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Abstract. Starting from a real-valued Markov chain Xe, Xr, . . . . Xn with stationary transition 
proI:babilities, a random element {Y(t); t E p, E 3) of the function space DlO, 11 is constructed 
by Ietting Y(k/n) = Xk, k= 0,l 

{Y(t); 
. . . ..n. and assuming Y(t) constant in between. Siunple tightness 

criteria for sequences t E [ 0, .!I In of such random elements in [ 0, 1 ] ue then given 
in terms of the one-step transition probabilities ,ipf the underlyb? Markov chains. Applications 
are made to Galtoa-Watson branching processes. 
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measures on function spaces tightness 
Mark ov chains branching processes 

ntroduction an 

Let Cxn 09 xn 19 xp2 29 . . . . Xn n}n be a sequence of real-w 
chains witk statibnar~ transit&m probabslities #@(a, 0): tlk 
evew Bore1 set E, the relation 

is sirrisfied with priobability 1. With each of 
associate a ccmt inu irne process Y,,(t) d 



This shaws that ! can be a useful !QSl wham we want ta 
study prsperties of the preGe%s@s [r,(r); t [& l])land{Y(t); dcz [e), 11) 
that can nst be exg~ressed in terms of theiir t~?g$l_raitQaal dtatribal~~ 

tisns, If the diatributisn ef h(Y)i is known, ( 8 1111 agprsxirnate 
disari but ion of II ( 2F,V) for lar e ra ez AL Qae tha .g\nd, if the di&j~vu= 
tion af h(Y) is unknown, we cm sometinnt~ chaase the aggrsximatirrg 
pr@rcesses {I$(!); 1’ E [O, 11) so simple that 91.3 b yields some infcmna:~~ 
tion about tho distribution of h(Y’)l, Tkre last ,met.had is particularl~y im- 

:aaat when simulation techniquers are empla)ied. 
y a famous theorem due to Pralkharatr (see [ 1) p 3’7] 1, a sequence 

(u, In of random elements in D[ 0, I] is conditionally compact if and 
is tight. This su ges,ts a useful methc d to establish Q -conver- 
rst we sho\N tha the finite-dimensior, sl distributions converge 

and then we prove that (YJ,, is tight (see [ 1, pI 1241)). From classical 
probability theory we have a rich supply of tools for determining con 
vergence of finite-dimensional distributions. Therefore, we will in thi.s 
paper confine our interest to tightness criteria, 

Q -convergence in connection with Markov processes, in particular 
diffusion processes, has been treated by Skorokhod, Gikhman, Borovkov 
and others. Since the infinitesimai approach to a diffusion process is 
the most convenient one, their co,rditions for c211 -convergence usually 
have been based on the asymptotic behaviour of the two first moments 
of the increments within a short time-interval. Here we will mainly 

the transition probabilities 
It has also been our aim to give 



in aa far each fixad y . 
In Section 4 we will csntinilxe to study the relations between the 

proplerties of the projections V,(t) and the tigbtnesls of the sequence 
{ y’, IN. All Pcaark ov chains considered in that section are stochastically 
monotone, 

Sectian 5 is devoted to an application of the theory in earlier sections. 
We will study Q-convergence of a sequence of normalized critical 
GatOton-Watson processes, In fact, we will be able to show that (B-con- 
vargence in this case is equivalent to convergence of the finite-dimensio- 
nal distributions, provided we make an exception for degenerate !imits. 

2. CondMonal compactness of a sequence of Mafi-ocov chains 

From now on, {X, 8,Xn 1, . . . . Xn &, will always denote a sequence 
of Markov chains with stationary transition probabilities. If nothing else 
is stated, we will assume that = O] =’ 1, The one-step transition 
probabilities of the n are d,enoted bly p@)(a, 9. Transi= 
tion probabilities corresponding to several steps are: denoted by 
&)(a, a), where n is the number of steps and A is assumed to be 
chosen from the set (j/n: j = 0, 1,2, . . . . ra). Thus, Lor every Bore1 set E, 
the relation 



be called the process or the “:~andom arkov line” associated with 
4x n,O, X n,P -9 

[ 0, I ;), 

hen J( Y,,(t); t E [ 0, 1 ] ), considered as a random 
converges wllakly to the random elemen i ( Y(t); 

D[ 0, 13, we will w-de 

Y/Z Y as n -9 *a . (2.2) 

All our theorems Iwill Se stated for Markov chains with the real line as 
common state space,, ut there s‘hould be no difficulty to give corre- 
sponding results when the state sp’ace is the half-line [6,=) or a compact 
interval. 

