ON THE TRANSITION FROM A MARKOV CFAIN TO A CONTINUOUS TIME PROCESS

Anders GRIMVALL
Department of Mathematics, Linköping University, Linköping, Sweden

Received 19 January 1973
Revised 13 June 1973

Abstract

Starting from a real-valued Markov chain $X_{0}, X_{1}, \ldots, X_{n}$ with stationary transition probabilities, a random element $\{Y(t) ; t \in[0,1]\}$ of the function space $\mathrm{D}[0,1]$ is constructed by letting $Y(k / n)=X_{k}, k=0,1, \ldots, n$, and assuming $Y(t)$ constant in between. Sample tightness criteria for sequences $\{Y(t) ; t \in[0,1]\}_{n n}$ of such random elements in $D[0,1]$ are then given in terms of the one-step transition probabilities of the underlying Markov chains. Applications are made to Galton-Watsor: branching processes.

AMS Subj. Classif.: Primary 60B10, 60J05; Secondary 60 J80
measures on function spaces tightness
Markov chains branching processes

1. Introduction and summary

Let $\left\{X_{n, 0}, X_{n, 1}, X_{n, 2}, \ldots, X_{n, n}\right\}_{n}$ be a sequence of real-valued Markov chains with stationary transition probabllities $p^{(n)}(a, \cdot)$; that is, for every Borel set E, the relation

$$
\begin{equation*}
\mathbb{P}\left[X_{n, k+1} \in E \mid X_{n, 1}, X_{n, 2}, \ldots, X_{n, k}\right]=p^{(n)}\left(X_{n, k}, E\right) \tag{1.1}
\end{equation*}
$$

is satisfied with probability 1 . With each of these Markov chains we associate a continuous-time process $Y_{n}(t)$ defined by

$$
Y_{n}(t)= \begin{cases}X_{n, k} & \text { for } k / n \leq t<(k+1) / n \tag{1.2}\\ X_{n, n} & , \text { for } t=1\end{cases}
$$

Then $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ can be considered as a random element of the space $\mathrm{D}[0,1]$ consisting of all functions on [0,1] with no discontinuities of the second kind. With the Skorokhod topolog:' (see [1, p.1111), this
space becomes a complete separable metric space. In this paper we will study D-convergence of the sequence $\left\{Y_{n}(t) ; t \in[0,1]\right\}_{n}$; that is, weak convergence of the corresponding sequence of probability measures on D $[0,1]$.

Assume that $\left\{Y_{n}(t) ; t \in[0,1]\right\}_{n}$ is 2 neonvergent with limit $\{Y(t) ; t \in[0,1]\}$ and let h be a functional on $D[0,1]$ which is continuous with respect to the Skorokhod topology. Then we have (see [1, p. 301)

$$
\begin{equation*}
h\left(Y_{n}\right) \stackrel{w}{\rightarrow} h(Y) \text { as } n \Rightarrow \infty . \tag{1,3}
\end{equation*}
$$

This shows that \mathcal{D}-convergence can be a useful tool when we want to study properties of the processes $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ and $\{Y(t) ; t \in[0,1]\}$ that can not be erpressed in terms of their finitertimensional distributions. If the distribution of $h\left(Y^{\prime}\right)$ is known, (1.3) gives an approximate distribution of $h\left(Y_{n}\right)$ for large $n \in N$. On the other hand, if the distribution of $h(Y)$ is unknown, we can sometimes choose the approximating processes $\left\{Y_{n}(t), t \in[0,1]\right\}$ so simple that (1.3) yields some informa. tion about the distribution of $h(Y)$. The last method is particularly important when simulation techniques are employed.

By a famous theorem due to Prokhorov (see [1, p. 37]), a sequence $\left\{Y_{n}\right\}_{n}$ of random elements in $\mathrm{D}[0,1]$ is conditionally compact if and only if it is tight. This suggests a useful methe d to establish \mathcal{D}-convergence. First we show that the finite-dimensional distributions converge and then we prove that $\left\{Y_{n}\right\}_{n}$ is tight (see [1, p. 124]). From classical probability theory we have a rich supply of tools for determining con" vergence of finite-dimensional distributions. Therefore, we will in this paper confine our interest to tightness criteria.
\mathcal{D}-convergence in connection with Markov processes, in particular diffusion processes, has been treated by Skorokhod, Gikhman, Borovkov and others. Since the infinitesimai approach to a diffusion process is the most convenient one, their conditions for \mathcal{T}-convergence usually have been based on the asymptotic behaviour of the two first moments of the increments within a short time-interval. Here we will mainly emphasize "continuity properties" of the transition probabilities $p^{(n)}(a, \cdot)$ considered as functions of a. It has also been our aim to give our tightness criteria a simple form. Therefore, they have, to the greatest possible extent, been based on properties of the one-dimensional projections of our processes and the one-step transition probabiiitics of our Markov chains.

The pian for this paper is as follows. In Section 2 we start by show. ing how the general tightnese sonditions in [1] can be simplified, when the processes $\left\{Y_{n}(t) ; t \in\{0,1]\right\}$ are constructed from Markov chains as in (1.2). At the end of the same section we make our first attempt to relate the tightness of the sequence $\left\{Y_{n}\right\}_{n}$ to the properties of the projections $Y_{n}(t)$. The main results here are generalizations of corresponding results in [14].

Even if the $\left\{Y_{n}(t) ; t \in\{0,11\}\right.$ are constructed from Markov chains. all limit processes need not be Markov processes. In Section 3 we will give sufficient conditions for this to occur. These conditions will take a particularly simple form if the $\left\{Y_{n}(t) ; t \in\{0,1]\right\}$ are constructed from stochastically monotone Markov chains; that is, Markov chains such that the transition probabilities $p(a,\{x ; x \leq y\})$ are non-increasing in a for each fixed y.

In Section 4 we will continue to study the relations between the properties of the projections $Y_{n}(t)$ and the tightness of the sequence $\left\{Y_{n}\right\}_{n}$. All Markov chains considered in that section are stochastically monotone.

Section 5 is devoted to an application of the theory in earlier sections. We will study \mathcal{D}-convergence of a sequence of normalized critical Galton-Watson processes. In fact, we will be able to show that \mathcal{D}-convergence in this case is equivalent to convergence of the finite-dimensional distributions, provided we make an exception for degenerate limits.

2. Conditional compactness of a sequence of Markov chains

From now on, $\left\{X_{n, 0}, X_{n, 1}, \ldots, X_{n, n}\right\}_{n}$ will always denote a sequence of Markov chains with stationary transition probabilities. If nothing else is stated, we will assume that $\mathbf{P}\left[X_{n, 0}=0\right]=1$. The one-step transition probabilities of the $n^{\text {th }}$ Markov chain are denoted by $p^{(n)}(a, \cdot)$. Transition probabilities corresponding to several steps are denoted by $a_{\Delta}^{(n)}(a, \cdot)$, where $n \Delta$ is the number of steps and Δ is assumed to be chosen from the set $\{j / n: j=0,1,2, \ldots, n\}$. Thus, for every Borel set E, the relation

$$
\mathbb{P}\left[X_{n, k+n \Delta} \in E \mid X_{n, k}\right]=q_{\Delta}^{(n)}\left(X_{n, k}, E\right)
$$

is fulfilled with probability 1.
The continuous-time process $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ defined by (1.2) will
be called the process or the "andom Markov line" associated with $\left\{X_{n, 0}, X_{n, 1}, \ldots, X_{n, n}\right\}$. When $\left\{Y_{n}(t) ; t \in[0,1]\right\}$, considered as a random element of $\mathrm{D}[0,1]$, converges wakly to the random elemeni $\{Y(t)$; $t \in[0,1]\}$ of $D[0,1]$, we will write

$$
\begin{equation*}
Y_{n} \xrightarrow{D} Y \quad \text { as } n \rightarrow \infty . \tag{2.2}
\end{equation*}
$$

All our theorenas will be stated for Markov chains with the real line as common state space. But there should be no difficulty to give corresponding results when the state space is the half-line $[0, \infty)$ or a compact interval.

We are now ready to give the fundamental theorem on conditional compactness of a sequence of random Markov lines.

Theorem 2.1. Let $\left\{X_{n, 0}, X_{n, 1}, \ldots, X_{n, n}\right\}_{n}$ be a sequence of Markov chains with transition probabilities $q_{\Delta}^{(n)}(a, E)$ satisfying (2.1), and let $\left\{Y_{n}(t)\right.$: $t \in[0,1]\}_{n}$ be the associated sequence of continuous-time processes. Assume that
(i) $P\left[\sup _{0 \leq t<1}\left|Y_{n}(t)\right|>\lambda\right] \rightarrow 0$ as $\lambda \rightarrow \infty$, uniformly in $n \in \mathbf{N}$;
(ii) for every compact set C and every $\epsilon>0$ there exists $\delta=\delta(C, \epsilon)>C$ such that

$$
q_{\Delta}^{(n)}\left(a,(a-\epsilon, a+\epsilon)^{c}\right)<\epsilon
$$

for all $n \in \mathbf{N}, a \in C$ and $\Delta \leq \delta$.
Then the sequence $\left\{Y_{n}(t): t \in[0,1]\right\}_{n}$ of randon: elements in $\mathrm{D}[0,1]$ is tight.

Proof. We shall show that the conditions for tightress given in [1, Theorem 15.2] are satisfied. But this can be done, by an almost verbatim repetition of the arguments in ! 14, p. 182]. Further details are therefore omitted.

Let $p^{(n)}(a, a+\mathrm{d} x)$ denote the probability measure which to each Borel set E assigns the number $p^{(n)}\left(a, E_{a}\right)$, where $E_{a}=\{a+x ; x \in E\}$. Intuitively, $p^{(r)}(a, a+\mathrm{d} x)$ corresponds to the conditional distribution of $X_{n, k}-X_{n, k-1}$, given $X_{n, k-1}=a$. Although the transition probabilities $q^{(n)}(a, E)$ always can be expressed directly in terms of the one-step transition probabilities, it is in many cases easier to calculate the convolutions of the measures $p^{(n)}(a, a+\mathrm{d} x)$. Therefore, we shall state and
prove two theorems where the tightness conditions are given in terms of these convolutions. But first we consider the case when $X_{n, k}$ is the $k^{\text {th }}$ pertial sur: of a sequence of independent equalily distributed random variables. Then the measures $\mu_{a}^{(n)}(\mathrm{d} x)=\mu^{(n)}(\mathrm{d} x)$, defined as in Theorem 2.2 below, can be taken independent of $a \in \mathbf{R}$, and by a theorem due to Prokhorov (see [14, p. 197]), the sequence $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ in $\mathrm{D}[0,1]$ is tight if and only if $\left\{\left(\mu^{(n)}\right)^{n *}\right\}_{n \in \mathrm{~N}}$ is tight. The following theorem generalizes this fact.

Theorem 2.2. Let $\left\{X_{n, 0}, X_{n, 1}, X_{n, 2}, \ldots, X_{n, n}\right\}_{n}$ be a sequence of Markov chains with transition probabilities $p^{(n)}(a, E)$, and denote the measure $p^{(n)}(a, a+\mathrm{d} x)$ by $\mu_{a}^{(n)}(\mathrm{d} x)$. Assume that
(i) $\left\{\left(\mu_{a}^{(n)}\right)^{n}\right\}_{n \in \mathbf{N}, a \in \mathbf{R}}$ is tight.

Then the random elements $\left\{Y_{n}(t): t \in[0,1]\right\}$ associated with the Markov chains form a tight sequence in $\mathrm{D}[0,1]$.

