fina a § > 0 such that

p(F;, G,)> 8 for infinitely many ¢. This means that, for any positive
integer m, we can find 2m points. r| < t; <r, < t; < ... < rp < £y, such
that

p(F,k, F,k) >86, k=1,2,..,m.
As in Lemmu 4.1, this contradicts the inequalities on the expected num-

ber of up-crossings and down-crossings of an interval, Thus, we can
choose © point ¢, such that

wlim b, rt . reQl=F, |
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where M (F, ) = R. Once again proceeding as in the proof of Lemma
4.1, we can show that, forevery e > Oardua € R,

g, (a—e,ate))»0 as A~0 (4.19)

uniformly in n € N. Because the underlying Markov chains {X,, ; }}- are
stochastically monotone, the convergence in (4.19) must be uniform in
a € C for all compact sets C. Applying Theorem 2.1 we can then com-
plete the proof of Theorem 4.3.

We shall terminate this section by discussing the convergence of se-
quences of increasing and stochastically monotone Markov chains. In
this case the conditions for conditional compactness become much
simpler. In ar. important special case we can also show that every limit
process {Y(¢); t € 10,11} is a Markov process if, for all £ € (0,1], Y(¢) has
a strictly positive density on (0, ). These results are summarized in the
following theorem.

Theorem 4.4. Let {Y,(¢t); t € 10,11}, be the random Markov lines or-
resnonding to a sequence of increasing and stochastically monotone
Markov chains. Then the sequence {Y,}, is weakly cond.tionally com-
pac: provided
(i) for each t € (0,11, Y, (1) converges weakly to some disiribution F,
with strictly positive density on (0,=);
(ii) for every & > 0 and every compact set C C [0, ),

npa,(a-6,a+8)°)->0  as n-ooo,

uniformly in a € C.
Moreover, every limit process is a Markov process and has continuous
sample paths with probabiiity 1.

Proof. The sequence {¥, (1)}, is stochastically bounded. Therefore.

sup P[ sup 'Y, (0 > Al ‘-qup PIY, (DI >N~ 0 us A=,

neN |0 neN

0bv10us1y, {¥,(2); t € 10,11} has no down-crossings and at most one up-
crossing of each interval. Thus, we can prove that (¥, ], is conditionally
compact exactly as in Theorem 4.3. Condition (ii) nmpfﬂcs that every
limit process has continuous sample puths with probability 1.
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Qes t po;q Hlere existhb€R, A€ {Q ]) and € > () such tha,
ourhood U b of anq every no

‘"’(b»(c —€,<)) +e< q‘”’(bz,fc,w» (4.21)
for some by, b, € Uy, n 2 ng and ¢ = c(n, 4,€,by, by). Recalling that the
underlying Markov chains are stochastically monotone we can show that
it is no restriction to assume that ¢ < ¢, where co=co(b,A,e€)is acon-

stant dependmg only on b, A and €. Using exactly the same method as
in the proof of Lemma 4.1 we can choose A € (9, 1) so small that

a4, [a,a+}e)) < be (4.22)

foralln € Nanda € (0,cy]. By (4.21), (4.22) and Chapman—Kolmo-
gorov’s equation we then get

a0 (b, (c~€,2)) +1e < gP(by, (c,)) — 4e
= [404,(62.49) 4P, (c,) — }e
< q&g:f’_m(bz,(c —4€,)) + q(n)(c__xie, (€,) —3¢

A —A;(bZ’(C'—'ﬁ’esm)) (4-23)
But

AW 4, (by, (c~1e,2)) — qP(by.(c—€,%0)) =

= [ g0, g, by, (c—Le, ) — g, (x, (c—e, )]

x>b1

(")(bls [b]9 b2))
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This means that fhete exist infegers m 2 | with the foljowing property:

P{m) Forevery ny € N and every nelghbourhooq Uy of b we can find
af least m disjoing m;erva}s by c;1€ Uy, i=1,2, ..., m, such
that for somen : > Ny,

a0 by, [B1,c;) > e (4.25)
holds simultaneously foralli € {1, 2,...,m}.

Let, for all a € R, 7 denote the hitting-time of {Y,(¢): t€[0,1]} for
the interval [a, ) and set 7 = 2 if Y,(¢) is less than a for all t € [0, 1].
Let us then consider 7.7, 1'6') 7 Tt is nc restriction to assume that
bh)<e;<by<ep<. < b, < cm. ﬁurthermore, by the assumption (ii),

PIrP< 1, i=1,2,..,m) N {r{) > b;,, for some i <m—1} >0
as n oo, (4.26)

Using the (strong) Markov property, (4.25) and (4.26), we can then see
that

Plr{"), < 1] =Plsup{!Y,(t)l: t€[0,1}} 2 b+1]

could be made arbitrarily small if in could be chosen arbitrarily large.
But this contradicts the assumption (i). Thus there exists an integer
mg 2 | such that P{mg} Lolds true and P{m} does not hold for any
m.> my.