We are now ready to give the fundamental theorern on conditional 
compactness of a sequence of rarrd.om Markov lines. 

timrem .I. Let ( Xn (By XM 1, ..,:, X,, ,,I,, be a sequence of Markov chains 
with transition probabkities’qd @I (a E’, satisfying (2.1), and let (Y,(t): 
t E [ 0, 1 ] )n be the (associated seyzftke of continuous-time processes. 
Assume that 

[SUP()< t< 1 I Y,VN $ Xl -i’ OasX-,~,unil”ormlyinnEN; 
(ii) for eve6 compact set C sod every E > 8 there exists S = 6(C, e) > C 

such that 

qg)(a (a-e a+e)‘) < e 7 9 

?&en the sequence (r,,(t): t E [ 0, 1 ]I), of randon: 4ements in ]D[ 0, ]I ] is 
tight. 

shall show that the conlditions for tightrless given in [ 1, 
Theorem 15.21 are satisfied. But this can be donp, by an almost verbatim 
repetition of the arguments in I 14, pe 182 1. Further details are therefore 
omitted. 

L e’t #“‘(a, a + dx) denote the probability mezsure which to each 
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prove two theorems where the tightness conditions are 
these convolutions. ut first we consicler th.e case when 

of a sequence of independent equahy 
hen the measures $@(dx) = #‘I( 

2.2 below, can be taken independent of a EI d by a theorem due to 
Prokhorov (see [ 14, p. 197]), the [U, 1] is tight if 
and only if { ($@)’ * } nEN is tight. orem generalizes this 
fact. 

eorem 2.2. Let {Xn 0, Xfl 1, Xn 2, . . . . Xn n)n be a sequence of 
chains with transition brobabiilitiis p’nJ(a, b), aPzd denote the measure 
p@)(a,a+dx) by pf)(dx). Assume that 

(i) { (p’“Qn *}nEN aER iS tight 

Then thearandom elements ( Yf,*(t): t E [ 0, 1 ] ) associated with the Mark01 
chains form a tight sequence kn I3 [ 0, 11. 

Proof. Let pp) be th.e characteristic function of &‘? Thle family 
{(JP)” *)nEN aER is tight if and only if ((VP))” JnEN aER is equicon- 
tin:ous at zero. Thus, for every e > 0, there exists a b = 6(e) 3 0 such that 

I (cp(“)(l.)r - 11 < E a for all t E [-6,6], aE 

? Tsing the inequalities log ( It +x) < x arid eX < f + 2~) valid for all x in 
some neighbourh\ood of zero, we conclude that 

i@‘(t)] > 1 - 2Ein for all t E [-6,iTi], a E 

Similarly, for all 1’ E [ -S,Sj, a E W and n E PI, there exists an integer 
j E (0, l-, 2, . . . . n) such that 

arg #i(t) E [ 2jr/n -- T&z/n, 2 jr/n + 2e/n (2.5) 

But each p?)(t) is continuous, and argots) = 0. Thus we must c 
j = 0 in (2.5), and it follows that 

i v7F’( t) - 11 < 4& for ali i E [-6,6]l, 

(Some of th.e arguments above might 
consider sufficiently s 16.) 
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If $p) denotes the characte+tic furl&ion of & ns we CWL easily show . I 

by inducrlon that 

Assume that we can choose X, 2: ho so large that 

[iZjl> Xl]: i= 1,2 ,..., n)< e/‘2m . 

Then we have 

oof. We need only consider the case n > 2m. Let T be the hitting-time 
r the set (2AI,=) u (-=, --2hl:) and put 7 = n 4-1 if SUP(lZjl: i=1,2,...:n} 

ince II> 2m, we can choose integers ni SUKAI that (i - 1)/2m C . 

lli/rt < i/2m for i z 1,2,3, . ..) 2m-4 and Jqzm/ti = 1. Then we get 

viz --Z&: 05 (j-r)jn a< l/m} < AI 3 L 

(2.7) 
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[7< n,sup{lzj-q: 05 (j-a)/!?< llmJ+X,l = - 

n 
f= 

i=i 
[? = ii, sup{q- Zil: 05 (jeci)/ll < l/HZ)> A,] l (2.8) 

) and using the arkov property 

Hence, by (2.7) and (2.9), 

P[SUp(lZil: iE 132, l *.,ni > 2hl I 

= P[T L n, sup{lz~-zJ: O< (j-7)/n < 1/m;t I A,] 

for all )IL iz h,, and this compldes the proof of the proposition. 