Proof. Let $\varphi_{a}^{(n)}$ be the characteristic function of $\mu_{a}^{(n)}$. The family $\left\{\left(\mu_{a}^{(n)}\right)^{n^{*}}\right\}_{n \in \mathbf{N}, a \in \mathbf{R}}$ is tight if and only if $\left\{\left(\varphi_{a}^{(n)}\right)^{n}\right\}_{n \in \mathbf{N}, a \in \mathbf{R}}$ is equicontinuous at zero. Thus, for every $\epsilon>0$, there exists a $\delta=\delta(\epsilon)>0$ such that

$$
\begin{equation*}
\left|\left(\varphi_{a}^{(n)}(t)\right)^{n}-1\right|<\epsilon \quad \text { for all } t \in[-\delta, \delta], a \in \mathbb{R}, n \in \mathbf{N} \tag{2.3}
\end{equation*}
$$

T sing the inequalities $\log (1+x)<x$ and $\mathrm{e}^{x}<1+2 x$, valid for all x in some neighbourhood of zero, we conclude that

$$
\left|\varphi_{a}^{(n)}(t)\right|>1-2 \epsilon / n \quad \text { for all } t \in[-\delta, \delta], a \in \mathbf{R} \text { and } n \in \mathbb{N} .
$$

Similarly, for all $t \in[-\delta, \delta\rceil, a \in \mathbf{R}$ and $n \in \mathbf{N}$, there exists an integer $j \in\{0,1,2, \ldots, n\}$ such that

$$
\begin{equation*}
\arg \varphi_{a}^{(n)}(t) \in[2 j \pi / n--2 \varepsilon / n, 2 j \pi / n+2 \epsilon / n] . \tag{2.5}
\end{equation*}
$$

But each $\varphi_{a}^{(n)}(t)$ is continuous, and $\arg \varphi_{a}^{(n)}(0)=0$. Thus we must choose $j=0$ in (2.5), and it follows that

$$
\left|\varphi_{a}^{(n)}(t)-1\right|<4 \epsilon / n \quad \text { for ali } i \in[-\delta, \delta], a \in \mathbb{R}, n \in \mathbb{N} .
$$

(Some of the arguments above might fail if ϵ is large but we need only consider sufficiently small ϵ.)

If $\psi_{k}^{(n)}$ denotes the characteristic function of $X_{k, n}$, we can easily show by induction that

$$
\left|\psi_{k}^{(n)}(t)-1\right| \leq 4 \epsilon k / n \quad \text { for all } t \in[-\delta, \delta] .
$$

Hence, by a well-known inequality for characteristic functions (see [10, p. 651), we get

$$
\begin{equation*}
\mathbb{P}\left|\left|X_{k, n}\right|>2 \delta^{-1}\right] \leq \delta^{-1} \int_{-5}^{6}\left|1-\psi_{k}^{(n)}(t)\right| \mathrm{d} t \leq 8 c k / n \tag{2.6}
\end{equation*}
$$

In order to show that condition (i) in Theorem 2.1 is satisfied we need the ollowing Kolmogorov type inequality.

Propositicn 2.3. Let $\left\{Z_{0}, Z_{1}, Z_{2}, \ldots, Z_{n}\right\}$ be a homogeneous Markov chain such that, for some $\epsilon>0, m \in \mathrm{~N}$ and $\lambda_{0}>0$,

$$
\mathrm{P}\left[\sup \left\{\left|Z_{j}-Z_{i}\right|: 0 \leq(j-i) / n<1 / m\right\}>\lambda_{0} \mid Z_{i}\right]<\epsilon \quad \text { a.s. }
$$

Assume that we can choose $\lambda_{1} \geq \lambda_{0}$ so large that

$$
\sup \left\{\mathbf{P}\left[\left|Z_{j}\right|>\lambda_{1}\right]: j=1,2, \ldots, n\right\}<\epsilon / 2 m
$$

Then we have

$$
\mathrm{P}\left[\sup \left\{\left|Z_{j}\right| . j=1,2, \ldots, n\right\}>2 \lambda\right]<2 \epsilon
$$

for all $\lambda \geq \lambda_{1}$.
Proof. We need only consider the case $n>2 m$. Let τ be the hitting-time for the set $\left(2 \lambda_{1}, \infty\right) \cup\left(-\infty,-2 \lambda_{1}\right)$ and put $\tau=n+1$ if $\sup \left\{\left|Z_{j}\right|: j=1,2, \ldots, n\right\}$ $\leq 2 \lambda_{1}$. Since $n>2 m$, we can choose integers n_{i} such that $(i-1) / 2 m<$ $n_{i} / n \leq i / 2 m$ for $i=1,2,3, \ldots, 2 m-1$ and $n_{2 m} / n=1$. Then we get

$$
\begin{align*}
& \mathbb{P}\left\{\tau \leq n, \sup \left\{\left|Z_{j}-Z_{\tau}\right|: 0 \leq(j-\tau) / n<1 / m\right\} \leq \lambda_{1}\right] \leq \\
& \quad \leq \sum_{i=1}^{2 m} \mathbb{P}\left[i Z_{n_{i}} \mid>\lambda_{1}\right]<\epsilon . \tag{2.7}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
& \mathbb{P}\left[\tau \leq n, \sup \left\{\left|Z_{j}-Z_{\tau}\right|: 0 \leq(j-\tau) / n<1 / m\right\}>\lambda_{0}\right]= \\
& \quad=\sum_{i=1}^{n} \mathbb{P}\left[\tau=i, \sup \left\{\left|Z_{j}-Z_{i}\right|: 0 \leq(j-i) / n<1 / m\right\}>\lambda_{0}\right\} . \tag{2.8}
\end{align*}
$$

By conditioning with $\mathfrak{\Re}\left(Z_{0}, Z_{1}, \ldots, Z_{i}\right)$ and using the Markov property we get
$\mathbb{P}\left\{\tau \leq n, \sup \left\{\left|Z_{j}-Z_{\tau}\right|: 0 \leq(j-\tau) / n<1 / m\right\}>\lambda_{0}\right]=$
$=\sum_{i=1}^{n} \mathbb{E}\left\{\mathbb{P}\left\{r=i, \sup \left\{\left|Z_{j}-Z_{i}\right|: 0 \leq(j-i) / n<1 / m\right\}>\lambda_{0} \mid \mathfrak{O}\left(Z_{0}, Z_{1}, \ldots, Z_{i}\right)\right]\right\}$
$=\sum_{i=1}^{n} \mathrm{E}\left\{I_{\{i\}}(\tau) P\left\{\sup \left\{\left|Z_{j}-Z_{i}\right|: 0 \leq(j-i) / n<1 / m\right\}>\lambda_{0} \mid Z_{i}\right\}\right\}$
$<\epsilon \sum_{i=1}^{n} \mathrm{P}[\tau=i] \leq \epsilon$.
Hence, by (2.7) and (2.9),

$$
\begin{align*}
& \mathrm{P}\left[\sup \left\{\left|Z_{j}\right|: j=1,2, \ldots, n\right\}>2 \lambda\right] \leq \mathrm{P}[\tau \leq n] \\
& =\mathbf{P}\left[\tau \leq n, \sup \left\{\left|Z_{j}-Z_{\tau}\right|: 0 \leq(j-\tau) / n<1 / m\right\} \leq \lambda_{1}\right] \\
& \tag{2.10}\\
& \quad+\mathrm{P}\left[\tau \leq n, \sup \left\{\left|Z_{j}-Z_{\tau}\right|: 0 \leq(j-\tau) / n<1 / m\right\}>\lambda_{1}\right]<2 \epsilon,
\end{align*}
$$

for all $\lambda \geq \lambda_{1}$, and this complotes the proof of the proposition.
We now return to the proof of Thecrem 2.2. By the same argu ments as those preceding Proposition 2.3, we can prove that

$$
\left|\psi_{k}^{(n)}(t)-1\right| \leq 4 \epsilon k / n \quad \text { for all }|t| \leq \delta,
$$

where $\psi_{k}^{(n)}$ now denotes the characteristic function of $X_{n, k}-X_{n, 0}$ and the distribution of $X_{n, 0}$ is arbitrary. Starting from the inequality $|\varphi(t+h)-\varphi(t)| \leq \sqrt{2}|\varphi(h)-1|$, valid for all characteristic functions $\varphi(t)$, we can easily prove that

$$
\begin{equation*}
|\varphi(t)-1| \leq k \sqrt{2|\varphi(t \mid]-1|}, \quad k=1,2,3, \ldots \tag{2.11}
\end{equation*}
$$

Applying (2.11) to the characteristic function $\psi_{k}^{(n)}$, we get
$\left|\psi_{k}^{(n)}(t)-1\right| \leq\left(\left[\delta^{-1}\right]+1\right) j \sqrt{2} \cdot 4 \epsilon k / n \quad$ for all $i \in[-j, j]$,
and from (2.12) we obtain

$$
\begin{gather*}
\mathbb{P}\left[\left|X_{n, k}-X_{n, 0}\right|>2 / j\right] \leq j^{-1} \int_{-j}^{j}\left|\psi_{k}^{(n)}(t)-1\right| \mathrm{d} t \leq 2 j\left(\left[\delta^{-1}\right]+1\right) \sqrt{8 \epsilon k / n} \\
\text { for all } j \in \mathbf{N} \tag{2.13}
\end{gather*}
$$

Since the distribution of $X_{n, 0}$ is arbitrary, (2.13) is equivalent to

$$
\begin{align*}
& \sup _{a \in \mathbb{R}} \int_{\left|x_{k}-a\right|>2 / j} p^{(n)}\left(a, \mathrm{~d} x_{1}\right) p^{(n)}\left(x_{1}, \mathrm{~d}_{n_{2}}\right) \ldots p^{(n)}\left(x_{k-1}, \mathrm{~d} x_{k}\right) \leq \\
& \quad \leq 2 i\left(\left[\delta^{-1}\right]+1\right) \sqrt{8 \epsilon k_{i} n} . \tag{2.14}
\end{align*}
$$

By Kolmogorov's inequality for Markov chains (see [15, p. 157]), we can easily show that, for every $j \in \mathbf{N}$,

$$
\begin{align*}
& \sup _{a \in \mathrm{R}} \sup _{\left\{\left|x_{i}-a\right|:\right.} \ldots \int_{0 \leq i \leq k\}>4 / j} p^{(n)}\left(a, \mathrm{~d} x_{1}\right) p^{(n)}\left(x_{1}, \mathrm{~d} x_{2}\right) \ldots p^{(n)}\left(x_{k-1}, \mathrm{~d} x_{k}\right) \leq \\
& \leq 4 j\left(\left[\delta^{-1}\right]+1\right) \sqrt{8 \epsilon k / n}, \tag{2.15}
\end{align*}
$$

for all k / n sufficiently small. For our original Markov chains (2.15) means that

$$
\begin{align*}
& \mathbb{P}\left[\sup \left\{\left|X_{n, m+i}-X_{n, m}\right|: 0 \leq i \leq k\right\}>4 / j \mid X_{n, m}\right] \leq \\
& \left.\quad \leq 4 j\left(\mid \delta^{-1}\right]+1\right) \sqrt{8 \epsilon k / n} \quad \text { a.s. } \tag{2.16}
\end{align*}
$$

That condition (i) of Theorem 2.1 is fulfilled now follows from (2.6), (2.16) and Proposition 2.1, while (ii) follows directly from (2.14). Thus $\left\{Y_{n}\right\}_{n}$ is tight.

Condition (i) of Theorem 2.2 is in general too strong to be useful in applications. Therefore, we shall prove two simple generalizations of that theorem. The first one, Theorem 2.2^{\prime}, is natural to use when we are deal-
ing with sequences of normalized branching Markov processes. The second one, Theorem 2.4 , can be applied when we are studying convergence to a Brownian motion with reflecting barrier and similar processes.

Thecrem 2. 2 . Assume that

(i) $\mathrm{P}\left[\sup \left\{\left|Y_{n}(t)\right|: 0 \leq t \leq 1\right\}>\lambda\right] \rightarrow 0$ as $\lambda \rightarrow \infty$, uniformly in $n \in \mathbf{N}$;
(ii) $\left\{\left(\mu_{a}^{(n)}\right)^{n *}\right\}_{a \in C, n \in \mathbf{N}}$ is tight for every compact C.

