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Valuable stimuli are invariably localized in space. While our knowledge regarding the neural networks
supporting value assignment and comparisons is considerable, we lack a basic understanding of how the
human brain integrates motivational and spatial information. The amygdala is a key structure for learning and
maintaining the value of sensory stimuli and a recent non-human primate study provided initial evidence that
it also acts to integrate value with spatial location, a question we address here in a human setting. We measured
haemodynamic responses (fMRI) in amygdala while manipulating the value and spatial configuration of stimuli
in a simple stimulus–reward task. Subjects responded significantly faster and showed greater amygdala activa-
tion when a reward was dependent on a spatial specific response, compared to when a reward required less
spatial specificity. Supplemental analysis supported this spatial specificity by demonstrating that the pattern of
amygdala activity varied based on whether subjects responded to a motivational target presented in the ipsilat-
eral or contralateral visual space. Our data show that the human amygdala integrates information about space
and value, an integration of likely importance for assigning cognitive resources towards highly valuable stimuli
in our environment.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Fundamental for approach and avoidance behaviour is the need to
localize value in space. The amygdala is a structure widely implicated
in encoding the value of stimuli (Jenison et al., 2011; Morrison and
Salzman, 2010; Paton et al., 2006). Electrophysiological recordings in
nonhuman primates show how the amygdala contains neurons with
sustained preferences for positive or negative affective value, a value
signal that is also related to the animal's approach or avoidance behav-
iour (Paton et al., 2006). Though such influence on behaviour could be
the result of a general arousal state mediated by the amygdala (Davis
and Whalen, 2001), this is contradicted by demonstration of amygdala
activity linking spatial and motivational representations (Peck et al.,
2013).

Amygdala is not the only brain region involved in assigning and
updating stimulus value. A growing literature provides a complex
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picture of brain regions that contribute to value encoding (Clithero
and Rangel, 2013; Rangel and Hare, 2010) and several of these brain
areas also serve other cognitive and emotional functions (Barrett and
Satpute, 2013). However, in order to act upon valuable stimuli, it is
essential to localize them in space. While regions such as orbitofrontal
cortex (OFC) and ventral striatum both carry value related signals
(Kable and Glimcher, 2009), it is also the case that they show low or
even absent spatial selectivity (Lansink et al., 2012; Padoa-Schioppa
and Assad, 2006). Interestingly, both of these regions share close ana-
tomical connections with the amygdala (Haber and Knutson, 2010),
with dynamic and complex relationships between these areas charac-
terizing a range of value-guided decisions and behaviours (Barberini
et al., 2012; Morrison et al., 2011).

The integration of stimulus valuewith its spatial configuration in the
human amygdala remains little investigated.While functional neuroim-
aging studies (Basten et al., 2010; De Martino et al., 2006; Gottfried
et al., 2003; Ousdal et al., 2012) and electrophysiological recordings
(Belova et al., 2008; Paton et al., 2006; Schoenbaum et al., 2003) impli-
cate the amygdala in encoding the value of stimuli, there has been little
exploration ofwhether it is important for localizingmotivational stimuli
in space. It is of interest that patients with isolated amygdala lesions do
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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support sensitivity to spatial information. For instance, patient SM who
has bilateral amygdala lesions and difficulties recognizing fearful facial
expressions, shows a resolution of this deficit when her attention is di-
rected towards the informative eye region of the faces, suggesting a spa-
tial attention aspect to her deficit (Adolphs et al., 2005). Moreover,
humans detect emotional images or words faster than their neutral
counterparts (Anderson, 2005; Eastwood et al., 2001; Fox, 2002), and
locations previously associated with highly valuable events interfere
with the search for present targets (Anderson et al., 2011). In addition,
though many studies report amygdala activity in response to passive
obtainment of rewards, active responding for a reward in space appears
to yield significantly greater BOLD amygdala response then is the case
for passive receipt (Elliott et al., 2004).

If indeed information about stimulus' value and its spatial location
converge in the human amygdala, then this begs questions as to
the origin of the spatial information. Both the dorsal visual stream
(Ungerleider and Haxby, 1994) and the lateral (i.e. ventrolateral
and dorsolateral) prefrontal cortex (Corbetta and Shulman, 2002)
contain neurons sensitive to object localisation. However, both of
these brain areas have few connections to the amygdala (Freese
and Amaral, 2009). Another possibility is that the dorsal anterior cin-
gulate cortex (dACC), which conjointly encodes spatial attention and
reward value (Kaping et al., 2011), and shares bilateral connections
with the amygdala (Beckmann et al., 2009; Ghashghaei et al.,
2007), might provide the necessary spatial information.