On the other hand, if there exists such a maximal m, we can find a
fixed § > 0 and, for any ny € N and any sphere S, (b), m, disjvint inter-
vals [b;,¢;1 € S, (b),i=1, 2, ..., mg, such that the inequalities

aPby, (b)) >de,  i=1,2,..,mq, (4.27)
aPb-5,[b—58,b-2y) < e (4.28)

hold simultaneously for some n 2> n,. (Obviously it is no restriction to
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asstime that 2y < 18.) From (4.27). it follows that

‘ti%”(é, (4, I’HW > 4é (4.29)

Apeth- b 3

=[5 2%k Y Rorms FE- A

3 g {B{Ml'ﬁ;l (B8 HH 128 %)
Bl Vulh) has # jump sxeseqy gm

el 16)B) ¥ l RPEW 8:5 )
F”,’;Uf” L” SREE Hmé'}/”

A/
*oipofom

il ?”"1#’”’”’::’ ANE(-3:8- 131

Which ebyi ws!ym. Fradicrs the asswmption (1) This completes the
proaf of Thearsm 4 4 i

3- Weak convergence of normalized Galton—Watson processes

In Section 4, we showed how our genera) resulfs on the fransition
from a sequence of stochas-ically mono;one Markov chams to a con-
tinuous-time process could be apphed fo sequences of normahzed
Galton—Watson processes. x{ege we will give a more detailed discussion
of this topic.

For each fixed n € N, let {Z{™}; denote the random veriables of a
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We shall now exa nine the convergence in these two theorems and
prove that convergence of the finite-dimensional distributions implies
weak convergence in D[O, 1], provided the probability distribution
{p{M}, has mean value 1 for all n € N. As we can see from the proof, it
is easy to generalize this to the case when the mean value is of the form
1 +a/n+o(l/n).

Let us start by examining the convergence in Theorem 5.1. Since
{c,/b,}, evidently must converge and E{|Y, (1)1} = E{IY,(0)I} = ¢, /b,,
there exists a constant X such that

E{IY, (O} +E{Y,(DI}< K (5.3)

for all n € N. However, each {Y,(¢}; t € {k/n: k=0, 1, 2, ...,n}} is a mar-
tingale. Hence,

Plsup{1Y, ()} t€[0,11} > A] < 2K/\, 5.9

for all A > 0 and n € N, and the first condition in Theorem 2.1 is satis-
fied.

Before we start examining the transition probabilities qg')(a, E), let us
consider the following: '

Proposition §.3. Let m €N and e > 0 be given numbers. Then we can
find a § = 8(m, ) > 0 stich that, for any k € N and any set {Y1,Y;, .., Yp n}
of identically distiibuted independent raridoin variables, it Holds that
PUBk, V>8] < 6= BUBL Yi>el<e forall j< k.
Broot: We use the sdttie kind of atguitietts 45 1 the besitibing of the
proof of Theoter 3.3. Thett we kiow that, for every 1y and all # sl
eHotsh,;
(ks for [y
implies that
gkt 1126k 6F |
And the last inequtity implies it

Wy =11 €mn  foF 1HZ 1y and JE k.
The rest of the prosf is Ahviaus:

Hy
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We shall now prove that the transition probabilities g4 (z, +) satisfy
conditinn (11) in Theanrem 2 1 Ry acanimntinn tharo ic 2 neint £ S 0N
WOASEEANEL LANIEL (ML) 211 A MAVUVLI VLR Lol Uy QUOOUILIIPILIVILL, LIEWIVW 10 A l)k 1116 lO - \J
such that

RIYV(:t D> 01> 0 (5.5)

l‘l‘\\vul’ v]r A= ) \JIJ}
Proceeding as in the proof of Lemma 4.1, we get

w-lim Y(£) = Y(¢;) . (5.6)

tttg

From (5.5), (5.6) and the proof of Lemma 4.1, it follows that there
exists a strictly positive real number b such that

q®(b,(b—8, b+6)) > 0 as A-0, (5.7)

uniformly in n € N, for every 6 > 0.
Since {Z{™}, is an integer-valued process, we can set

q™a,*) = qPk/b,,")  for (k—1)/b, < c< klb,.