We now return to the proof of Thecrem 2.2. B)y the 3am1e argt ments 
as those preceding Proposition 2..3, we can prove that 

I$f%) - 11 5 4ekln forall ltl<_6, 

where #PI now denotes the characteristic function of Xn,k - JL;Z,o and 
istribution of .A@+‘+ ary. Starting from the inequality 

l$uWh) -.cpWl L ++/A , valid for all zharacteristil:: futldions 

q(r), we can easily prove that 

Id+ll<- k 
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Applying (2.1 I ) to the characteristic nction d/%‘, we get 

for all i E E--j, j] , (2.12) 

and from (2.12) we obtain 
. 

[IX -.&,I > 2/j] 6 j-l )I $#W 0 , -l~d.t12j([6-1]+1)~IG@i 
-i 

(2.13) 

Since the distribution of Xn o is arbitrary, (2.13) is equivalent to 9 

SUP [ ..a f 

az.;i Ixk-al5 2/j 

pcn)(a, dq)p@)(q, dh2) . . . p(n)(Xk_r, &k) < 

5 2j([tr1] + l>~-EGx$Yt. (2.14) 

By Kolmogorov’s inequality for Markov chains (see [ 15, p. 1571) we 
can easJy show that, for every j E 

j([S-'1 +l)&-@%, (2.15) 

for all k/n sufficiently small. For our original Markov chains (2.15) 
means that 

Esup Cl ,m+i-xnmI: 05 i& kD41i I X,,I 15 , # 

5 4j([6-‘] + l)+J&G$i as. (2.16) 

hat condition (i) ojf em 2.1 is ;fulfilled now follows from (2.6), 
lows directly f 
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sequences of normalized branching Markov processes. The . 

can be applied when we are studying conver- 
on with reflecting barrier and similar processes. 

A’. Assume that 
2 t< 1}>A]+Oash+~,uniformZyinnE 

is tight for every compact C. 
is tight in D[O,l]. 

oof. Consider a Markov chain with one-step transition probabilities 

4’“‘(* . ) = 9 ( p@Q;) for a > k, 
p’“‘(a,*) for ial <,A, 
p%--A;) for a < -h, 

and let Y;(t) be the corresponding random Markov line. By Theorem 2.2, 
{ YA}, is tight in D[ 0, 11. Observing that 

P[W;,CY,)z E] < [w;,(Y;> 2 El + P[sUp(lY,(t)I: 0 L t 2 1) > hj ) 

where w’ is the continuity modulus defined in [ 9.) p. I lo], and using [ 1, 

Theorem 15.21, we can easily complete the proof. 

Application. For sequences of normalized Galton-Watson processes the 
conditions of Theorem 2.2’ become very simple. Let, for each n E N, 
(Z”)}j denote the variables of a Galton-Watson process, where the 
number of off-spring of one individual is determined by the probabilities 
(pp)lk. Define a sequence of continuous-time p.:ocesses {Y,)n by 

Y n (t) = Zt”‘ll /b n n for tE [O,l]: Zf’=hn 7 

where bn > 0 are normalizing constants. Hf iv, is a probability measure 
that gives mass pfi”) to the point (k--1)/b,, condition (ii) of Theorem 2.2’ 
is satisfied if 

(ii’) {(Vn)nb”*jn is tight. 
ondition (i) can easily be checked if we Q serve tlrat II”,(t); t E 

is a supermart ngale (submartingale). 

vestment to consider the subspace C[ 



enate the random element in I> 
orem 2.1 to prove that {Y& i 

giv:n. From the proof of Theorem 2.2 it follows that WC can choose A0 
so small that 

q(L(‘)(a 9 (a-e afeY) < E 9 and a E S$JaO) . 