Then the sequence $\left\{Y_{n}\right\}_{n}$ is tight in $\mathrm{D}[0,1]$.
Proof. Consider a Markov chain with one-step transition probabilities

$$
q^{(n)}(a, \cdot)= \begin{cases}p^{(n)}(\lambda, \cdot) & \text { for } a>\lambda \\ p^{(n)}(a, \cdot) & \text { for }|a| \leq \lambda \\ p^{(n)}(-\lambda, \cdot) & \text { for } a<-\lambda\end{cases}
$$

and let $Y_{n}^{\prime}(t)$ be the corresponding random Markov line. By Theorem 2.2, $\left\{Y_{n}^{\prime}\right\}_{n}$ is tight in $\mathrm{D}[0,1]$. Observing that

$$
\mathbb{P}\left[w_{\delta}^{\prime}\left(Y_{n}\right) \geq \epsilon\right] \leq \mathbb{P}\left[w_{\delta}^{\prime}\left(Y_{n}^{\prime}\right) \geq \epsilon\right]+\mathbb{P}\left[\sup \left\{\left|Y_{n}(t)\right|: 0 \leq t \leq 1\right\}>\lambda\right],
$$

where w^{\prime} is the continuity modulus defined in [1, p. 110], and using $1:$, Theorem 15.2], we can easily complete the proof.

Application. For sequences of normalized Galton-Watson processes the conditions of Theorem 2.2^{\prime} become very simple. Let, for each $n \in \mathbf{N}$, $\left\{Z_{j}^{(n)}\right\}_{j}$ denote the variables of a Galton-Watson process, where the number of off-spring of one individual is determined by the probabilities $\left\{p_{k}^{(n)}\right\}_{k}$. Define a sequence of continuous-time pacesses $\left\{Y_{n}\right\}_{n}$ by

$$
Y_{n}(t)=Z_{[n t]}^{(n)} / b_{n} \quad \text { for } t \in[0,1] ; \quad Z_{0}^{(n)}=b_{n},
$$

where $b_{n}>0$ are normalizing constants. If ν_{n} is a probability measure that gives mass $p_{k}^{(n)}$ to the point $(k-1) / b_{n}$, condition (ii) of Theorem 2.2' is satisfied if
(ii') $\left\{\left(\nu_{n}\right)^{n b_{n}{ }^{*}}\right\}_{n}$ is tight.
Condition (i) can easily be checked if we observe that $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ is a supermartingale (submartingale).

Sometimes it is convenient to consider the subspace $\mathrm{C}[0,1]$ of $\mathrm{D}[0,1]$. This subspace consists of all continuous functions on $[0,1]$ and the

Skorokhod topology relativized to $\mathrm{C}[0,1]$ is equivalent to the topology of uniform convergence. Here we will only give an example which indicates how sufficient conditions for \boldsymbol{D}-convergence in $\mathrm{C}[0,1]$ can be obtained. As before, $\left\{X_{n, 0}, X_{n, 1}, X_{n, 2}, \ldots, X_{n, n}\right\}_{n}$ denotes a sequence of Markov chains with transition probabilities $p^{(n)}(a, 0)$ and $\mu_{a}^{(n)}(\mathrm{d} x)=$ $p^{(n)}(a, a+\mathrm{d} x)$.

Theorem 2.4. Assume that

(i) there exists a point a_{0} such that, for every δ-neighbourhood S_{δ} of a_{0}, the family $\left\{\left(\mu_{a}^{(n)}\right)^{n^{n}}\right\}_{a \in S_{\delta}^{\mathcal{C}}, n \in \mathbb{N}}$ is fight.
Then the sequence of measures on $\mathrm{C}[0,1]$ corresponding to the random polygonal lines $\left\{Y_{n}(t): t \in[0,1]\right\}$ defined by

$$
Y_{n}(t)=X_{n, k}+n(t-k / n)\left(X_{n, k+1}-X_{n, k}\right) \text { for } t \in[k / n,(k+1) / n]
$$

is conditionally compact, provided
(ii) for each $\delta>0, n \cdot p^{(n)}\left(a,(a-\delta, a+\delta)^{c}\right) \rightarrow 0$ as $n \rightarrow \infty$, uniformly in $a \in \mathbf{R}$.

Proof. Let Y_{n}^{\prime} denote the random element in $\mathrm{D}[0,1]$ defined by (1.2). We shall use Theorem 2.1 to prove that $\left\{Y_{n}^{\prime}\right\}_{n}$ is tight. Let $\epsilon>0$ be givan. From the proof of Theorem 2.2 it follows that we can choose Δ_{0} so small that

$$
q_{\Delta}^{(n)}\left(a,(a-\epsilon, a+\epsilon)^{\mathrm{c}}\right)<\epsilon \quad \text { for all } \Delta \leq \Delta_{0}, n \in \mathbb{N} \text { and } a \in S_{2 \epsilon}^{\mathrm{c}}\left(a_{0}\right) .
$$

Let us now consider a Markov chain $\left\{Z_{0}, Z_{1}, \ldots, Z_{n \Delta}\right\}$ with transition probabilities $p^{(n)}(a, \cdot)$ and such that $\mathbb{P}\left[Z_{0}=a\right]=1$, where $a \in S_{2 \epsilon}\left(a_{0}\right)$. De note by τ_{n} the hitting time for the set $\left(-\infty, a_{0}-2 \epsilon\right) \cup\left(a_{0}+2 \epsilon, \infty\right)$. Sy the assumption (ii) we get

$$
\mathbb{P}\left[\left|\tau_{n}-a_{0}\right| \geq 3 \epsilon\right]<\epsilon
$$

for all sufficiently large $n \in \mathbb{N}$. The strong Markov property then shows that there exists an inte eer n_{0} such that

$$
q^{(n)}\left(\tilde{a},(a-6 \epsilon, a+6 \epsilon)^{c}\right)<2 \epsilon \quad \text { for all } \Delta \leq \Delta_{0}, n \leq n_{0}, a \in \mathbb{R} .
$$

Similarly, we show that condition (i) in Theorem 2.1 is satisfied so that $\left\{Y_{n}^{\prime}\right\}_{r}$ is tight in $\mathrm{D}[0,1]$. Observing that for all n sufficiently large the
probability that $\left\{Y_{n}^{\prime}(t) ; t \in\{0,1]\right\}$ has a jump exceeding ϵ is less than e. we can use [1. Theorems 8.2 and 15.2] to complete the proof.

Assume that the measures $\mu_{a}^{(1)}(\mathrm{d} x)=p^{(n)}(a, a+\mathrm{d} x)$ are independent of a; that is, $X_{n, k}$ is the esth partial sum of a sequence of identically distributed independent random variables. Then $\left\{Y_{n}\right\}_{n}$ is tight if and only if $\left\{Y_{n}(1)\right\}_{n}$ is tight (see [14, p. 197]). We shall give a rather natural geneo ralization of this theorem.

Theorem 2.5. sissume that

(i) $n \cdot p^{(n)}\left(a,[a-1, a+1]^{c}\right) \Rightarrow 0$ as $n \rightarrow \infty$, uniformly in $a \in \mathbb{R}$;
(ii) for every bounded interval $\left[t_{1}, t_{2}\right]$ there exists a constant $K=K\left(t_{1}, t_{2}\right)$ such that $\left|\varphi_{a}^{(n)}(t)-\varphi_{b}^{(n)}(t)\right| \leq K / n$ for ail $t \in\left|t_{1}, t_{2}\right|$ and all $a, b \in \mathbf{R}$ (here $\varphi_{a}^{(n)}$ is the characteristic function of the measure $\mu_{a}^{(n)}$);
(iii) $\left\{Y_{n}(1)\right\}_{n}$ is tight.

Then the sequence $\left\{Y_{n}\right\}_{n}$ of random elements in $\mathrm{D}[0,1]$ is also tight.
Proof. Since $p^{(n)}\left(a,[a-1, a+1]^{c}\right)=o(1 / n)$, it is no restriction to assume Shat $p^{(n)}\left(a,[a-1, a+1]^{c}\right)=0$. Let $\psi_{a}^{(n, m)}$ be the characteristic function of the measure

$$
q_{m / n}^{(n)}\left(a, \mathrm{~d} x_{m}\right)=\int_{x_{1} \in \mathbf{R}} \ldots \int_{x_{m-1} \in \mathbf{R}} p^{(n)}\left(a, \mathrm{~d} x_{1}\right) p^{(n)}\left(x_{1}, \mathrm{~d} x_{2}\right) \ldots p^{(n)}\left(x_{m-1}, \mathrm{~d} x_{m}\right)
$$

Some simple calculations show that

$$
\begin{equation*}
\left|\psi_{a}^{(n, m)}(t)-\left[\varphi_{b}^{n)}(t)\right]^{m}\right| \leq m K / n \tag{2.17}
\end{equation*}
$$

for all $a, b \in \mathbb{R}$ and all $t \in\left[t_{1}, i_{2}\right]$.
Put $\alpha_{b}^{(n)}=\int x \mu_{b}^{(n)}(\mathrm{d} x)$ and $\left(\sigma_{b}^{n}\right)^{2}=\int\left(x-\alpha_{b}^{n}\right)^{2} \mu_{b}^{(n)}(d x)$ and let $S_{b}^{(n, m)}=\Sigma_{i=1}^{m} Z_{i}$, where $\left\{Z_{i}\right\}_{i}$ are independent random variables, each one with disiribution $\mu_{b}^{(n)}$. Then by the Berry-Esseen theorem on normal approximation (see [6, p. 542]) we have (notice that $\left|Z_{i}-\alpha_{b}^{n}\right| \leq 2$)

$$
\begin{align*}
& \mid \psi_{a}^{(n, m)}\left(B^{\prime} /\left(\sigma_{b}^{n} \sqrt{m}\right)\right) \exp \left[-\mathrm{i} t m \alpha_{l l}^{\prime \prime} /\left(\sigma_{b}^{n} \sqrt{m}\right)\right] \\
& \quad-\left[\varphi_{b}^{(n)}\left(t /\left(\sigma_{b}^{n} \sqrt{m}\right)\right)\right]^{m} \exp \left[-\mathrm{i} t m \alpha_{b}^{n} /\left(\sigma_{b}^{n} \sqrt{i n}\right)\right] \mid \leq ' m K / n \tag{2.19}
\end{align*}
$$

for all $a, b \in \mathbb{R}$ and all $t \in\left[t_{1} \sigma_{b}^{n} \sqrt{m}, t_{2} \sigma_{b}^{n} \sqrt{m}\right]$.

Let us now consider $A=\sup \left(n\left(\sigma_{b}^{\prime \prime}\right)^{\frac{3}{2}}: b \in \mathbf{R}, n \in \mathbb{N}\right]$. Assume that A is infinite. By stitable choices of $b \in R$ and $m, n \in \mathbb{N}$, we can then simultaneously make m / n arbitrarily small and $m\left(0_{0}^{\prime}\right)^{2}$ arbitrarily large. Thus, by (2.18) and (2.19).

$$
\text { for alla } \in \mathbf{R} \text { and } x \in \mathbf{R} \text {. }
$$

provided m / n is small enough and o券 \sqrt{m} in laree enough. But this im= plies that. for ans given e 0 and bounded interval f, we can choose $m, n \in \mathbb{N}$ so that

$$
\left.q_{m}^{(1)}\right)_{n}(a, l)<\in \quad \text { for all } a \in \mathbf{R},
$$

Obviously this contradicts the assumption (iii) and so A must be finite.
By Chebyshev's inequality,

$$
\begin{equation*}
P\left|\left|S_{a}^{(1, m)}-m \omega_{a}^{A}\right|>\epsilon\right| \leq m A / m \epsilon^{2} \tag{2.20}
\end{equation*}
$$

Ii $B=\sup \left\{n\left(\alpha_{a}^{n}-a_{0}^{n}\right): a \in \mathbf{R}, n \in \mathbf{N}\right\}$ ware infinite, we would be able to choose subsequences $\left\{a^{\prime}\right\} \subseteq \mathbf{R}$ and $\left\{m^{\prime}\right\},\left\{n^{\prime}\right\} \subseteq \mathbf{N}$ such that $m^{\prime} / m^{\prime} \rightarrow 0$ and

$$
S_{a^{\prime}}^{\left(n^{\prime}, m^{\prime}\right)}-m^{\prime} \alpha_{a^{\prime}}^{n_{1}^{\prime}} \xrightarrow{\text { i.p. }} 0, \quad S_{0}^{\left(n^{\prime}, m^{\prime}\right)}-m^{\prime} \alpha_{a^{\prime}}^{n^{\prime}} \xrightarrow{\text { i.p. }} c \neq 0 .
$$

However, this contradicts (2.17). Thus, B must be finite and $\left\{\left(\mu_{a}^{(n)}-\alpha_{0}^{n}\right)^{n}\right\}_{a \in \mathbb{R}, n \in \mathbb{N}}$ is tight. By Theorem 2.2, the random Markov lines $Z_{n}(t)=Y_{n}(1)-\left[n \mid \alpha_{0}^{n}\right.$ form a tight sequence in $\mathrm{D}[0,1]$. By the assumption (iii), this is possible only if $C=\sup \left\{\left|n \alpha_{0}^{n}\right|: n \in N\right\}$ is finite. Hence $\left\{Y_{n}\right\}_{n}$ is a.so tight in $\mathrm{D}[0,1]$.