We investigated the spatial sensitivity of a value signal in amygdala
during a simple stimulus–reward task in which outcome value and the
motor response requirements were kept constant, while the spatial
specificity of the reward varied. We hypothesized that amygdala
would encode value in space, with the greatest activity manifest when
these two stimulus' attributes had to be integrated in order for optimal
decisions. Furthermore, to address the question of access to spatial
information by the amygdala we tested whether the functional associa-
tion between amygdala and dACC varied according to the spatial repre-
sentation of a rewarding event.

Materials and methods

Subjects

Eighteen healthy subjects (mean age ± SD = 25 ± 6 years; 9
women) were included in the study after giving written informed con-
sent. The study was approved by the Norwegian Regional Committees
for Medical and Health Research Ethics. Prior to participation, subjects
Fig. 1. The paradigm rationale. Pairs of numberswere presented horizontal to each other. The n
pairwasmade up of either two similar numbers (i.e. 2–2 or 4–4) or a zero pairedwith a valuabl
the response button corresponding to the amount of kr the subject wanted to obtain.
were screened to exclude somatic and psychiatric illness, substance
abuse and MRI-incompatibility. All subjects received 300 Norwegian
Kroner (kr) (150 kr for a screening interview and 150 kr for the fMRI
session) for their participation and kept additional money won in the
experiment described below.
fMRI paradigm

We created a new paradigm using visual numbers presented
pairwise in an event-related design. Each trial consisted of a number
pair presented for 800 ms, and subjects had to make their response
while the numbers were presented on the screen. Trials that did not
have a response within 800 ms were coded as “missed responses”.
The order of trial presentation was randomized across subjects. Trials
were separated by a jittered inter-trial interval lasting 5 ± 2 s. For
each trial, purple numbers were presented in pairs on a black back-
ground. The numbers occurred horizontally to each other and were ei-
ther similar or different in magnitude. The number value corresponded
to an amount a subject could win in Norwegian Kroner (kr; 1 kr equals
approx. 0.17 USD), and was either 0, 2 or 4 kr (see Fig. 1). The task for
subjects was to press a response button corresponding to the amount
of kr the subject wanted to obtain, which under the assumption that
they wanted to maximise their gains corresponded to the highest num-
ber. Subjects were given verbal instructions prior to scanning and also
performed a practice version of the task. During the practice, subjects
completed one trial of each condition, and thus familiarized themselves
with the visual appearance of the stimuli and the time limits for
responding. Before the practice, subjects were told that they were free
to respond however they preferred, but that one response should be
given for each trial. The combination of two similar numbers (i.e. 2–2
or 4–4), called the non-spatial value condition, had no preferred re-
sponse. In the spatial value condition the numbers differed, and one re-
sponse was more rewarding than the other (the one with the highest
number). The number pairs in spatial value trials always consisted of a
zero paired with a valuable stimulus (i.e. 4–0 or 2–0). The 0–0 condition
provided a baseline. By creating these five conditions, we could indepen-
dently manipulate reward magnitude and spatial specificity. We
hypothesised that amygdala would activate more in trials requiring
greater spatial specificity for reward obtainment than trials with less ne-
cessity for localisation, despite equal outcome values. The use of hands
was counterbalanced. Subjects were told that they could keep all the
money earned in the experiment, but they would not receive any feed-
back during the task indicating the outcome of the trail or their overall
umbers corresponded to the amount the subject could win in Norwegian kroner (kr). Each
e stimulus (i.e. 2–0, 0–2, 4–0, 0–4). The 0–0 conditionwas a baseline. The task was to press



714 O.T. Ousdal et al. / NeuroImage 101 (2014) 712–719
earnings. Twenty trials of each condition were presented, with the total
scan time lasting 12.2 min. The paradigm rationale is displayed in Fig. 1.

Apparatus

E-prime software (Psychology Software Tools, Inc.; Pittsburgh, PA,
USA) was used to program and control the experiment. In the scanner,
stimuliwere presented throughVisualSystemgoggles (NordicNeuroLab,
Bergen, Norway) and responses were collected by ResponseGrip
(NordicNeuroLab, Bergen, Norway).