But, for each A and n, we can find a set In;; i =1, 2,3, ...} of indepen-
dent and identically distributed random variubles such thai

qg”(k/b,,,dX) =Pl(ny+ny + ... +mp)/by, € dx]
for 41 k & N. By Bropositiot 5.3 afid (5.7), we theti get

¥, - 8,4+8)) 50 45 A0,
UitifBrHily i 4 & € and # = N, fot evVery eotipict set € c {0, Hetice,
By Hhsotem 3.1 dnd Brokhorev’s thesteth; { ¥y}, 15 eonditiotlly coth-
paet i BLO; 1: Let ¥ and ¥ denote ahy 1o liimit distribtitions of
[V, We catl then select subsequeness (4] and {47 € N stieh that
(if;”:fi‘j; Y;,':Ug): o yg(fﬁﬂ iﬂ% ty‘””; V”Qi; 13 V“kﬂ 48 H: 38 ;
(y;;ﬂ(ﬂ); *//gii(fgj; 3 ?gfi(f]gﬁ 4 @ﬁ;(fﬂ; W”g’; o3 Wtﬂg}:’} B s,

foF all #1: 43; ;b € T, whete [6; 11\ T i3 4 eountaple et pot eema{néﬁ%
| (see ;h B: i%i§: By §.3; the diskributions of (¥'15): ¥'tra); . ¥V (i)
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and (Y"(!l) Y"(tz) "(#)) coincide for all tl, t2, . tk € T. Applying
{1, Theorem 14.5], we CO“lci de nai Y’ and Y" define the same prob-
ability distribution in D{0, 1]. But a conditionally compact sequence

with only one limit point must be convergent. Thus,

A4 (_Q’V'
In 1

[¥]
[74]
-~
{

Since {1"(¢); t € [0, 1]} is continuous in probability by Theorem 3.4,

(Y, (1)), Yot0), o Vot ) > (Y'(2), Y'(2y), ., V(1)) as n>oo,

+1a
) \ e N S 1. DU i u

ic
butions of Y coincide with those of Y in (5.2), and this completes the
discussion of Theorem 5.1.

fﬂrallegf < 4 <& ¢+ 21 Dt ¢i,n

: I i(‘qmnnnnnﬂnl A 1}
1INITC-Qimcnsional Gisu

¢
We shail now turn to the discussion of the convergence in Theorem
5.2. We start by giving a result from the theory of triangular arvays.

Proposition 5.4. Let {Z,, |, 2, 5, ..., Z, .}, be a triangular array of random
variables such that
(i) for each n the variables Z, |, Z,, 5, ..., Z,, , are identically distri-
buted and independent;

(i) Z,;2-1,j=1,2,.,n,n=1,23,..;

(iii) E{Z,,J-} =0,j=12,..,n,n=1,2,3,.
With S, = Zi., Z,, ; we then have sup,cn E{IS,|} < =, provided {S,},, is
stochastically bounded.

Proof. Following [6, p. 308], we introduce the cusatinuous truncation
function

_ ] x for |x|<s,
Tx) = ts for [x|2s.

Deiine Z,;=7(Z,;)and Z, ;= Z, ;- Z,, ;. Fors > 1, Z,, ; is non-negatlve.
Moreover, for s sufficientiy largv both S =202, and Sp = Zj=1Zp,

are stochastically bounded. Still followmg [6] we conclude that
{E{(S,)*}}, i bounded and so {E{(S},)" }},, is bounded too. Since S, is
non-niegative and E(S,) = 0, we obviously have
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sup {E{IS,I}}, < +eo (5.8)

neN

and the proposition is proved. There is no difficulty to generalize this

result *o triangular arrays{Z, |, Z,, 5, ..., £, 4 },, where {k,}, is an ar-
bitrary sequence tending to infinity.

There is no loss of generality in assuming that a,, = ¢, in Theorem 5.2.
If we exclude the case when the limit process is degenerate, we can also
asstme that inf{b,: n € N} > 0. Let us now consider the probability law
of Y, (1). It coincides with the law of Zf;’l (X; —1)/b,,, where the X] are
independent random variables representing the number of individuals
in the n'™ generation of {Z{™}; who are descended from each of the ¢,
original ancestors. Proposition 5.4, with Z, ; = (X; —1)/b,, shows that

sup E{|Y,(DI} < .

neN
Noticing that {Y,(¢);t € {k/n: k=0,1,2,...,n}} is a martingale, we have
shown that the sequence {Y,}, satisfies conditicn (i) of Theorem 2.1.
Proceeding as in the discussion of the convergence in Theorem 5.1, we
can prove that {Y,}, is conditionally compact. Thus, we have the follow-
ing,.

Theorem 5.5. Let {Zj(")} j» for each n € N, denote the random variables
of a critical Galton—Watson branching process and define by 5.1 a se-
quence of continuous-time processes {Y,(t); t € [0,1]},,. .Assu:ne that
there is a non-degenerate stochastic process {Y(¢); t € [0, 1]} such that
the finite-dimensional distributions of {Y ,(t); t € [C, 11} converge to
those of {Y(¢);t € [0,11}. Then there is a random element {Y'(t);

t€ (0,11} in D[O,1] with the same finite-dimensioral distributions as
{Y(t);t€[0,11} and such that

D
Y,>Y' asn-oe.

Remark. In th:s paper we have only considered Markov branching pro-
cesses. In a coming paper, corresponding tightness and convergence re-
sults for age-dependent branching processes will be given.
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