Remark. In Theorem 2.5 it was proved that $\left\{Y_{n}\right\}_{n}$ is tight in $\mathrm{D}[0,1\}$ if $\left\{\left(\mu_{a}^{(n)}\right)^{n^{*}}\right\}_{a \in \mathbb{R}, n \in \mathbb{N}}$ is tight. The converse is not true in general. However, we can see irom the proof of Theorem 2.5 that tightness of $\left\{Y_{n}\right\}_{n}$ implies tightness of $\left\{\left(\mu_{a}^{(n)}\right)^{n *}\right\}_{a \in R, n \in \mathbb{N}}$ if we make the additional assumptions (i) and (ii).

3. The Markovian character of the limit process

Asstme that we have established the convergenee

$$
Y_{n} \Rightarrow Y^{\prime} \quad n \Rightarrow \theta
$$

in D10, i): For any continuous funetional h on D $0,1 \mid$ w: then get

$$
\begin{equation*}
h\left(r_{n}\right)^{n}=h V_{1} \quad \|=\infty . \tag{3,1}
\end{equation*}
$$

As we pointed out in the Introduction. (is. I) is usentil mainly in the case when we can compute the distribution of in li). Therefore, it is interest= ing to see if, under general and simple conditions, we tan show that the limit process ($Y(\mathrm{i}) ; \boldsymbol{i} \in(0,1]$ must be of a particularly simple type. In this section we shall give sufficient conditions for the limit process to be a Markov process. In our theorems all the approximating Mankov chains are assumed to be stochastically monotone. In a remark at the end of this section we will indicate how the general case can be treated. The notation is the same as in the previous sections.

We start by giving some measure-theoretical facts.
Proposition 3.1. Let F_{a} and F_{b} be any two probability distributions with finite mean-values α_{a} and α_{b}, respectively. Assume that

$$
F_{a}(x) \geq F_{b}(x) \quad \text { for all } x \in \mathbf{R}
$$

Then

$$
\begin{aligned}
0 & \leq \int u(x) F_{b}(\mathrm{~d} x)-\int u(x) F_{a}(\mathrm{~d} x) \\
& \leq\left(\alpha_{b}-\alpha_{a}\right) \sup \{(u(y)-u(x)) /(y-x): x, y \in \mathbf{R}, x \neq y\}
\end{aligned}
$$

for all increasing functions u such that $\sup \{(u(y)-u(x)) /(y-x)$: $x, y \in \mathbf{R}, x \neq y\}$ is finite.

Proof. Let $c=\sup \{(u(y)-u(x)) /(y-x): x, y \in \mathbb{R}, x \neq y\}$ and put $v(x)=c x$. For the two functions $u(x)$ and $v(x)$ it then holds that $u(y)-u(x) \leq v(y)-i(x)$ for all $x \leq y$. Observing that

$$
\begin{aligned}
& \left(\alpha_{b}-\alpha_{a}\right) \sup \{(u(y)-u(x)) /(y-x): x, y \in \mathbb{R}, x \neq y\}= \\
& \quad=\int v(x) F_{b}(\mathrm{~d} x)-\int v(x) F_{a}(\mathrm{~d} x)
\end{aligned}
$$

and approximating the integrals by sums we can easily complete the proof.

Proposition 3.2. Assume that

(i) there is a constant K such that

$$
(b-a)^{-1} \int x p^{(n)}(b, \mathrm{~d} x)-\int x p^{(n)}(a, \mathrm{~d} x) \leq 1+K / n
$$

$$
\text { for all } n \in \mathbb{N} \text { and } a<b
$$

(ii) $\boldsymbol{p}^{(n)}(a,\{x ; x \leq y\})$ is non-increasing in $a \in \mathbf{R}$ jor fixed $n \in \mathbb{N}$ and $y \in \mathbb{R}$.
Then we have

$$
\begin{aligned}
0 & \leq\left(b-a^{)^{-1}} \int u(x) q_{\Delta}^{(n)}(b, 11 x)-\int u(x) q_{\Delta}^{(n)}(a, \mathrm{~d} x)\right. \\
& \left.\leq \mathrm{e}^{K \Delta} \sup (u(y)-u(x)) /(y-x): x, y \in \mathbf{R}, x \neq y\right]
\end{aligned}
$$

for all increasing functions u.
Proof: Apply Proposition 3:1.
In Section 4 we shall also need the following result:

 that, for some e $\geqslant 0$ and $a \in \mathbb{R}$,

$$
q_{\square}^{(n)}(a t,(a \neq \varepsilon, \cdots))>\varepsilon_{:}
$$

Then there existis $\$ 0$, clepending ouly on \in and K, such that

$$
q^{(n)}\left(b\left(b \neq \frac{1}{2} \epsilon^{\frac{1}{2}}, \theta\right)\right) \geqslant \frac{1}{4} \epsilon
$$

$$
G^{\prime(1)}\left(a_{0}\left(=\theta_{3} ; a=6\right)\right) \geqslant \epsilon
$$

implies that

$$
q_{s}^{(m)}\left(b,\left(-\infty, b-\frac{1}{4} \varepsilon^{2}\right)\right) \geqslant \frac{1}{4}(
$$

for all $b \in[a--\delta, a \neq \delta \mid$, where δ depends only an ϵ and K.

Proof. It is enough to prove the first assertion. Applying Proposi ${ }^{1}$ on 3.2 to the function

$$
u(x)= \begin{cases}1 & \text { for } x \geq a+\epsilon \\ (x-a) / \epsilon & \text { for } a \leq x \leq a+\epsilon \\ 0 & \text { for } x \leq a\end{cases}
$$

we can easily cloose $\delta>0$ depending only on \in and K, such that $\int q_{\Delta}^{(n)}(b, \mathrm{~d} x)(x)>\frac{3}{a} \in$ for all $b \in[a-\delta, a]$. Some simple estimations then show that

$$
q_{\Delta}^{(n)}\left(b,\left(b+\frac{1}{2} \epsilon^{2}, \alpha_{1}\right)>\frac{1}{4} \epsilon\right.
$$

for all $b \in[a-\delta, a]$. On the other hand, for $b \in\left[a, a+\frac{1}{2} \epsilon\right]$, it follows from the stochastical mon ot onicity that

$$
q_{\Delta}^{(n)}\left(b,\left(b+\frac{1}{2} \varepsilon^{2}, \infty\right)\right) \geq q_{\Delta}^{(n)}(b,(a+\varepsilon, \infty))>e
$$

Remarlk: For simplicity, we will always assume that the transition probabinitites $p^{(n)}\left(a_{3}{ }^{\prime}\right)$ have linite nean values. Actually; if there is a constant K^{\prime} such that

$$
\operatorname{sip}\left\{a^{(m)}\left(a,\left(a-K^{\prime}, a \neq \boldsymbol{K}^{\prime \prime}\right)^{\mathrm{E}}\right): a \in \mathbf{R}\right\}=\mathrm{o}(1 / b)
$$

 all Its mass to the finite intefval $\left(a-K^{\prime}: \boldsymbol{K}^{\prime}\right)$:
 that the weak limit in $D[0,1]$ of a sequeries $\left.f_{n}\right\}_{n}$ of tandem Marlove
 proge of the stochastisal continuity in auite lechnieal undess we mate the additional assunption that for every $6 \geqslant 0$.

$$
a_{A}^{(n)}\left(a,(a-\epsilon, a \neq \epsilon)^{i}\right) \Rightarrow 0 \quad \text { as } \Delta \Rightarrow 0_{2}
$$

uniformly in n 正 N and $a \in G$ for ouch compact set C. in viow of Thegrem 2.1, the asimmption (3.2) is rather natura. it will also permil us te give a difact construction of the sumi-goup comesponding to the limit process.

Theorem 3.4. Let $\left\{Y_{n}\right\}_{n}$ be a tight sequence of random Markov lines. Assurne that the transition probabilitites satisfy condition (i.2) above as well as
(i) there exists a constant K such that

$$
(b-a)^{-1}\left[\int x p^{(n)}(b, \mathrm{~d} x)-\int x p^{(n)}(a, \mathrm{~d} x)\right] \leq 1+K / n
$$

for all $n \in \mathbb{N}$ and $a<b$,
(ii) $p^{(n)}(a,\{x ; x \leq y\})$ is non-increasing in $a \in \mathbf{R}$ for fixed $n \in \mathbb{N}$ and $y \in \mathbb{R}$.
Then every limit process of $\left\{Y_{n}\right\}_{n}$ is a stochastically continuous Markov process having a Feller semi-group.

Proof. By Prok horov's theorem, $\left\{Y_{m}\right\}_{n}$ is relatively compact in $\operatorname{DD}[0,1]$, so we can without restriction assume that $\left\{Y_{n}\right\}_{n}$ converges weakly to some tandom element Y in D[0, 1]. From condition (3.2) a jove, it is easily deduced that $\{Y(t) ; t \in[0,1]\}$ is stochastically continuous. Let us then consider the projection π_{t} taking $x(\cdot) \in \mathbb{D}[0,1]$ into $x(t) \in \mathbb{R} . \pi_{t}$ is continuous at $x(\cdot) \in \mathrm{D}[0,1]$ if and only if $x(\cdot)$ is continuous at t. Thus, the stochastical continuity of $\{Y(t) ; t \in[0,1]$: implies that

$$
\begin{equation*}
Y_{r}(t) \xrightarrow{w} Y(t) \quad \text { as } n \rightarrow \infty \tag{3.3}
\end{equation*}
$$

for all $t \in[0,1]$. In terms of the transition probabilities, (3.3) can be written

$$
q_{t}^{(n)}(0, \cdot) \xrightarrow{w} Y(t) \quad \text { as } n \rightarrow \infty .
$$

Applying Proposition 3.2, we can then immediately show that

$$
\left.\left\{q_{t}^{(n)}(a, \cdot)\right\}_{n \in \mathbb{N}} \text { is tight for every } a \in \mathbb{R} \text { and } t \in 0,1\right]
$$

By taking a subsequence $\left\{n^{\prime}\right\} \subseteq \mathrm{N}$ if necessary, we get:
$\left\{q_{t}^{(n)}(a, \cdot)\right\}_{n}$ is weakly convergent for all $a \in \mathbf{Q}$ and all $1 \in \mathbf{Q} \cap[0,1]$,
where Q denotes the rational numbers. Using exactly the same method as in the proof of Proposition 3.3, we can show that the colvergente in (3.4) must hold for all $a \in \mathbb{R}$. By the Markov property and Ine assump-
tion (3.2), we can even show that

$$
\left\{q_{t}^{\left(n^{\prime}\right)}(a, \cdot)\right\}_{n^{\prime}} \text { is weakly convergent for all } a \in \mathbb{R} \text { and } t \in[0,1] \text {. (3.5) }
$$

Let: e^{\prime} denote the class of all bounded increasing functions f such that $\sup \{(f(y)-f(x)) /(y-x): x, y \in \mathbf{R}, x \neq y\}$ is finito. We can then define a linear mapping of e^{\prime} into itself by the relation

$$
H_{l} f(a)=\lim _{n^{\prime} \rightarrow \infty} \int q_{t}^{\left(n^{\prime}\right)}(a, \mathrm{~d} x) f(x)
$$