Image acquisition

Whole-brain, T2*-weighted, echo-planar images (TR=2000ms, TE=
25ms, flip angle 90°, 260 mm × 260 mm field of view, 64 × 64 matrix)
were acquired using a 3T scanner (General Electric Company; Milwau-
kee, WI, USA) supplied with a standard eight-channel head coil. A total
of 272 volumes were acquired, and the first 3 volumes were discarded
as dummies to allow for magnetization equilibrium. Each volume
consisted of 36 slices acquired parallel to the AC–PCplane (sequential ac-
quisition; 3.5 mm thick with a 0.5 mm gap). For anatomical comparison
purposes, FSPGR T1-weighted anatomical images (TR = 7.7 ms, TE =
3.0 ms, flip angle 12°) were acquired prior to the functional imaging.

Behavioural data analysis

The behavioural data was analysed using SPSS (Statistical Package
for Social Sciences 16.0. SPSS Inc., Chicago, USA). To test for differences
in response time or response accuracy between the non-spatial and spa-
tial value conditions of the experimental task, paired-sample t-tests
were performed. In addition, paired-sample t-tests were used to inves-
tigate differences in response times or accuracy as a function of increas-
ing reward magnitude (i.e. (4–0 + 0–4 + 4–4) N (2–0 + 0–2 + 2–2))
and the various response hands.

fMRI data analysis

Prior to analysis, the functional images were visually inspected for
artefacts, extreme variance and signal dropout in the amygdala. None
of the subjects had to be excluded due to artefacts or signal dropout.
Data preprocessing and analysis were conducted using SPM8 soft-
ware package (http://www.fil.ion.ucl.ac.uk/spm). All volumes were
unwarped and realigned to the first volume (Friston et al., 1995)
and the mean functional and anatomical images were co-registered.
No participants moved more than 3 mm in any direction. The images
were then spatially normalized to a standard EPI template based upon
the Montreal Neurological Institute (MNI) reference brain (Evans
et al., 1992), and resampled to a voxel size of 3 × 3 × 3mm. The images
were smoothed using an 8 mm full width — half maximum (FWHM)
Gaussian isotropic kernel. Data were high-pass filtered using a cut-off
value of 128 s and corrected for auto-correlation between scans.

The primary aim of the neuroimaging analysis was to investigate if
the human amygdala activity reflected variations in outcome value
per se or to the integration of value in space. Further, we wanted to
investigate if the value signal was associated with spatial configuration
selectivity, i.e. if the amygdala differentiated between positively valued
stimuli occurring in the same or the opposite visual hemifield. We built
amodel by convolving stick functions for the onsets of stimuli presenta-
tion with a canonical haemodynamic response function (HRF). Trials
were sorted into five types, reflecting the spatial specificity of reward
presentation and the response hand usage. The five trial types were
“right response in non-spatial value trials” (i.e. (2–2+ 4–4)right response),
“right response in spatial value trials” (i.e. (0–2 + 0–4)), “left response
in non-spatial value trials” (i.e. (2–2 + 4–4)

left response
), “left response in

spatial value trials” (i.e. (2–0 + 4–0)) and the baseline (i.e. 0–0). In ad-
dition, head movement parameters derived from spatial realignment
during the image preprocessing and wrong responses, were added as
covariates of no interest. A general linear model (GLM) was used to es-
timate parameters of activity for each participant across thewhole brain
for each experimental condition compared to baseline. The individual
contrast images were entered into a 2 × 2 ANOVA analysis separating
the main effect of spatial specificity and response hand, in addition to
their interaction. Crucially, the interaction was balanced with respect
to spatial specificity and response handusage. Consequently, activations
identified in the interaction,were not attributable to the effect of spatial
specificity or response hand alone.

To elaborate on the spatial selectivity of amygdala responses, we
contrasted trials in which a left (or right) hand response was cued
with trials in which a left (or right) hand response was not cued,
i.e. (2–0 + 4–0) N (2–2 + 4–4)left response. This contrast was balanced
according to response hand, but it differed with respect to the spatial
configuration of the value cues. Electrophysiological recordings in
primate amygdala indicate that though amygdala activity is modu-
lated by the value of both ipsilateral and contralateral stimuli, the re-
sponse to contralateral rewarding cues is stronger and with shorter
latencies (Peck et al., 2013). Based on this, we expected trials with
value cues presented in the left hemifield alone; to be dominated
by right amygdala responses and vice versa, compared to when the
value cues appeared in both hemifields. Critically, we also contrasted
the spatial value trials per se according to the required response hand
(i.e. (0–2+0–4) N (2–0+4–0)). The last contrast only differedwith re-
spect to the hemispheric appearance of the value cue, and thus any sig-
nificant amygdala responses should reflect variations in their spatial
representation.

