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a b s t r a c t

Globally, there is growing demand for increased agricultural outputs. At the same time, the agricultural
industry is expected to meet increasingly stringent environmental targets. Thus, there is an urgent pres-
sure on the soil resource to deliver multiple functions simultaneously. The Functional Land Management
framework (Schulte et al., 2014) is a conceptual tool designed to support policy making to manage soil
functions to meet these multiple demands. This paper provides a first example of a practical application
of the Functional Land Management concept relevant to policy stakeholders. In this study we examine the
trade-offs, between the soil functions ‘primary productivity’ and ‘carbon cycling and storage’, in response
to the intervention of land drainage systems applied to ‘imperfectly’ and ‘poorly’ draining managed grass-
lands in Ireland. These trade-offs are explored as a function of the nominal price of ‘Certified Emission
Reductions’ or ‘carbon credits’. Also, these trade-offs are characterised spatially using ArcGIS to account
for spatial variability in the supply of soil functions.

To manage soil functions, it is essential to understand how individual soil functions are prioritised by
those that are responsible for the supply of soil functions – generally farmers and foresters, and those
who frame demand for soil functions – policy makers. Here, in relation to these two soil functions, a gap
exists in relation to this prioritisation between these two stakeholder groups. Currently, the prioritisation
and incentivisation of these competing soil functions is primarily a function of CO2 price. At current
CO2 prices, the agronomic benefits outweigh the monetised environmental costs. The value of CO2 loss

would only exceed productivity gains at either higher CO2 prices or at a reduced discount period rate.
Finally, this study shows large geographic variation in the environmental cost: agronomic benefit ratio.
Therein, the Functional Land Management framework can support the development of policies that are
more tailored to contrasting biophysical environments and are therefore more effective than ‘blanket
approaches’ allowing more specific and effective prioritisation of contrasting soil functions.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
ntroduction

he challenge for agriculture – food security and the environment
A growing global population and dietary changes are amongst
he factors that are fuelling a demand for increased agricultural
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output (Godfray et al., 2010). Increasing demand places urgent and
growing pressure on soils to support the intensification of agri-
culture, which is an essential component of food security (RSC,
2012). The productive capacity of soils is diminishing and has
already diminished in many parts of the world and there are
limited opportunities for land expansion (Wild, 2003). Thus far,

agricultural intensification has been very effective at achieving
increased production. Production increases of 115% between 1967
and 2007 have been achieved on modest land area increases of
approximately 8% (Foresight, 2011). However, a further increase
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n productivity is likely to be associated with additional stress on
he natural resource base. Whilst not synonymous, in many cases
ntensification has been accompanied by unsustainable environ-

ental impacts such as biodiversity loss and the use of resources
uch as inorganic nitrogen, phosphate fertiliser, fuel use, and water
Foresight, 2011; UK NEA, 2011). Concerns about these deleterious
mpacts have stimulated a societal demand for improved envi-
onmental sustainability. Consequently, the agricultural industry
long with increasing productivity is also expected to meet increas-
ngly stringent environmental targets. Within the European Union
EU), environmental targets include inter alia targets such as those
nder the Sustainable Use Directive (2009/128/EC) (EU, 2009a)
nd the Water Framework Directive (2000/60/EC) (EU, 2000) that
equires that water bodies be of good ecological status. In Ireland,
he Nitrates Directive (91/676/EEC) is the agricultural programme
f measures (POM) that sets out a regulatory framework for nutri-
nt management (EU, 1991) to achieve this status. Also, the Habitats
irective (92/43/EEC) (EU, 1992), Birds Directive (2009/147/EC)

EU, 2009b), and EU EIA Directive (2011/92/EU) (EU, 2012) through
atura 2000 seek to halt the loss of biodiversity. In summary, the
orld needs more food (Godfray et al., 2010), notwithstanding this,

gricultural development cannot be intensified beyond the carrying
apacity of soils, ecosystems and the socio-economic environment
Mueller et al., 2011).