Applying the Markov property and the assumption (3.2) once again, it is a routine :o prove that

$$
H_{i+t} f(\alpha)=H_{s} H_{t} f(a)
$$

for all $a \in \mathbf{R}, f \in e^{\prime}$ and $s, t, s+t \in[0,1]$. Furthemore,

$$
\begin{aligned}
& H_{1} f_{1} \leq H_{t} f_{2} \quad \text { ii } f_{1} \leq f_{2}, f_{1}, f_{2} \in e^{\prime} \\
& H_{t} 1 \equiv 1, \\
& H_{t} f(Y(s))=\mathbf{E}\{f(Y(s+t)) \mid Y(s)\} \quad \text { a.s. } \quad j \in e^{\prime} .
\end{aligned}
$$

Until now we have only defined $H_{t} f(a)$ for $j^{\prime} \in e^{\prime}$. But we can immediately extend the definition to the lincar space D consisting of all differences of functions in e^{\prime}. Then H_{t}^{\prime} becomes a positive linear operator on \mathcal{D}. Since \mathcal{D} is dense in the space e_{1} corsisting of all bounded continuous functions with limits at $+\infty$ and $-\infty$, w : can extend H_{t} unicuely to a positive linear operator on e_{1} such that $H_{t} 1 \equiv 1$. By Riesz' representation theorem, there exists, for every fixed a and t, a unique probability measure $p_{t}(a, \cdot)$ such that

$$
\begin{equation*}
H_{t} f(a)=\int p_{t}(a, \mathrm{~d} x) f(x) \tag{3.6}
\end{equation*}
$$

for all $f \in e_{1}$. It is a routire to prove that the $p,(a \cdot \cdot)$ form a family of transition probabilities generating our limit process $\{(Y(t) ; t \in(0,1])$. From (3.5) aud the stochastical monotonicity it follows immedis tely that the family $\left[p_{t}\{a, \cdot)\right\}_{a \in I}$ of probability measures is tight for every bounded interva! ! Hence (3.6) defines a Felter semigroup, i. $\%, H_{t}$) is bounded and cintinuous for all bounded and continuous functions f This completes the proor of Theorem 3.4.

Remark: In hais section we have assurned that the approximating Markay chains all have tannsition probabilities satisfying condition (i) and (ii) of Propasition 3.2. These twa conditions can be replaced by the weaker condition
(i^{\prime}) there exisis a constant K such that

$$
\begin{aligned}
& \left.\sup _{\substack{a, b \in \mathbb{R} \\
a \neq b}}| | b \cdots a\right|^{-1} \mid \int p^{(n)}(b, \mathrm{~d} x) f\left(x\left|-\int p^{(n)}(a, d x) f(x)\right|\right) \leq \\
& \leq(i+K / n) \sup \{|f(b)-f(a)| /|b-a|: a, b \in \mathbf{R}, a \equiv b\}
\end{aligned}
$$

for al! bounded continuous functions f and all $n \in N$.
A repetition of the arguments in this section shows that Theorem 3.4 will continue to lold true.

4. Tiyhtness concitions for sequences of stochastically monotone random Markoy lines

In this section the random Markov lines $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ will always be constructed fiom a sequence $\left\{X_{n, 0}, X_{n, 1}, X_{n, 2}, \ldots, X_{n, n}\right\}_{n}$ of stochastically monctone Markov cheins If $\left\{Y_{n}\right\}_{n}$ is $\frac{\text {-convergent }}{}$ with limit $\{Y(t) ; t \in[0,1]\}$, we know that the one-dimensional projections $Y_{n}(t)$ converge weakly to $Y(t)$ with a possible exception for a countable set of time-points. It is our intention to find out to what extent we can argue in the opposite direction. Actually wa shail show that, under rather general conditions, it is possible to deduce tightness of $\left\{Y_{n}\right\}_{n}$ directly from the properties of the projections $Y_{n}(i)$ and $Y(t)$. The main tools will be some well-known theorems on maringales. Therefore, we shall start by proving a lemma on the convergerce of a sequence of martingales that might be useful even if we can not establish tightness of the corresponding sequence of random elements in $\mathrm{D}[0,1]$. The notation is the same as in the previous sections.

Lemrna 4.1. Assume that

(i) $\sup \left\{\mathbb{E}\left\{\left|Y_{n}(1)\right|\right\}: n \in \mathbb{N}\right\}=K<\infty$;
(ii) $\int x p^{(n)}(a, \mathrm{~d} x)=a$.

Then every subsequence of $\left\{Y_{n}\right\}_{n}$ contains a further subsequence $\left\{Y_{n^{\prime}}\right\}_{n^{\prime}}$ such that
(a) $\left\{Y_{n^{\prime}}(t)\right\}_{n^{\prime}}$ is weakly convergent for all $t \in[0,1]$.
(b) The limit distributions F_{t} of $\left\{Y_{n^{\prime}}(t)\right\}_{n^{\prime}}$ define a function from

Proof. Conditions (i) and (ii) show that $\left(X_{n, k}\right\}_{k=0}^{\prime \prime}$ is a martingale. Thus, for all $\lambda>0$,
$\mathbb{P}\left\{\sup \left\{\left|Y_{n}(t)\right|: t \in[0,1]\right\}>\lambda\right]:=\left\{\sup \left\{\left|X_{n, k}\right|: k=0,1,2, \ldots, n\right\}>\lambda\right\}$

$$
\begin{align*}
& \leq 2 \mathbb{E}\left\{\left|X_{n, n}\right|\right\}, \lambda=2 \mathbb{E}\left\{\left|Y_{n}(1)\right|\right\} / \lambda \\
& \leq 2 K / \lambda . \tag{4.1}
\end{align*}
$$

The family $\left\{F_{1}^{n n}\right\}_{n \in \mathbb{N}, t \in\{0,1]}$ of distributions corresponding to the $Y_{n}(t)$ is the refore tight and we can immediately find a subsequence $\left\{Y_{n^{\prime}}\right\}_{n^{\prime}}$ such that $\left\{Y_{n^{\prime}}(r)\right\}_{n^{\prime}}$ is weakly convergent to some distribution F_{r} for all $r \in \mathbb{Q} \cap[0,1]$. Here \mathbf{Q} denotes the set of rational numbers.

Let us now assume that we can find a time-point $t \in(0,1]$ such that w-lim $\left\{F_{r}: r \uparrow \iota, r \in \mathbb{Q}\right\}$ does not exist. Then, for some $\delta>0$, there is a sequence $\left\{r_{k}\right\}_{k} \subseteq \mathbf{Q}$ which is increasing to t and such that the Levy distance $\rho\left(F_{r_{k}}, F_{r_{k+1}}\right)$ exceeds δ for all k. For every fixed m we obtain

$$
\begin{equation*}
\rho\left(F_{r_{i}}^{\left(n^{\prime}\right)}, F_{r_{k+1}}^{\left(n^{\prime}\right)}\right)>\delta, \quad k=1,2, \ldots, m, \tag{4.2}
\end{equation*}
$$

for all sufficier tly large $n^{\prime} \in \mathbb{N}$.
Because $\left\{F_{t}^{(1)}\right\}_{n \in \mathbf{N}, t \in[0,1]}$ is tight, we can find a constant $K_{(1)}$ such that

$$
\begin{equation*}
F_{r}^{(n)}\left(K_{0}\right)-F_{r}^{(n)}\left(-K_{0}\right)>1-\delta \tag{4.3}
\end{equation*}
$$

for all $r \in \mathbf{Q} \cap[0,1]$ and $n \in \mathbf{N}$. By (4.2) and the definition of the Lévy metric we can, for $k=1,2, \ldots, m$ and all sufficiently large $n^{\prime} \in \mathbb{N}$, choose $x_{n^{\prime}, k}$ so that either

$$
\begin{equation*}
F_{r_{k}}^{\left(n^{\prime}\right)}\left(x_{n^{\prime}, k}\right)>F_{r_{k+1}}^{\left(n^{\prime}\right)}\left(x_{n, k}+\delta\right)+\delta \tag{4.4}
\end{equation*}
$$

or

$$
\begin{equation*}
F_{r_{k}}^{\left(n^{\prime}\right)}\left(x_{n^{\prime}, k}\right)<F_{r_{k+1}}^{\left(n^{\prime}\right)}\left(x_{n^{\prime}, k}-\delta\right)-\delta . \tag{4.5}
\end{equation*}
$$

By (4.3), $x_{n^{\prime}, k} \equiv\left[-K_{0}^{\prime}, K_{0}\right]$. Let us now cover the interval $\left[-K_{0}-\delta\right.$, $\left.K_{0}+\delta\right]$ with firitely many intervals $I_{j}=\left[a_{j}, b_{j}\right]$, each one having a length between $\frac{1}{4} \delta$ and $\frac{1}{2} \delta$. Denote by $U_{I}^{(n)}$ and $D_{I}^{(n)}$, respectively, the number of up-crossings and down-crossings by the function $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ of the interval I. Then by (4.4) and (4.5) we obtain

$$
\begin{equation*}
\left.E\left(\Sigma_{j} U_{i}^{j} i^{\prime}\right)+\Sigma_{j} D \|_{j}^{n}\right) \geq m \delta \tag{4.6}
\end{equation*}
$$

for all suffleletitty latge a '. But (4.6) contrtadicts the fact that

$$
y_{3} 19 \cdot(48 \cdot 4+4)^{2}>4
$$

 1. 8^{*} so 104

$$
\begin{equation*}
q_{0}^{\left(x^{\prime}\right)} \mid b \cdot\left(b-1 f^{2} \cdot p+1 c^{2}\right)^{2}>1 \tag{4.2}
\end{equation*}
$$

 we can ulso determine $\Delta_{0}=\Delta_{0}\left(\delta_{1}, e, 4\right)$ so that
$\lim \inf ^{\prime} l^{\prime \prime \prime}\left(\left(a-\delta_{1}, a+\delta_{1}\right)\right) \geq l_{r}\left(\left(a-\delta_{1}, a+\delta_{1}\right)\right)>\frac{1}{1} G_{1}\left(\left(a-\delta_{1}, a+\delta_{1}\right)\right)>0$
for all $r \in Q \cap\left[!\Delta_{1}, t\right.$. For every fixad intege m, we now choose m rational points, $r_{1}<r_{2}<\ldots<r_{m}$, in the interval ($t-\Delta_{0}$, t). Keeping (4.9) and (4.10) in mind, it is not very difficult to see that from each interval $\mid r_{k}, r_{k+!}$ we get a contribution exceeding $\frac{1}{2} G_{t}\left(\left(a-\delta_{1}, a+\delta_{1}\right)\right) \cdot f e$ to the value of

$$
\mathbb{E}\left\{U_{\left[\left\{\dot{k}+\epsilon^{2} / 32, a \cdot 3 \epsilon^{3} / 32 \mid\right.\right.}^{\left(r^{\prime}\right)}+D_{\left[a-3 \epsilon^{2} / 32, a-\epsilon^{2} / 32\right]}^{\left(n^{\prime}\right)}\right\} .
$$

provided \boldsymbol{n}^{\prime} is sultably chosen. (onsequmity

$$
\begin{align*}
& \text { stin 11:be elfilla spiatsj11 } \tag{4.11}
\end{align*}
$$

 that
 depende andy 8.4

 pends only on η. Govionsly, S_{5} Pm (G,) has prolymily zero with pespect to the distribution G_{1}. Since wrim $\left\{f_{r}: r \mid f, r \in Q\right\}=G_{1}$, we can also issume that we have luken Δ_{1} so small that

$$
\begin{equation*}
\lim _{n^{\prime} \rightarrow \infty} F_{l=A}^{\left(n^{\prime}\right)}\left(S_{b_{3}}\left(m^{\prime}\left(G_{1}\right)\right)^{\prime}\right) \leq F_{1-a}\left(S_{b_{3}}\left(m\left(G_{1}\right)\right)^{\circ}\right)<\frac{1}{3} \eta \tag{4.15}
\end{equation*}
$$

for all,$\Delta \in \operatorname{Q} \cap\left(1, \Delta_{1}, f\right)$. It in then casy to show that (a.131 (4.15) impiy that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup P \|_{n^{\prime}}(t)-Y_{n^{\prime}}(t-\Delta \| \geq \eta \mid \leq \eta \tag{4.16}
\end{equation*}
$$

for all $t-\Delta \in Q \cap\left(t-\Delta_{1}, t\right)$. Finally, we get

$$
\begin{align*}
\limsup _{n^{\prime} \rightarrow \infty} \rho\left(F_{l}^{\left(n^{\prime}\right)}, \vec{F}_{t-\Delta}\right) & \leq \lim _{n^{\prime} \rightarrow \infty} \sup \rho\left(F_{t}^{\left(n^{\prime}\right)}, F_{t-\Delta}^{\left(n^{\prime}\right)}\right)+\lim _{n^{\prime} \rightarrow \infty} \operatorname{upp} \rho\left(F_{t-\Delta}^{\left(n^{\prime}\right)}, F_{t-\Delta}\right) \\
& \leq \eta \tag{4.17}
\end{align*}
$$

for all $t-\Delta \Leftrightarrow Q \cap\left(t-\Delta_{1}, t\right)$, which implies that

$$
\underset{n \rightarrow \infty}{w \cdot \lim _{n \rightarrow}} F_{t}^{\left(n^{\prime}\right)}=G_{t}, \quad t \in(0,1]
$$

Similar arguments show that

$$
\underset{\substack{w-\lim _{n \rightarrow \infty}^{\prime}}}{ } F_{t}^{\left(n^{\prime}\right)}=H_{t}, \quad t \in(0,1)
$$

and this completes the proof of Lemma 4.1.
Remark. In tie proof of Lemma 4.1 we have used theorertis on the number of up-cro ssings and down-crcssings of a martingale. Similar theorems hold for supermartingales and submartingales. Under conditions (i) and (ii) of Theorem 4.2 below, there is a constant c such that $\left\{X_{n, k}-c \cdot k / n\right\}_{k=0}^{n}$ is a supermartingale (submartingale) for ail $n \in \mathbb{N}$. Condition (iii) below is then sufficient for the lemma to remaln true also in that case.