Due to the fact that some of the subjects were extreme right- or left-
lateralized (i.e. responding mainly with their right or left hand) during
non-spatial value trials, we also created a model where the non-
spatial value trials were pseudo-randomly distributed between two
conditions, each balanced according to reward magnitude (i.e. contain-
ing equal numbers of 2–2 or 4–4 trials). We replicated the “spatial value
trials N non-spatial value trials” using this model. Finally, to assess out-
come value processing, we investigated the effect of reward obtainment
per se (i.e. 4–4 N 0–0), and parametric effects of increasing stimulus
value (i.e. 0–0/2–2/4–4) on amygdala activity. To avoid any effects relat-
ed to response hand usage, only right hand response trials were used.

To correct for multiple comparisons, whole-brain family-wise error
(FWE) correction was used (FWE b 0.05, k N 10 voxels). In addition, as
we had an a-priori hypothesis regarding the amygdala, small volume
correction based on anatomically defined bilateral amygdala region of
interests (ROIs) and FWE corrected p-values were used. The anatomi-
cally defined ROIs were created using the SPM Wake Forest University
(WFU) Pickatlas toolbox (http://www.fmri.wfubmc.edu/cms/software,
version 2.3) (Maldjian et al., 2003).

Psychophysiological interaction (PPI) analysis
To investigate if functional connectivity of the amygdala differed

based on whether the subject responded to a spatial valuable stimulus
appearing in the ipsi- or the contralateral visual hemifield, we im-
plemented a generalized psychophysiological interaction (gPPI)
analysis. We created a gPPI analysis (gPPI toolbox; http://www.
nitrc.org/projects/gppi) with the left amygdala as a seed region,
and investigated if the connectivity of left amygdala varied when
making spatial cued right as compared to left hand responses
(i.e. (0–2 + 0–4) N (2–0 + 4–0)). Only left amygdala was used as
right amygdala displayed no significant responses in the second
level analysis. For each subject¸ mean corrected activity was extracted
from volumes of interest (first eigenvariate from the activated voxels
within the anatomically (WFU PickAtlas (Maldjian et al., 2003)) defined
left amygdala). The individual BOLD signal of the seed region was
deconvolved to obtain an estimate of the underlying neuronal activity.
Subsequently, the estimated neuronal activity from the seed region
was multiplied with regressors modelling all task effects and then

http://www.fil.ion.ucl.ac.uk/spm
http://www.fmri.wfubmc.edu/cms/software
http://www.nitrc.org/projects/gppi
http://www.nitrc.org/projects/gppi
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reconvolved with the canonical HRF. Hence, the gPPI GLM includes a
psychophysiological regressor for all conditions (McLaren et al., 2012).
Based on the proposal by Peck et al. (2013), we were interested in the
dACC, as this region might be an input for spatial information to the
amygdala. Thus, the aim was to test for differences in regression slopes
between right and left hemispheric cued trials as a measure of differ-
ence in regional connectivity (i.e. between seed region and other
areas). To test for interaction effects, individual GLMs containing both
the PPI and the task regressors, in addition to six motion regressors
and themean time course of the seed region were created. The individ-
ual t-contrast images of the interaction gained from the gPPI were then
entered into a random effects one-sample t-test. As we had a-priori
hypothesis for the dACC, small volume correction using anatomically
defined bilateral dACC (WFU Pickatlas toolbox (Maldjian et al., 2003))
was performed.

Results

Behavioural results

In order to be included in the analyses, accuracy in all the experi-
mental conditions had to be above 50%. None of the subjects had to be
excluded due to behavioural performance not meeting this criterion
(total accuracy: 94.95 ± 8.05%). However, four of the subjects were
strongly biased to respondwith their left or the right hand (i.e. extreme
left- or right lateralized) during the 2–2 or 4–4 trials, andwere therefore
excluded from the 2 × 2 ANOVA analysis. The response time and accu-
racy for the spatial and non-spatial value conditions are presented in
Table 1.