et us now consider a Markov chain 
ilities p@)(a, l ) and such that 

1, ,.., znA} with transition 
=a] = 1, wherea 

ime for the szt (--00, a0 - 2~) U (a0 + ih~,4~ 3~ 

ov pro en shows 

!*I a-_ Q ( & 5 o, n 22 no, a e 



Proof. Sincep(“)(a, [a-l,~+l]~) = 0(1/17), it is no restriction to assume 
:hat $“)(a [a-l ~+-l]~) = 0. Let 
the meas& 

9 J, OW) be the characteristic function of (I 

Some simple calculations show that 

I$(nlm)(t) -- [qp)(t)Jm I L m K/n a (2.17) 

for alla,S IE R and all t E Ir,,rz]. 

sg 

Put ryp) = J x &?(dx) and (u!)~ =z: J (x---01~,)~ ~~?&%Y) and let 
nlm) = :c& Zi, where { Zi;i are independent random variables, each one 

with distribution &? Then by the Berry-Esseen :theorem on normal 
imation {see [6, p. 5421) WC have (notick that IZ,i - ru$ L 2) 



* 
Y

 
C

C
 

- E
 

*- 

d
 

- 



Q) %up{(u(y)--u(x))/~~x): X,J 
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and approximating the integrals by sums we can easil!y complete the proof. 

(b-a)-l J ,x ~‘“‘(b, dx) - j&+“)(a, dx) :< 1 + ~ln 

< eKd Sl.kp~,(id(J~)-U(jr))/ct( -X): Xjy E - 
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core . Let { Yn )n be a tigh I’ sequence of randoim Mark&r I/ lines. 
Assume that t/,1 e transition probaW’i;I:es satisjjr condition (X2)1 above as 
well as 

(i:) there ex&ts a constant K s&z that 

(b --(:I )- L x p’“‘(b, dx) -- j’ x /~(~)(a, dx 

(ii)1 Ptn)(a, (21’ ; x < y )) is non-increasing i’n a EE fir-~ fixed n E I@+d and 

Then every &n/t process of ( T(n),! ii; Q! stochasrkally contimm~!l~ Markm 
pmess having a F’eZler sem&group. 

Proof. By Prok; hoirav’s theorem, {I. YiJn is relatively compact in D 
so we CZtn With;oUt restriction i:Wil?IiE that { Yn}Il converges weakly t0 

mane t-andolm &ment 1’ in D[ 10, il .I ,, Frc~m condilion (3.2) ai30ve, it is 
easily deduce;d that (‘Y(r); t E [ 0, 1 ] ) ‘is stochasI2cadl~y continuous. Let usi 
tht:r; colnsidcr l:!h;e: ~,:r~r.:~ec.tion qk tMng x(e) E D[ 0, 111 into1 x(r) E: IL nr, is 
continuous at ~(0) E D[O, 18 if and olr~ly if x($ is continuous at t. Thus, 
the stochasticald continuity of (I’(!); t E [ 0, 1 ] :I impl.ies that 

as n + 00 (3.3) 

for all t cz [ 0, 111. In terlms of the tlransition probabilities, (3.3) c:aII be 
writ ten 

qy+o, 0) 2 Y(t) as fil 4 00 . 

Apply*ing Propositicon 3.2, we can then immet!liateYy show tllat 

{41nl(a .)I 
9 , nEN is tight for every a E and tE :O,l]. 

y tak ing a sul9seq.Rnc.e (n’) C if necessary, we get: 

{q,(“‘(a, e)), is weakly convergeM for all a E and all i E 1-l 1% 11 3 

(3.4) 



tiort (3.2), we can even show that 

(caf%q 0 &,l is weatkly convergent for all a 

LeI: c?’ clenol:e thr: cSass of all bounded increasing fu 
9up {(‘f (y, ..- f(x];)/(Y --x $: .“r, y E ,, _x :iit y ) is fin&:. 

a linear mapj~ing of’ C?’ into itself by the relation 

Al~~plying thi: Ma;rkrov property and the assumption 13.2) mce a 

is ;a routine :o pro’i/e that 

11, f(Y(s)) = 5{_f( Y(s+t:,) 1 Y(d'/ , . L1.S. . j 

IJntil now we have only defined N,. f’(a) for J” 
mediately extend the derfinition to the linear sf 
differences, Iof fu nctisns in C? I. Then Ht belcome 
tor on 9. Since CD is dew: in the space CI?, csrlsistin 
continuous functions wlith limits at +- and --o= 
unid+ely to a positive lineliar operator on (3 r su 
Ri.esz’ repres.Mation theorem, there exists, 
unique probability measure p&a, 0) such that 

djF, f(a) = Jpt(a, ddf(xb 



for al! bo~ncled ~wOWKN~ firnctions ,;f an 
A rqretition of tF~e arguments in this section shows that Tl;eo rem 3.4 
will canlhue to ! old true. 