For sequet ses of stochastically Hohotone fandoth Matkov lines we cath how prove

Hestert 4:2. Assume that
(I) $\left.\operatorname{stp}\left\{\mathbb{E} \mid Y_{n}(1),\right\} \in: n \in \mathbb{N}\right\}=K<\infty$;
(di) $\operatorname{stp}\left\{(1, h)^{-1} f(x-a) b(n)(a, d x): a \in \mathbb{R}, u \in \mathbb{N}\right\}<+\infty \quad b r$ 1Hf $\left\{(1, h)^{-1} f(x-a) b^{(h)}(a ; d x): a \in R ; h \in \mathbb{N}\right\}>-\infty ;$

$$
S_{a}, b \in R(b-a)-1\left(\int x \beta^{(n)}\left(B_{2}(d x)-\int x \beta^{(n)}(a ; d x)\right) \leq 1+k 1 / k ;\right.
$$

 diti8undive commact:

ing Lemma 4.1, we can choose a subsequence $\left\{Y_{n^{\prime \prime}}\right\}_{n^{\prime \prime}}$ such that $Y_{n^{\prime \prime}}(t) \xrightarrow{w} F_{t}$ for all $t \in[0,1]$ and $w-\lim \left\{F_{t}: t \uparrow 1\right\}=F_{1}$. The assumption (iv) shows that $\mathcal{m}\left(F_{1}\right)=\mathbb{R}$. Repeating the arguments leading to (4.12) in the ruof of lemma 4.1, we can show that

$$
q_{\Delta}^{\left(n^{\prime \prime}\right)}\left(a,(a-\epsilon, a+\epsilon)^{\mathrm{c}}\right) \rightarrow 0 \quad \text { as } \Delta \rightarrow 0
$$

uniformly in $n^{\prime \prime} \in \mathbb{N}$ and $a \in C$, for every compact set C and every $\epsilon>0$.
Supernartingale (submartingale) inequalities show that

$$
\sup _{n \in \mathbb{N}} P\left[\sup \left\{\left|Y_{n}(t)\right|: t \in[0,1]\right\}>\lambda\right] \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty .
$$

Thus, ty Theorem 2.1, $\left\{Y_{n^{\prime \prime}}\right\}_{n^{\prime \prime}}$ is weakly conditionally compact and $\left\{Y_{n^{\prime}}\right\}_{n^{\prime}}$ inust contain a convergent subsequence.

Application. Let $\left\{Z_{n}\right\}_{n}$ be a Galton-Watson branching process governed by certain fixed probabilities $\left\{p_{k}\right\}_{k}$. Here p_{k} is the probability that one individual in the $j^{\text {th }}$ generation gives tise to k individuals in tine $j+1^{\text {st }}$ generat on. We will assume that $\left\{p_{k}\right\}$ considered as a probability distribution tas meain 1 and finite strictly pcisitive variance \boldsymbol{j}^{2}. Define, for each $n \varepsilon \mathbb{N}$, a continuluous-time process

$$
Y_{n}(t)=\left(Z_{[n t]}-a_{n}\right) / b_{n} \quad \text { for } t \in[0,1]
$$

where $z_{0}=c_{n}$ is the huttibet of individuals at tittle $t=0$. $b_{n}>0$ and $a_{n} \in \mathbf{R}$ the hobthallzing cornstants such that $a_{n} / b_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

Let us How assthtie that there exples a stochaste process dut (t); $t \in\{0,11\}$ such that $X(t)$ is hothegenerate for $t \in(0,1]$ and the fithte-

 tisnatly e8mpati by Thesfern 4:z: Thus; we get

This means that, for all functionals h on $\mathrm{D}[0,1]$ which are continuous with respect to the Skorokhod topology, we have shown that

$$
h\left(Y_{n}\right) \xrightarrow{w} h(a B+b) \quad \text { as } n \rightarrow \infty .
$$

The $C D$-convergence in (4.18) has been proved by other methods in [13]. In Section 5 we shall give a more detailed discussion of \mathcal{D}-convergence of sequences of branching processes.

Proceeding in the same spirit as in Lemma 4.1 and Theorem 4.2, we get:
Theorem 4.3. Let $\left\{Y_{n}\right\}_{n}$ be a sequence of yandom Markov lines corresponding to a sequence of stochastically monotone Maıkov chains. Assume that
(i) $\sup \left\{\mathbf{E}\left\{\left|Y_{n}(1)\right|\right\}: a \in \mathbb{N}\right\}<\infty$;
(ii) $\sup \left\{(1 / n)^{-1} \int(x-a) p^{(n)}(a, \mathrm{~d} x): a \in \mathbf{R}, n \in \mathbb{N}\right\}<+\infty$, or $\inf \left\{(1 / n)^{-1} j(x-a) p^{(n)}(a, \mathrm{~d} x): a \in \mathbf{R}, n \in \mathbf{N}\right\}>-\infty ;$
(iii) for cevery $t \in(0,1]$, the projection $Y_{n}(t)$ converges weakly to some distribution F_{t} with strictly increasing distribution function.
Then the sequence $\left\{Y_{n}\right\}_{n}$ of random elements in $\mathrm{D}[0,1]$ is weakly conditionally compact and every limit corresponds to a stochastically cortinuous process on the interval $[0,1]$.

Proof. Using exactly the same method as in Lemma 4.1, we can immediately see that $\lim \left\{F_{r}: r^{\uparrow} t, r \in \mathbb{Q}\right\}$ exists for all $t \in(0,1]$. Denote this limit by G_{t}. We shall show that $G_{t}=F_{t}$ for at least one time-point t. Assume that the converse holds. Since the Lévy distance $\rho\left(F_{t}, G_{t}\right)>0$ for uncountably many values of t, we can fina a $\delta>0$ such that $\rho\left(F_{t}, G_{t}\right)>\delta$ for infinitely many t. This means that, for any positive integer m, we can find $2 m$ points, $r_{1}<t_{1}<r_{2}<t_{2}<\ldots<r_{m}<t_{m}$, such that

$$
\rho\left(F_{r_{k}}, F_{t_{k}}\right)>\delta, \quad k=1,2, \ldots, m
$$

As in Lemmai $4, i$, this contradicts the inequalities on the expected number of up-crossiags and down-crossings of an interval. Thus, we can choose a point in such that

$$
w \lim \left\{F_{r}: r \uparrow t_{0}, r \in \mathbb{Q}\right\}=F_{t_{0}},
$$

where $\mathcal{M}\left(F_{t_{0}}\right)=\mathbb{R}$. Once again proceeding as in the proof of Lemma 4.1, we can show that, for every $\epsilon>0$ and $a \in \mathbb{R}$,

$$
\begin{equation*}
q_{\Delta}^{(n)}\left(c,(a-\epsilon, a+\epsilon)^{\mathfrak{c}}\right) \rightarrow 0 \quad \text { as } \Delta \rightarrow 0 \tag{4.19}
\end{equation*}
$$

uniformly in $n \in \mathbf{N}$. Because the underlying Markov chains $\left\{X_{n, k}\right\}_{k=0}^{n}$ are stochastically monotone, the convergence in (4.19) must be uniform in $a \in C$ for all compact sets C. Applying Theorem 2.1 we can then complete the proof of Theorem 4.3.

We shall terminate this section by discussing the convergence of sequences of increasing and stochastically monotone Markov chains. In this case the conditions for conditional compactness become much simpler. In ar: important special case we can also show that every limit process $\{Y(t) ; t \in[0,1]\}$ is a Markov process if, for all $t \in(0,1], Y(t)$ has a strictly positive density on $(0, \infty)$. These results are summarized in the following theorem.

Theorem 4.4. Let $\left\{Y_{n}(t) ; t \in[0,1]\right\}_{n}$ be the random Markov lines worresponding to a sequence of increasing and stochastically monotone Markov chains. Then the sequence $\left\{Y_{n}\right\}_{n}$ is weakly conditionally compac: provided
(i) for each $t \in(0,1], Y_{n}(t)$ converges weakly to some disiribution F_{t} with strictly positive density on $(0, \infty)$;
(ii) for every $\delta>0$ and every compact set $C \subseteq[0, \infty)$,

$$
n p^{(n)}\left(a,(a-\delta, a+\delta)^{c}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty,
$$

uniformly in $a \in C$.
Moreover, every limit process is a Markov process and has continuous sample paths with probability 1.

Proof. The sequence $\left\{Y_{n}(1)\right\}_{n}$ is stochastically bounded. Therefore.

$$
\sup _{n \in \mathbb{N}} \mathbb{P}\left|\sup _{t \in[0.1 \mid}\right| Y_{n}(t)|>\lambda|=\sup _{n \in \mathbb{N}} \mathbb{P}| | Y_{n}(1)|>\lambda| \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty .
$$

Obviously, $\left\{Y_{n}(t) ; t \in\{0,1\}\right\}$ has no down-crossings and at most one upcrossing of each interval. Thus, we can prove that $\left\{\left\{_{n}^{n}\right\}_{n}\right.$ is conditionally compact exactly as in the orem 4.3. Condition (ii) implies that every limit process has continuous sample paths with probability 1.