Paired-sample t-tests revealed a significant shorter response
time in the spatial compared to the non-spatial value condition
(t = 2.48, p = 0.02). There was a trend for a significant difference
in accuracy between these two conditions (t= 2.09, p= 0.05), suggest-
ing that the improved response times in spatial trials were at the ex-
pense of reduced accuracy of responses. No difference in response
time (t = 0.94, p = n.s.) or accuracy (t = 1.43, p = n.s.) was found
for increasing reward magnitude or between the two response hands
(accuracy; t = 0.72, p = n.s., reaction times; t = 0.07, p = n.s.) for
the value trials.

Imaging results

ANOVA
Fourteen subjects were included in the final 2 × 2 ANOVA analysis.

The results revealed trend significant right amygdala activity in re-
sponse to the main effect of spatial specific values (right amygdala
peak voxel; x= 18, y=−4, z=−17, F = 8.11, psvc = 0.06), attribut-
able to significant greater amygdala responses for spatial as compared
to non-spatial value trials (right amygdala peak voxel; x = 18, y =
−4, z = −17, Z = 2.73, psvc = 0.03). In addition, there was a main
effect of response hand on left amygdala activity (left amygdala peak
voxel; x = −21, y = −4, z = −14, F = 10.87, psvc = 0.02), attribut-
able to significantly enhanced left amygdala activity when making a
right compared to a left hand value response (left amygdala peak
voxel; x = −21, y = −4, z = −14, Z = 3.13, psvc = 0.01). There
was no interaction between spatial coding of value and response hand
usage. Additional post-hoc t-tests demonstrated a significantly greater
right amygdala response when making a spatially coded left hand
Table 1
Accuracy and response time by conditions in the stimulus-reward task.

Mean response time (ms)

Spatial value condition 439 ± 72
Non-spatial value condition 453 ± 84

a Subjects chose the 0 kr in 6.9% of all spatial value trials. 1.4% of all the spatial value trials w
response as compared to when a left response was chosen without spa-
tial cuing (right amygdala peak voxel; x = 21, y = −4, z = −14, Z =
2.60, psvc b 0.05). Equivalently, the same contrast for right hand re-
sponses revealed bilateral significant amygdala responses without any
clear lateralization effect (right amygdala peak voxel; x = 21, y = −4,
z = −26, Z = 2.59, psvc b 0.05, left amygdala peak voxel; x = −30,
y =−4, z =−23, Z= 2.72, psvc = 0.03). Crucially, the contrast (0–2 +
0–4) N (2–0 + 4–0) yielded significant responses in left amygdala
alone (left amygdala peak voxel: x = −18, y = −4, z = −14, Z =
3.39, psvc = 0.006) supporting a spatial specificity of amygdala re-
sponses. The opposite contrast did not yield significant amygdala
responses.

To confirm the effect of spatial coding in amygdala, we created an
additional model in which the left and right spatial value trials were
compared to the non-spatial trials without controlling for response
hand, but balancing the contrast according to reward magnitude.
None of the subjects had to be excluded from this model. Themodel re-
vealed bilateral amygdala responses for the contrast spatial value trials
versus non-spatial value trials (right amygdala peak voxel; x= 21, y =
−4, z = −23, Z = 3.70, psvc = 0.002, left amygdala peak voxel; x =
−18, y=−7, z=−20, Z= 3.13, psvc= 0.01) (Fig. 2). Therewas a sig-
nificant response in right amygdala to reward obtainment per se (right
amygdala peak voxel x = 21, y = 2, z = −23, Z = 2.97, psvc = 0.02),
but no parametric effects of increasing stimulus value, not even with a
more lenient threshold (i.e. p = 0.05, uncorrected).

Psychophysiological interaction (PPI) analysis
A PPI-analysiswith left amygdala as seed region revealed, as predict-

ed, a significantly increased connectivity with left dACC (left dACC peak
voxel; x=−6, y= 8, z= 31, Z= 3.20, psvc = 0.02) and a trend signif-
icant connectivitywith right dACC (right dACC peak voxel; x=6, y=8,
z=31, Z= 2.68, psvc= 0.06)when responding to right as compared to
left cued value stimuli (see Fig. 3).