4. Tightness conc:Mms far sequenced; of staehaahcally monstane 

In this section the random Markold lines { Y,.&t); t E [&I]) will always 
be const:ructed fi am a sequence {X, O, Xn l, .& 2, .m.9 & ,Jn elf stochas- 
tically monotonet Markov ch;iins If ir,), is :;? -&onverg&t wir:h limit 
-[Y(t); t E [ 0,l I)? we know that the one-dimensional projectio’ns YJt) 
conv~ge weakly to Y(t) with a possible exception for a counu:able set of 
time-points, It is our intention to fin1 out to what extent we can argue 
in the opposite direction. Actually w :: shall show that, under .rather 
general conditions, i$t is possible to deduce tightness of {Y,}, &ectly 
from the properties of the projections Y,#) and Y(t). The mziin tlools 
will bile some well-kmlown theorems on mar”Lingales. Thlerefore, we shall 
start by proving a lemma on the convergezce of a sequence of’ martingales 
that might be useful even if we can not establish tightness of the corre- 
sponding; sequence loif random elements in Di:O, 1;. The notation is the 
same as in the previous sections. 



p(F$ F$$ > 6 , k = 1, 2, . . . . tn , (4.2) 

for all sufficiertly large ,yl’ E N. 
Be cause {F,“‘)} msN,t~[ 0, l] is tight, vve can flind a constant K(, such that 

I=(@ I( K. ) - F’jn) ( -- K. ) :>p I-- 6 r (4.3) 

for ail r E Q n [ 0, I] iand. ~2 E N. By (41.2) and the definition of the Levy 
metric we can, for k := 1,2, . . . . ~12 and all sufficienl:ly ‘large t7’ E 
x,f,k so that either 

By (4lL3), JC,,, k E [ -X,:,, X,]. Let us now cover the1 interval [ -. 

K,-t-iii] with knitely many inter& Ij = [a- be] e:lch olne havit 
d + 6. Denote by Lrf”) and L@): 

t 9 

respiect ively , the 
and down-crossings by the functialn {Y,(t); t 

the interval 6. Then by (4.4) and ( 
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SimiPar argue ts show that 

and this completes the pr 
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a subsequence { Y,+t such that 
w-lim (F, : t I’ 1) = F’, . The assumption, 

rguments Ieacbg to ( 

br every compact set C’ and every E > 0. 
E) inequalities show that 

Thus, \ry Theorem 2.1, {Ynf~)nt~ is weakly conditionally compact and 
{ Yfl’}n’ must ccfntain a convergent subsequence. 
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his means that) for all function US 

h(Yn)‘h(aR+b) 

9 -convergence in (4.18) has been proved by 
ection 5 we shall ive a more detailed discussi 

of sequences of branching pracesses. 

Proceeding in the same spirit as in Lemma 4.1 and Theorem 4.2, we get: 

1ewe .3. Let ( Y,),, be Q’ seqerertce of random Markov lines correm@ 
spondiig to a se tlence 4 If st 3cha.stically monotorze ar kov chaks. A P, 
siime that 

{IYn( l)I}: I”1 E 
(ii) sup (( 1 /tl)-‘J (x -a) p(“)(a, dx): a 

inf{(l/& j(x-a)p(“)(a,dx,k a 
(iii) ji~r eater_t’ t E (0, I], the prujectio 

distnbtrtion it;r with strictly increasin 
Then the sequenzce { Yn), of random elemen 
tionalZy c*ompact and every limit corae,sponds to a stochastically COP 
tiiztnous pr0l’es.s on the interval [ 0, I]. 

hod as in Lemma 4.1, we can imme- 
) exists for all : E (0, I]. Denote this 
= Ft for at least one time-point It. 