It remains to prove that every timit is a Markov process. According to the proo of hieorem 24 , if is enough so show hat, for any givent $p \in$,

$$
\begin{equation*}
\left.\rho\left(q_{\Delta}^{(n)}\right)\left(b_{1},: \cdot\right), q_{\Delta}^{(n)}\left(b_{2},:\right)\right) \leq \varepsilon \tag{4.29}
\end{equation*}
$$

for all $b_{1}, b_{2} \in[b-\delta, b+\delta]$ and all $n \geq n_{0}$. We shall assume the converse and derive a contradiction.
If 4.29 does not hold, there exist $b \in R, \Delta \in(0,1)$ and $\epsilon \gg \rho$ such that, for every neighbourhood U_{b} of b and every $n_{0} \in \mathbb{N}$,

$$
\begin{equation*}
q_{\Delta}^{(n)}\left(b_{1},(c-\epsilon, \infty)\right)+\epsilon<q_{\Delta}^{(n)}\left(b_{2},(c, \infty)\right) \tag{4.21}
\end{equation*}
$$

for some $b_{1}, b_{2} \in U_{b}, n \geq n_{0}$ and $c=c\left(n, \Delta, \epsilon, b_{1}, b_{2}\right)$. Recalling that the underlying Markov chains are stochastically monotone we can show that it is no restriction to assume that $c \leq c_{0}$, where $c_{0}=c_{0}(b, \Delta, \epsilon)$ is a constant depending only on b, Δ and ϵ. Using exactly the same method as in the proof of Lemma 4.1 we can choose $\Delta_{1} \in(0,1)$ so small that

$$
\begin{equation*}
q_{\Delta_{1}}^{(n)}\left(a,\left[a, a+\frac{1}{2} \epsilon\right)^{c}\right)<\frac{1}{2} \epsilon \tag{4.22}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and $a \in\left[0, c_{0}\right]$. By (4.21), (4.22) and Chapman-Kolmogorov's equation we then get

$$
\begin{align*}
q_{\Delta}^{(n)}\left(b_{1},(c-\epsilon, \infty)\right)+\frac{1}{2} \epsilon & <q_{\Delta}^{(n)}\left(b_{2},(c, \infty)\right)-\frac{1}{2} \epsilon \\
& =\int q_{\Delta-\Delta_{1}}^{(n)}\left(b_{2}, \mathrm{~d} y\right) q_{\Delta_{1}}^{(n)}(y,(c, \infty))-\frac{1}{2} \epsilon \\
& \leq q_{\Delta-\Delta_{1}}^{(n)}\left(b_{2},\left(c-\frac{1}{2} \epsilon, \infty\right)\right)+q_{\Delta 1}^{(n)}\left(c-\frac{1}{2} \epsilon,(c, \infty)\right)-\frac{1}{2} \epsilon \\
& <q_{\Delta-\Delta_{1}}^{(n)}\left(b_{2},\left(c-\frac{1}{2} \epsilon, \infty\right)\right) . \tag{4.23}
\end{align*}
$$

But

$$
\begin{aligned}
& q_{\Delta-\Delta_{1}}^{(n)}\left(b_{2},\left(c-\frac{1}{2} \epsilon, \infty\right)\right)-q_{\Delta}^{(n)}\left(b_{1} \cdot(c-\epsilon, \infty)\right)= \\
& \quad=\int_{x \geq b_{1}} q_{\Delta_{1}}^{\left(a_{1}\right)}\left(b_{1}, \mathrm{~d} x\right)\left[q_{\Delta-\Delta_{1}}^{(n)}\left(b_{2},\left(c-\frac{1}{2} \epsilon, \infty\right)\right)-q_{\Delta-\Delta_{1}}^{(n)}(x,(c-\epsilon, \infty))\right] \\
& \quad \leq q_{\Delta_{1}}^{(n)}\left(b_{1},\left[b_{1}, b_{2}\right)\right) .
\end{aligned}
$$

Thus, py (4.23), we can find b_{1} and b_{2} arpitrarily close to $\phi_{\text {and }}$ an arpitrarily laree $n \in N$ such that

$$
\begin{equation*}
g_{\Delta}^{(n)}\left(b_{1}, \mid b_{1}, b_{2}\right) \left\lvert\,>\frac{1}{2} \epsilon .\right. \tag{4.24}
\end{equation*}
$$

This means that thete exist infegers $m \geq 1$ with the following property:
$R(m)$ For every $n_{0} \in \mathbb{N}$ and every neighbourhood U_{b} of b we can find at least m disjoint intervals $\left.\mid b_{i}, c_{i}\right\rfloor \subseteq \psi_{b}, i=1,2, \ldots, m$, such that, for some $n \geq n_{0}$,

$$
\begin{equation*}
q_{\Delta_{i}}^{(n)}\left(b_{i},\left[b_{i}, c_{i}\right)\right)>\frac{1}{2} \epsilon \tag{4.25}
\end{equation*}
$$

holds simultaneously for all $i \in\{1,2, \ldots, m\}$.
Let, for all $a \in \mathbb{R}, \tau_{e}^{(n)}$ denote the hitting-time of $\left\{Y_{n}(t): t \in[0,1]\right\}$ for the interval $[a, \infty)$ and set $\tau_{d}^{(n)}=2$ if $Y_{n}(t)$ is less than a for all $t \in[0,1]$. Let us then consider $\tau_{c_{1}}^{(n)}, \tau_{c_{2}}^{(n)}, \ldots, \tau_{c_{m}}^{(n)}$. It is nc restriction to assume that $b_{1}<c_{1}<b_{2}<c_{2}<\ldots<b_{m}<c_{m}$. Furthermore, by the assumption (ii),

$$
\begin{gather*}
\mathrm{P}\left[\tau_{c_{i}}^{(n)} \leq 1, i=1,2, \ldots, m\right] \cap\left\{\tau_{c_{i}}^{(n)}>b_{i+1} \text { for some } i \leq m-1\right\} \rightarrow 0 \\
\text { as } n \rightarrow \infty . \tag{4.26}
\end{gather*}
$$

Using the (strong) Markov property, (4.25) and (4.26), we can then see that

$$
\mathrm{P}\left[\tau_{b+1}^{(n)} \leq 1\right]=\mathrm{P}\left[\sup \left\{\left|Y_{n}(t)\right|: t \in[0,1]\right\} \geq b+1\right]
$$

could be made arbitrarily small if in could be chosen arbitratily large. But this contradicts the assumption (i). Thus there exists an integer $m_{0} \geq 1$ such that $\mathbb{P}\left\{m_{0}\right\}$ holds true and $\mathbb{P}\{m\}$ does not hold for any $m>m_{0}$.

On the other hand, if there exists such a maximal m_{0}, we can find a fixed $\delta>0$ and, for any $n_{0} \in \mathrm{~N}$ and any sphere $S_{\gamma}(b), m_{0}$ disjoint intervals $\left[b_{i}, c_{i}\right] \subseteq S_{\gamma}(b), i=1,2, \ldots, m_{0}$, such that the inequalities

$$
\begin{align*}
& q_{\Delta_{1}}^{(n)}\left(b_{i},\left[b_{i}, c_{i}\right)\right)>\frac{1}{2} \epsilon, \quad i=1,2, \ldots, m_{0}, \tag{4.27}\\
& q_{\Delta_{1}}^{(n)}(b-\delta,[b-\delta, b-2 \gamma)) \leq \frac{1}{2} \epsilon \tag{4.28}
\end{align*}
$$

hold simultaneously for some $n \geq n_{0}$. (Obviously it is no restriction to
assume that $2 \gamma<\frac{1}{2} \delta$.) From (4.27). it follows that

$$
\begin{equation*}
q_{\Delta}^{(n)}(\dot{a},(c, b+\gamma)\}>\frac{1}{2} \epsilon \tag{4.29}
\end{equation*}
$$

for $\operatorname{all} \Delta \leq \Delta$, and all $a \leq b-\gamma$. Using the Markov property, (4.28) and (4.29), we get

$$
\begin{aligned}
& P \mid \dot{Y}_{n}^{\prime}(1-\Delta \mid) \in(b-\delta ; b-2 \gamma) ; \\
& \dot{Y}_{n}(t) \in(\vec{b}-2 \gamma, b-z) \text { for some } t \in\{1-\Delta \mid ; 1]: \\
& b_{b}-2 \gamma \leq \gamma_{n}^{n}(1) \leq b+\gamma_{1}^{\prime}>
\end{aligned}
$$

$$
\begin{aligned}
& 3 \frac{1}{2} \in\left(B\left|Y_{n}^{n}\left(1-\Delta_{1}\right) \in(b-\delta: b-2 \gamma), Y_{n}(1) \geqslant b-2 \gamma\right|\right. \\
& \left.\left.B \mid Y_{n}(t) \text { has a jump exceeding } \gamma\right\}\right)
\end{aligned}
$$

Hence, for all $\gamma>8$:
which obviously contradicts the assumption (i). This completes the proof of Theorem 4.4.

5. Weak convergence of normalized Galton-Watson processes

In Section 4, we showed how our general results on the transition from a sequence of stochas ically monotone Markov chains to a con-tinuous-time process could be applied to sequences of normalized Galton-Watson processes. Here we will give a more detailed discussion of this topic.

For each fixed $n \in \mathbf{N}$, let $\left\{Z_{j}^{(n)}\right\}_{j}$ denote the random variables of a

Galton-Watson branching process governed by the probabilities $\left\{p_{k}^{(n)}\right\}_{k}$. Here $p_{k}^{(n)}$ denotes the probabisty that one individual in the $j^{\text {th }}$ generation of the $i^{\text {th }}$ bratching process gives rise to k individuals thit the $(j+1)^{\text {st }}$ genetation of the same process. Let us then introduce the continuioustimè proces jes

$$
\begin{equation*}
\dot{y}_{2}(t)=\left(z \sum_{n t}^{n_{n}^{\prime}} t-a_{n}^{\prime \prime}\right)\left|b_{n}^{\prime \prime}, \quad t \in\right| \theta ; 1 \mid . \tag{3.1}
\end{equation*}
$$

where $Z^{(\prime \prime \prime}=c^{\prime \prime \prime}$: We shat alway assume that $c^{\prime \prime}$ are positive interers $\rightarrow \infty$.

 two fhoorems (zee Ifl:

(i) for fixed $\} \in[P, 1]$ and $x \geqslant \rho_{0}, p_{1}(x):$ is a probabilits measwe on the class of ororel sets in $(0, \infty)$;
(ii) for evert Borel set $E \subseteq\{0, \infty)$, pot (x, E) is iointly measurable in
$t \in I Q ; 1$ and $x \geqslant 0 ;$
(iii) $\operatorname{Fop} p_{t}\left(x\right.$, du) $\dot{p}_{s}(M, E) \equiv p_{t+\infty}(x, F)$;
(iv) for ank $x, x \geq 0$ and $f \in f$, 11 .

$$
p_{t}(x+\psi, \cdot)=p_{t}(x, \cdot) * p_{t}(\psi, \cdot),
$$

where * denotes conpolution;
(v) there exist $t \in(0,1]$ and $x>0$ such that $p_{t}(x,\{0\})<1$.

Theurem 5.2. Suppose again that (5.2) holds, where we now assume that $a_{n} / b_{n} \rightarrow \infty$. Then $\{Y(t) ; t \in[0,1]\}$ is a process with stationary independent ${ }^{\prime}$ increments. If $b_{n} \rightarrow \infty$, the canonical measure governing the distribution of the increments of $\{Y(t) ; t \in[0,1]\}$ has support contained in $[0, \infty)$. If $b_{n}+\infty$, the canonical measure is supported on the set $\{n / b ; n=-1,0,1,2, \ldots\}$ for some positive b.

We shall now exa nine the convergence in these two theorems and prove that convergence of the finite-dimensional distributions implies weak convergence in $D[0,1]$, provided the probability distribution $\left\{p_{k}^{(n)}\right\}_{k}$ has mean value 1 for all $n \in \mathbb{N}$. As we can see from the proof, it is easy to generalize this to the case when the mean value is of the form $1+\alpha / n+o(1 / n)$.

Let us start by examining the convergence in Theorem 5.1. Since $\left\{c_{n} / b_{n}\right\}_{n}$ evidently must converge and $E\left\{\left|Y_{n}(1)\right|\right\}=\mathbb{E}\left\{\left|Y_{n}(0)\right|\right\}=c_{n} / b_{n}$, there exists a constant K such that

$$
\begin{equation*}
\mathrm{E}\left\{\left|Y_{n}(0)\right|\right\}+\mathrm{E}\left\{\left|Y_{n}(1)\right|\right\} \leq K \tag{5.3}
\end{equation*}
$$

for all $n \in \mathbb{N}$. However, each $\left\{Y_{n}(t ; t \in\{k / n: k=0,1,2, \ldots, n\}\}\right.$ is a martingale. Hence,

$$
\begin{equation*}
P\left[\sup \left\{\left|Y_{n}(t)\right|: t \in[0,1]\right\}>\lambda\right] \leq 2 K / \lambda, \tag{5.4}
\end{equation*}
$$

for all $\lambda>0$ and $n \in \mathbb{N}$, and the first condition in Theorem 2.1 is satisfied.