Discussion

The main finding of this study was that amygdala activity did not
only reflect variations in reward magnitude, but also reflected an asso-
ciation of stimulus value and its spatial configuration. The idea that
amygdala encodes or calculates value is not new (Paton et al., 2006).
Further, there is a growing literature in animals and humans indicating
that the amygdala generates a value signal during decision making, and
that this value signal may subsequently inform decision processes in
downstream brain structures (Hampton et al., 2007; Park et al., 2011;
Schoenbaum et al., 2003; Zeeb and Winstanley, 2013). However, the
possibility that the amygdala combines information about stimulus
value with its spatial properties has only been shown in a single non-
human primate study (Peck et al., 2013). Our demonstration here of
such an effect in humans extends the role of amygdala in reward to in-
clude an integration of spatial locationwith reward value. Furthermore,
variation in functional connectivity between amygdala and dACC
dependent on the spatial representation of valuable cues provides a
possible source by which the amygdala might access the position of
highly valuable events.

Spatial value trials required subjects to localize the more valuable of
two simultaneously presented stimuli, and respond accordingly. Our
finding that amygdala activity differentiated trials of equal outcome
value based on the spatial configuration of the reward-predictive
Median response time (ms) Accuracy (%)

442 91.7 ± 12.1a

473 98.2 ± 4.0

ere missed responses.



Fig. 2. BOLD fMRI responses in the amygdala obtained for the contrast “spatial value trials” N “non-spatial value trials”. (A) Statistical parametricmaps (SPM) demonstrating the responses
in amygdala for the given contrast. The image is small volume corrected (PFWE). The colours refer to t-values as coded in the bar to the right of the image. (B) Beta values for the peak voxel
in right amygdala (x = 21, y = −4, z = −23) for the conditions “spatial value trials” and “non-spatial value trials” illustrating the effect sizes.
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stimuli, supports the notion that amygdala integrates value and space.
Critically, the comparison of spatial value trials that only differed with
respect to the hemispheric presentation of the value cue, confirmed
this finding. To the best of our knowledge, this is the first study demon-
strating that amygdala encodes spatial attributes ofmotivational stimuli
in humans, though a number of behavioural studies in humans indirect-
ly support this notion. For example, subjects detect emotional faces
Fig. 3. The results of the generalized psychophysiological interaction analysis. (A) Statistical par
condition-specific BOLD signal changeswith left amygdala activity. The SPMbelow illustrates th
requiring right as compared to left responses (i.e. (0–2 + 0–4) N (2–0 + 4–0)). Both images ar
pattern of functional connectivity. The x-axis represents activity in the left amygdala (beta value
values). In the right spatial value condition there was a positive correlation between left amygd
left spatial value condition, no correlation appeared (r = 0.10, p = n.s.).
more readily (Frischen et al., 2008) and recognize emotional objects
(Ohman et al., 2001) faster than neutral targets in visual search tasks,
and this emotional advantage is reduced in subjects with amygdala le-
sions (Anderson and Phelps, 2001). In addition, the presence of task-
irrelevant positive or negative valued distracter stimuli (Anderson
et al., 2011; Vuilleumier et al., 2001) slows the target detection, perhaps
reflecting the value-driven capture of attention. Indeed, attentional
ametricmap (SPM) showing the cluster in left dorsal anterior cingulate cortex that showed
e significant cluster in left amygdala that showedgreater activity towards spatial value cues
e small volume corrected (PFWE). (B) Scatter plot with regression lines demonstrating the
s) cluster and the y-axis represents activity in the left dorsal anterior cingulate cluster (beta
ala and left dorsal anterior cingulate cortex activity (r = 0.48, p = 0.04). However, in the

image of Fig.�2
image of Fig.�3
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capture by high-value distracters occurs in a spatially specific manner,
so that response times are slower if the target appears in a location for-
merly occupied by the high-value distracter compared to when the
distracter appeared in another location (Anderson et al., 2011). This
hints that amygdala acts to associate the emotional or rewarding
value of stimuli with their spatial location, allowing them to be acted
upon more easily than if spatial information was not encoded.