ince the Levy distance p(F,, G,) > 0 

for uncountably many values of t, we can fina a 6 > 0 such that 
for infinitely many t. is means that, for any positive 

kl< Y2 c”: t+J < .I” < 

that 



uniformly in y1 ecause the underlyiilg arkov chains (& )~._.o art‘ 
stochastically monotone, the convergence in (4.19) must be uniform in 
a E C for all camp sets C. Applying Theoremm 2.1 WC can then com- 
plete the proof of 

We shall terminate this section by discussing the convergence of se- 
quences of increasing and stochastically monotone Markov chains. Pn 
this case the conditions for con&ional compactness become much 
simpler. In arA important special case we can also show that every limit 
process (Y(t); t E [ 0, 11) is a Markov process if, for all ,I E (0, 11, ‘I’(t) has 
a strictly positive density on (O,=). These results are summarized in the 
following theorem. 

. Let {r,(t); t E [ 0, I] III be the random Murkov Cues Lor- 
responding to a sequerlce of increasing arzd stochastically mono toue 
Markov chains. Then the sequence (Y,], is weakly coud,tioually COPZI- 
pat:’ provided 

(i) j’ov each t E (0, l] 9 Y’,(t) cwwcrg~s weuklv to some disuihtrtiorl ,F+*, 
* with strictl}, positive deusity WI (0, -)I 

(ii) for every 6 b Oand every compact set C C- [0,4, 

np(*$l, (d-6,10-6)") + 0 QS 11 + O” , 

trnijbrmly in d E C. 
Moreover, every limit process is a Markov pr(~cess drtd hlks co/t tirttrous 
sdmp/LS paths with probability ! . 

e The sequence ( 



and c = c(n, ecaliing t@f the *~ *, 
re stoc~astica~~y morio~one we can shsw that .1 r 

thaf c I cO, where cO = cO(b, 
and e. Using exactly the sa 

in the proof of Lemma 4.1 we can choose A1 E (0, 1) so small that 

qf,)(a, [a,a++e)e) (4.22) 

for all n and a E [O,co]. y (4.21), (4.22) and @ apman-Kslmo- 
orov’s equation we then get 

(4.23) 

ut 



Qf!(biy [big Ci)) $ I E (4.252 

holds simultaneously for all d 

Let, for all a the hitting-time of {Y&9: t E [ 0, l] } for 
the interval [ =2if Y(t)islessthanaforalltE [OJ]. 
Let us then c (“).‘~t is no restriction to assume that 
b, < cl C b2 < e2 < . . . < b, < c,. ?%rthermore, by the assumption (ii), 

P[P< 1 I= 1 
Cl -- ’ ¶ 2 3 l e*, m] f7 {TE) > bi,l forsomeiIm--l)+O 

asn+7 (4.26) 

Using the (strong) Markov property, (4.25) and Q&26), we can then see 
that 

could be rnade arbitrarily small if m could be chowr arbitrarily lar 
But this wntradi s the assumption (0. bus there exists an integer 
mQ 2 1 such that {mo) holds true and {m) does not hold fo 

ther hand, if there xists such a maximal w+, we can fin 
and, fos any no E and any sphere S,(b), m. disjoint i 

vals [bl, cl] C S,(b), i = 1 9 2, .,., wzo, such that the inequalities 

1 l@--~~, ICb-8, b--27)) 5 )e Y 
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We shall now exalnine the conver nce in these two th 
prove that convergence of the fin:ite imensional dist 
yveak convergence in f 0, 11, provided the probabilit 
@j$)]k h as mean value 1 for all n E s we can see from the proof, it 
is easy to generalize this to the case n the mean value is of the form 

Let us start by examining the convergence in Theorem 5.1. Since 
(Cn/Bq)n evidently must converge an {IYn(l)lI = 
there exists a constant K such that 

tIy,(O)IIt + E(IY,(l)I)< K (5.3) 

for all yt E ever, each {Y#; t E {k/n: k = 0, 1, 2, . . . . az)) is a mar- 
tingale. Hence, 

[sup{IY,(t)l: If [O, l])> h] 4 2K/h, (5.4) 

for all X > 0 and icbt E , an.d the first condation in Theorem 2.1 is satis- 
fied. 

efore we start examining the transition probabilities q~%z,E), let us 
consider the following: 
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ove that the transition probabilities q$%a, a) satisfy 
condition (ii) in eorem 2.1. y assumption, there is a pcint t0 > 0 
such that 