Before we start examining the transition probabilities $q_{\Delta}^{(n)}(a, E)$, let us consider the following:

Proposition 5.3. Let $m \in \mathbb{N}$ and $\epsilon>0$ be given numbers. Then we can find $a \delta=\delta(m, \varepsilon)>0$ such that, for any $k \in \mathbb{N}$ and any set $\left\{Y_{1}, Y_{2}, \ldots, Y_{k m}\right\}$ of identically distributed independent random variables, it holds that

$$
\mathrm{Pl}\left|\left|\Sigma_{i=1}^{k} Y_{i}\right|>\delta\right|<\delta \Rightarrow \mathbb{P}| | \Sigma\left|=1 Y_{i}\right|>\varepsilon \mid<\varepsilon \quad \text { for all } j \leq \mathrm{km} .
$$

Probf: We use the satme kind of atguthents as in the begithing of the
 encugh;

$$
\left|\phi^{t}(t)-1\right| \leq \frac{1}{4} \pi \quad \text { fot }|t| \leq t
$$

ithiplies that

$$
|\dot{y y}(t)-1| \leq m k \quad 18 \mathrm{~F}|t| \leq t_{0}:
$$

And the last inequality implies the

The rest of the probf is ahvirus:

We shall now prove that the transition probabilities $q_{\Delta}^{(n)}(a, \cdot)$ satisfy condition (ii) in Theorem 2.1. By assumption, there is a pcint $t_{0}>0$ such that

$$
\begin{equation*}
\mathbb{R}\left[Y\left(t_{0}\right)>0\right]>0 \tag{5.5}
\end{equation*}
$$

Proceeding as in the proof of Lemma 4.1, we get

$$
\begin{equation*}
\underset{t \uparrow t_{0}}{w-\lim _{0}} Y(t)=Y\left(t_{0}\right) \tag{5.6}
\end{equation*}
$$

From (5.5), (5.6) and the proof of Lemma 4.1, it follows that there exists a strictly positive real number b such that

$$
\begin{equation*}
q_{\Delta}^{(n)}\left(b,(b-\delta, b+\delta)^{c}\right) \rightarrow 0 \quad \text { as } \Delta \rightarrow 0 \tag{5.7}
\end{equation*}
$$

uniformly in $n \in \mathbf{N}$, for every $\delta>0$.
Since $\left\{Z_{j}^{(n)}\right\}_{j}$ is an integer-valued process, we can set

$$
q_{\Delta}^{(n)}(a, \cdot)=q_{\Delta}^{(n)}\left(k / b_{n}, \cdot\right) \quad \text { for }(k-1) / b_{n}<a \leq k / b_{n} .
$$

But, for each Δ and n, we can find a set $\eta_{i} ; i=1,2,3, \ldots$? of independent and identic ally distributed random variables such that

$$
q_{\Delta}^{(n)}\left(k / b_{n}, \mathrm{~d} x\right)=\mathrm{P}\left[\left(\eta_{1}+\eta_{2}+\ldots+\eta_{k}\right) / b_{n} \in \mathrm{~d} x\right]
$$

for anll $k \in \mathbb{N}$. By Proposition 5.3 and (5.7); we then get

$$
q_{\Delta}^{(b)}\left(a ;(a-\delta, a+\delta)^{c}\right) \rightarrow 0 \quad \text { as } \Delta \rightarrow 0 ;
$$

Uniformly if $a \in \mathcal{C}$ and $n \in \mathbb{N}$, for every compact set $C \subseteq(0 ; \infty)$: Hence,

 $\left\{Y_{n}\right\}_{n}$. We ean then seleet subsequenees fuit and $\left\{h^{\prime \prime}\right\} \in \mathbb{N}$ suth that

and $\left(Y^{\prime \prime}\left(t_{1}\right), Y^{\prime \prime}\left(t_{2}\right), \ldots, Y^{\prime \prime}\left(t_{k}\right)\right)$ coincide for all $t_{1}, t_{2}, \ldots, t_{k} \in T$. Applying [1, Theorem 14.5], we conclude that Y^{\prime} and $Y^{\prime \prime}$ define the same probability distribution in $\mathrm{D}[0,1]$. But a conditionally compact sequence with only one limit point must be convergent. Thus,

$$
Y_{n} \xrightarrow{D} Y^{\prime} \quad \text { as } n \rightarrow \infty .
$$

Since $\left\{\mathrm{I}^{\prime}(t) ; t \in[0,1]\right\}$ is continuous in probability by Theorem 3.4,
$\left(Y_{n}\left(t_{1}\right), Y_{n}\left(t_{2}\right), \ldots, Y_{n}\left(t_{k}\right)\right) \xrightarrow{w}\left(Y^{\prime}\left(t_{1}\right), Y^{\prime}\left(t_{2}\right), \ldots, Y^{\prime}\left(t_{k}\right)\right) \quad$ as $n \rightarrow \infty$,
for all $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{k} \leq 1$. But then the finite-dimensional disiributions of Y^{\prime} coincide with those of Y in (5.2), and this completes the discussion of Theorem 5.1.

We shall now turn to the discussion of the convergence in Theorem 5.2. We start by giving a result from the theory of triangular ariays.

Proposition 5.4. Let $\left\{Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, 2}\right\}_{n}$ be a triangular array of random variables such that
(i) for each n the variables $Z_{n, 1}, Z_{n 2}, \ldots, Z_{n, n}$ are identically distributed and independent;
(ii) $Z_{n, j} \geq-1, j=1,2, \ldots, n, n=1,2,3, \ldots$;
(iii) $\mathbb{E}\left\{Z_{n, j}\right\}=0, j=1,2, \ldots, n, n=1,2,3, \ldots$.

With $S_{n}=\Sigma_{j=1}^{n} Z_{n, j}$ we then have $\sup _{n \in \mathrm{~N}} \mathrm{E}\left\{\left|S_{n}\right|\right\}<\infty$, provided $\left\{S_{n}\right\}_{n}$ is stochastically bounded.

Proof. Following [6, p. 308], we introduce the continuous truncation function

$$
\tau_{s}(x)=\left\{\begin{aligned}
x & \text { for }|x| \leq s \\
\pm s & \text { for }|x| \geq s
\end{aligned}\right.
$$

Derine $Z_{n, j}^{\prime}=\tau_{s}\left(Z_{n, j}\right)$ and $Z_{n, j}^{\prime \prime}=Z_{n, j}-Z_{n, j}^{\prime}$. For $s \geq 1, Z_{n, j}^{\prime \prime}$ is non-negative. Moreover, for s sufficiently largi, both $S_{n}^{\prime}=\sum_{j=1}^{n} Z_{n, j}^{\prime}$ and $S_{n}^{\prime \prime}=\Sigma_{j=1}^{n} Z_{n, j}^{\prime \prime}$ are stochastically bounded. Still following [6], we conclude that $\left\{\mathbb{E}\left\{\left(S_{n}^{\prime}\right)^{2}\right\}\right\}_{n}$ is bounded and so $\left\{\mathbb{E}\left\{\left(S_{n}^{\prime}\right)^{-}\right\}\right\}_{n}$ is bounded too. Since $S_{n}^{\prime \prime}$ is non-negative and $E\left(S_{n}\right)=0$, we obviously have

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\{\mathbb{E}\left\{\left|S_{n}\right|\right\}\right\}_{n}<+\infty \tag{5.8}
\end{equation*}
$$

and the proposition is proved. There is no difficulty to generalize this result to triangular arrays $\left\{Z_{n, 1}, Z_{n, 2}, \ldots, Z_{n, k_{n}}\right\}_{n}$, where $\left\{k_{n}\right\}_{n}$ is an arbitrary sequence tending to infinity.

There is no loss of generality in assuming that $a_{n}=c_{n}$ in Theorem 5.2. If we exclude the case when the limit process is degenerate, we can also assume that $\inf \left\{b_{n}: n \in \mathbb{N}\right\}>0$. Let us now consider the probability law of $Y_{n}(1)$. It coincides with the law of $\Sigma_{j=1}^{c_{n}}\left(X_{j}-1\right) / b_{n}$, where the X_{j} are independent random variables representing the number of individuals in the $n^{\text {th }}$ generation of $\left\{Z_{j}^{(n)}\right\}_{j}$ who are descended from each of the c_{n} original ancestors. Proposition 5.4 , with $Z_{n, j}=\left(X_{j}-1\right) / b_{n}$ shows that

$$
\sup _{n \in \mathbb{N}} \mathbb{E}\left\{\left|Y_{n}(1)\right|\right\}<\infty .
$$

Noticing that $\left\{Y_{n}(t) ; t \in\{k / n: k=0,1,2, \ldots, n\}\right\}$ is a martingale, we have shown that the sequence $\left\{Y_{n}\right\}_{n}$ satisfies conditicn (i) of Theorem 2.1. Proceeding as in the discussion of the convergence in Theorem 5.1, we can prove that $\left\{Y_{n}\right\}_{n}$ is conditionally compact. Thus, we have the following.

Theorem 5.5. Let $\left\{Z_{j}^{(n)}\right\}_{j}$, for each $n \in \mathbf{N}$, denote the random variables of a critical Galton-Watson branching process and define by 5.1 a sequence of contiruous-time processes $\left\{Y_{n}(t) ; t \in[0,1]\right\}_{n} .4$ ssuine that there is a non-degenerate stochastic process $\{Y(t) ; t \in[0,1]\}$ such that the finite-dimensional distributions of $\left\{Y_{n}(t) ; t \in[0,1]\right\}$ converge to those of $\{Y(t) ; t \in[0,1]\}$. Then there is a random element $\left\{Y^{\prime}(t) ;\right.$ $t \in[0,1]\}$ in $\mathrm{D}[0,1]$ with the same finite-dimensiorial distributions as $\{Y(t) ; t \in[0,1]\}$ and such that

$$
Y_{n} \xrightarrow{D} Y^{\prime} \quad \text { as } n \rightarrow \infty .
$$

Remark. In thes paper we have only considered Markov branching processes. In a coming paper, corresponding tightness and convergence results for age-dependent branching processes will be given.

References

[1] P. Billingsley, Convergence of probability measures (Wiley, New York, 1968).
[2] A.A. Borovkov, Convergence of weakly dependent processes to the Wiener process, Theor. Probability Appl. 12 (1967) 159-186.
[3] A.A. Borovkov, On the convergence to diffusion processes, Theof, Probability Appl. 12 (1967) 405-431.
[4] A.A. Boroviajv, Theorems on the convergence to Markov diffusion processes, Z. Wahrscheinlichkeitstheoric verw. Geb. 16 (1970) 47-76.
[5] D.J. Daley, Stochastically monotone Markov chains, Z. Wahrscheinlichkeitstheorie verw. Geb. 10 (1968) 305-317.
[6] W. Feller, An introduction to probability theory and its applications, Vol. Il (Wiley, New York, 197:).
[7] I.I. Gihkman, On the convergence to Markov processes, Ukr. Mat. Zh. 21 (1969) 316-324.
[8] I.I. Gihkman and A.V. Skorokhod, Introduction to the theory of random processes (Saunders, Philadelphia, 1969).
[9] A. Grimvall, A theorem on convergence to a Lévy process Math. Scand. 30 (1972) 339-349.
[10] J. Lamperti, Probability (Benjamin, New Yoik, 1966).
[11] J. Lamperti, Limiting distributions for branching processes, in: Proc. 5 th Berkeley Symp. on Mathematical Statistics and Probability, Vol. 2 (2) (1967) 225-241.
[12] J. Lamperti, The limit of a sequence of branching processes, Z. Wahrscheinlichkeitstheorie verw. Geb. 7 (1967) 271-288.
[13] T. Lindvall, Convergence of critical Galton-Watson branching processes, J. Appl. Prob. 9 (1972) 445-450.
[14] Yu.V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Theor. Probability Appl. 1 (1956) 157-214.
[15] A.V. Skorokhod, Studies in the theory of random processes (Addison-Wesley, Reading, Mass., 1965).
[16] A.V. Skorokhod, Limit theorems for stochastic processes, Theor. Probability Appl. 1 (1956) 261-290.
[17] A.V. Skorokhod, Limit theorems for stochastic processes with independent increment, Theor. Probability Appl. 2 (1957) 138-171.
[18] A.V. Skorokhod, Limit theorems for Markov processes, Theo. Probability Appl. 3 (1958) 202-246.
[19] A.V. Skorokhod, A limit theorem for: homogeneous Markov chains, Theor. Probability Appl. 8 (1963) 61-70.