The possibility of spatial coding in the amygdala was directly tested
in a study where amygdala neural activity and behaviour of primates
were predicted by the association of stimulus value and its spatial
configuration (Peck et al., 2013). Importantly, there was a systematic
relationship between the valence and the location of the stimuli, so
that neurons responding with a signal increase to the presence of a
reward, demonstrated the largest increase when the reward oc-
curred in the contralateral visual hemifield. By contrast, neurons
preferentially responding to the absence of reward showed a re-
sponse decrease, and this was more pronounced in trials where the
reward occurred in the contralateral hemifield. In keeping with
Peck et al. (2013), we observed a main effect of response hand in
left amygdala in the present ANOVA analysis attributable to in-
creased left amygdala activity when responding to valuable stimuli
occurring in the right, as compared to the left, visual field. Further,
the comparison of trials in which the value cue was presented in
the right hemifield with trials in which it occurred on the left side,
yielded significant responses in the left amygdala alone. To the best
of our knowledge, this is the first human study investigating whether
value responsive neurons in the human amygdala show spatial selectiv-
ity. However, we note prior indirect support for this notion comes from
a study where targets appearing at a previously emotional cued left vi-
sual hemifield location resulted in enhanced right amygdala responses,
as well as faster response times, compared to when neutral cues pre-
ceded the targets (Noesselt et al., 2005). Furthermore, Palminteri and
colleagues observed that activity in ventromedial prefrontal cortex
tracked the value of contralateral options in an instrumental learning
task (Palminteri et al., 2009), with the amygdala potentially serving as
an input region through intrahemispheric connections (Carmichael
and Price, 1995).

In line with the study by Peck and colleagues (Peck et al., 2013), we
investigated how the spatial configuration of two valuable cues affected
the allocation of cognitive resources and subsequent behaviours.
Despite differences in task design, both studies show that the paired
presentation of a high and low value cue biases attention towards the
high valuable item, resulting in shorter response latencies compared
towhen two equally valuable cueswere presented simultaneously. Fur-
thermore, both tasks also assess spatial selectivity at the level of visual
hemifield, demonstrating comparable spatial sensitivity in the human
and primate amygdala. However, while the valuable cues were separat-
ed from the decision phase in the Peck et al. study, the high and low
valuable cues served as decision variables in the present task. This was
motivated by evidence that the amygdala may be important not only
for the valuation phase of economic decisions, but also for choice per
se (Grabenhorst et al., 2012). Hence, the present findings of a spatial
reward representation in the amygdala at choice points support a role
for the amygdala in behavioural guidance beyond the evaluation of
choice options.

If the amygdala encodes value in space, one outstanding question is
how this representation of space and value is created. One possibility is
that the amygdala receives spatial information from the brain areas
known to contain neurons with high spatial specificity. Neurons in the
dACC in monkeys are sensitive to the spatial location of attentional tar-
gets (Kaping et al., 2011), and may be essential for linking reward-
related information to action (Hayden and Platt, 2010; Williams et al.,
2004). Further, the amygdala and dACC share reciprocal connections
(Beckmann et al., 2009; Ghashghaei et al., 2007), and their interaction
is essential for adaptive aversive learning (Klavir et al., 2013). Thus,
the dACC was suggested as a candidate region by which amygdala
inherits spatial information (Peck et al., 2013). We show that left
amygdala activity covaried more strongly with left dACC for right
as compared to left cued value trials. There are at least two possible
interpretations of this finding. One interpretation is that amygdala
receives spatial information from the dACC, in line with the spatial
modulation present in this region (Kaping et al., 2011). Alternatively,
another independent set of brain areas code locations, and further
modulates the amygdala–dACC projections accordingly. Spatial se-
lective areas like the frontal eye field, parietal cortex or the dorsal
striatum share few or none connections with the amygdala (Freese
and Amaral, 2009), whichwould require indirect transitions across sev-
eral synapses. Consequently, such a transition would be slow, and not
benefit an amygdala based orienting of attention. Although the current
data doesn't allow us to exclude this last interpretation, reciprocal
amygdala–dACC connections (Beckmann et al., 2009; Ghashghaei
et al., 2007) together with the observed spatial coding in dACC
(Kaping et al., 2011), favour the first interpretation.