Proceeding as in the proof of Lemma 4.1, we get 

w-lim Y(t) = Y(tO) . (5.6) 
ttto 

From (S.-S), (5.6) and the proof of Lemma 4.1, it follows that there 
exists a strictly positive real number b such that 

qF)(b 9 (b-6 b+tQc) + 0 1 (57) 

uniformly in yt E , for every 6 > 0. 
Since {Z,(“))i is an integer-valued process, we can set 

qr)(a, 0) = qr)( k/b, 9 0) for (k-1)/b, <c5kIbn- 

r each A and n, we can find a set (Ill; i = 1,2,3, . ..> of indepen- 
dent and identic4ly distributed random vakbles such that 
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and (Y”(tr), Y”(t,), . . . . Yvv( tk)) coinci e for all t,, t2, . . . . tk E T. Applying 
[ 1, Theorem 14.51, we conclude tha Y’ and Yv’ define the same prob- 
ability distribution in D[ 0, 1 1. ut a conditionally compact seq 
with only one limit point mus e convergent m Thus, 

YnS Y' asn+m. 

Since (I”(t); t E [ 0,1]} is continuous in probability by Theorem 3.4, 

for all 0 5 tr 5 t2 5 . . . (: tk < 1. But then the finite-dimensional distri- 
butions af Y’ coincide with those of Y in (5.2), and this completes the 
discussion of Theorem 5. i . 

We shall now turn to the discussion of the convergence in Theorem 
5.2. We start by giving a result from the theory of triangular arl.ays. 

. Let (2, I, Zn,2, . . . . 3 
Zn ,I},, be a triangular array of random , 

variables such that 
(i) for each n the variables Zn,l, Zn 2, . . . . Zn,, are identically distri- 

buted and independent; 
ni > -1, j= 1, 2, . . . . n, n = 1, 2,3, . . . . 
iZ,,3 = 0, i = 1, 2, . . . . n, n = 1, 

With Sn = 2$=1 Zn j we then have SUpnEN 
stochastically bohnded. 

*? provided IS,), is 

owing [6, p. 3081, we introduce the corltinuous truncation 
function 

r,(x) = ( x for IxlL:s, 
+s for 1x12s. 

= T,(Zn,j) and Zi,j = 
oreover, for s sufficientry largt:, 

bounded. Still 
nded and so { 

non-negative and E(S,) = 0, we obviously have 
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and the proposition is proved. There is no difficulty to generalize this 
i%sUlt "0 triangUh' arrays {zn,[, Zn,z, . . . . zn,k,}n, where (k,)n is an ar- 
bitrary sequence tending to infinity. 

There is no loss of generality in assuming that a, = c, in Theorem 5.2. 
If we exclude the case when the limit process is degenerate, we can also 
assume that inf { b,. : n E } > 0. Let us now consider the probability law 
of YJ 1). It coincides with the law of Z$t (Xi -1)/b,, where the Xi are 
independent random variables representing the number of individuals 
in the .th generation of (zir)}i who are descended from each of the e, 
original ancestors. Proposition 5.4, with Z, i = (Xj - 1)/b), shows that 9 

SUP E{lYn(l)l}< O” . 
EN 

Noticing that {:Yn(t); t E {k/n : k = 0, 1,2, . . . . n)} is a martingale, we have 
shown that the sequence {Y,,], satisfies conditicn c i) of Theorem 2.1. 
Proceeding as in the discussion of the convergence in Theorem 5.1, we 
can prove that { Yn}, is conditionally compact. Thus, we have the follow- 
ing. 

Theorem 5.5. Let (%i’“)}j, for each n E , denote the random variables 
of a cv?tical Galton- Watson branching process and define by 5 c 1 a se- 
quence of continuous-time processes {‘v,(t); t E [ 0, I]},,. .¶ssu:ize that 
there is a non-degenerate stochastic process {Y(t); t E [ 0, l] ) such that 
the finite-dimensional distributions of { YJt); t E [ 0, l] ) converge to 
those of {Y(t); t E [ 0, l] }. Then there is a random elemc)‘nt (Y”$); 
t E [0, 13) in D[ 0, l] with the same finite-dimensional distributions as 
{Y(t); t E [O,l]} and such that 

Y,2 Y' asn+m. 

emark. In ths paper we have :>nly considered Markov branching pro- 
cesses. In a coming paper, corresponding tightness and convergence re- 
sults for age-dependent branching processes will be given. 
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