Our decisions may reflect a choice between stimuli predicting vari-
ous rewards or between actions necessary to obtain a rewarded out-
come (O'Doherty, 2011; Rangel and Hare, 2010). In order to choose
between actions, the associated reward value yielded by an action
(i.e. action value) has to be computed. It is possible that the spatial
value trials were more cognitive demanding than the non-spatial
value trials, as the former entailed a greater response specificity to ob-
tain the reward. This might result in greater action costs for the spatial
value trials, with a concomitant decrease in action values compared to
non-spatial value trials. Though we cannot exclude that the present re-
sults reflect differences in action values or cognitive demands between
the two conditions, two of our findings argue against such an interpre-
tation. Increased cognitive effort is associated with slower response
times (Lavie et al., 2004), but we found that subjects responded faster
to the more challenging spatial value as compared to non-spatial
value trials. Furthermore, we also contrasted spatial value trials that
only differed in the spatial configuration of the value cues, and this con-
trast was balanced according to cognitive effort or action values. Finally,
we note that previous studies have failed to demonstrate an action
value signal in the amygdala, at leastwith the spatial selectivity present-
ed here (Croxson et al., 2009; FitzGerald et al., 2012; Wunderlich et al.,
2009).

While primate electrophysiology studies consistently report that
amygdala encodes a value signal related to the amount of positive and
negative reinforcements (Morrison and Salzman, 2010), findings in
humans are inconsistent (Clithero and Rangel, 2013). While we could
show amygdala activity in response to reward obtainment per se, we
failed to find linear effects of increasing reward magnitude. This con-
trasts with other studies that report amygdala activity as reflecting re-
ward magnitude at the time of choice (Bermudez and Schultz, 2010;
Smith et al., 2009). There are several possible reasons for this apparent
discrepancy between our study and the primate electrophysiology liter-
ature. First, the spatial resolution of fMRI does not allow separation of
positive and negative value neurons, and thus, represent a sum across
various neuronal subtypes. Secondly, amygdala activity is also sensitive
to stimulus' salience or ambiguity (Pessoa, 2010), which can explain
contradictory high responses to low value events. Finally, it is possible
that the increase from 2 to 4 kr was not experienced as a significant in-
crease in rewardmagnitude or subjective utility by the participant. Both
represent relativelymodest rewards, and thus a greater difference in re-
wardmagnitudemight be necessary to detect such effects. Based on the
notion that reward obtainment was deterministic (and not probabilis-
tic) during the task, and that spatial and non-spatial value trials led to
equivalent outcomes, we do not think that the results represent varia-
tions in arousal. Especially, choosing the zero in spatial value trials did
not lead to punishment, but insteadhindered the subject fromobtaining
the maximum reward.

The finding that amygdala responds in a manner compatible with
spatial encoding of value provides a newavenue for studies of amygdala
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in attentional processes. The amygdala is postulated to play a crucial
role in the enhanced perception of, and attention to, highly valuable
stimuli due to its intimate connections with the ventral visual stream
(Vuilleumier, 2005; Vuilleumier et al., 2004). However, recent studies
point to a role for amygdala in guiding frontoparietal attention network
as well, potentially mediated through an amygdala–cingulate cortex
pathway (Mohanty and Sussman, 2013). Indirect support comes from
studies demonstrating that this spatial attention network interacts
with amygdala during a search for motivational stimuli (Mohanty
et al., 2008, 2009), and that dACC–amygdala interactions are necessary
for successful avoidance of punishments (Klavir et al., 2013). Though it
is possible that the amygdala enhances processing of highly valuable
events in general, directing attention towards the location of emotional
relevant events would be more efficient in promoting fast behavioural
responses. Moreover, the number of brain areas linked to computation
of stimulus value at the time of choice is vast (Kable and Glimcher,
2009; Rangel and Hare, 2010; Rushworth et al., 2011), and unsurpris-
ingly several of these areas are also implicated in emotion and reward
(Barrett and Satpute, 2013). Of particular interest is the OFC, a core re-
gion for computation of stimulus value tied to the guidance of decisions
(Rushworth et al., 2011). The OFC shares close anatomical connections
with the amygdala, and interactions between these regions are essential
for learning and its behavioural expression in both aversive and appeti-
tive settings (Morrison et al., 2011). Interestingly, though OFC neurons
compute value, they do not encode the spatial location of highly valu-
able events (Padoa-Schioppa and Assad, 2006). Thus, the observation
of a unique integration of value and space in the amygdala may help
delineate the various contributions of these brain areas, ultimately
improving our understanding of howvalue guided decisions and behav-
iour are coded in the brain.

In summary, our results show that amygdala integrates information
about space and value, with each amygdala contributing to the efficient
location of relevant events. In this frame of reference impaired
amygdala function could contribute to deficits in spatial specific cog-
nitive processes, like directing attention towards the location of
emotional cues, or acting in relation to the location of valuable
events.
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