In this context, ecosystem services are the benefits that people
btain from ecosystems and include the attributes and processes
hrough which natural and managed ecosystems can sustain
cosystem functions (MA, 2005). Many ecosystem services rely on
oils and land use for their delivery (Bouma, 2014). These include
rovisioning services such as food and water, regulating services
uch as disease control, cultural services and supporting services
uch as nutrient cycling (Haygarth and Ritz, 2009). This subset of
cosystem services, hereafter soil functions, are described in the
hematic Strategy for Soil Protection (EC, 2006), and these define
he role of soils in the contribution to ecosystem services (Bouma,
014). Although the concept of ecosystem services has been exten-
ively studied and reviewed (Abson et al., 2014), there are a lack
f tools to understand and manage multifunctional landscapes
O’Farrell and Anderson, 2010). A major challenge exists in how
o satisfy all demands on land and soil simultaneously, particularly
s these are often competing demands. The demand for solutions
hat support the co-existence of environmental sustainability with
ncreased food outputs has prompted the development of the Func-
ional Land Management framework (Schulte et al., 2014).

unctional Land Management

Functional Land Management seeks to optimise the agronomic
nd environmental returns from land and relies on the multifunc-
ionality of soils. This framework focuses on five soil functions that
re specifically related to agricultural land use: (1) Primary pro-
uction; (2) Water purification and regulation; (3) Carbon cycling
nd storage; (4) Functional and intrinsic biodiversity, and (5) Nutri-
nt cycling and provision (Bouma et al., 2012; Schulte et al., 2014).
lthough soils are multifunctional, the heterogeneity of soils means

hat soils will vary in their relative capacity to deliver individual
oil functions which means that challenges to sustainability will
ary spatially based on location. Ultimately, the suite of soil func-
ions that a soil provides depends on both land use and soil type.
o meet the challenge of the sustainable intensification of agricul-
ure, Functional Land Management seeks to optimise the suite of
oil functions that it provides by matching the supply of soil func-

ions with demand (Schulte et al., 2014). For example, the demand
or the soil function ‘Water purification’ is framed by the Nitrates
irective, which requires groundwater nitrates concentrations to
e maintained below 50 mg l−1, through denitrification of (part
olicy 47 (2015) 42–54 43

of) the nitrogen surplus. To present the delivery of soil functions,
Schulte et al. (2014) used Ireland as a case-study. Importantly, Func-
tional Land Management is not designed as a tool for zoning, but
for use at a scale that can consider what Benton et al. (2011) refer
to as the net landscape effect across all affected land.

Case study: agriculture in Ireland – trade-offs between two soil
functions

Ireland’s response to the global imperative of food security is
captured in the Food Harvest 2020 strategy. Food Harvest 2020 is the
industry-led roadmap for agricultural growth in Ireland. The abo-
lition of the EU milk quota in 2015 is a prime driver that will allow
farmers to increase their dairy output. As a result, the roadmap fore-
sees a volume increase target of 50% for the dairy sector by 2020,
in contrast to the targets for other agricultural sectors, which are
value based (DAFF, 2010). The dairy volume increase target for the
dairy sector requires a level of intensification, expansion or aug-
mented resource use efficiency, to be achieved. All targets under
Food Harvest 2020 aim to both intensify output whilst concurrently
reducing the environmental footprint of production. For example,
a target of increasing dairy production by 50% will simultaneously
seek to reduce greenhouse gas (GHG) emissions for every litre of
milk produced and provide sustainable returns (DAFF, 2010).

Ireland has a temperate maritime climate which means that
it has a natural advantage in relation to grass growing potential.
Ireland’s success as a major milk producer globally relies on its grass
based system and it is this low-cost system that provides Ireland
with its competitive advantage. In general, the volatility of agri-
cultural input prices, such as fertilisers or concentrates, requires
producers to adjust to minimise this impact on their profitability
(Donnellan et al., 2011). In Ireland, whilst a grass-based system
allows producers a level of insulation against these input price fluc-
tuations, seasonality and lower yields can represent a challenge not
associated with intensive concentrate based systems (Donnellan
et al., 2011). Amongst other measures, improved grass utilisation
and extending the grazing season are essential to the continued
success and competitiveness of the Irish dairy sector. Furthermore,
in relation to GHG emission, temperate grass-based systems like
Ireland and New Zealand have the lowest emissions per unit fat and
protein-correct milk when compared to tropical and arid grassland
systems (Teagasc, 2011a). Thus, to reduce the potential of carbon
(C) leakage associated with dairy production, the environmental
rationale to optimise production in temperate grass-based systems,
such as in Ireland, exists.

In North Atlantic maritime climates, however, excess soil mois-
ture is a key constraint to achieving these twin targets, as it
simultaneously constrains primary productivity and increases the
risk of negative environmental impacts (Schulte et al., 2012). Wet
soils are easily damaged and so their ability to deliver soil func-
tions can be compromised. Surface compaction and subsurface
compaction have been identified as major threats associated with
the climatic regime of North Atlantic Europe related to the traffic-
king or working of soil under inappropriate soil moisture conditions
(Creamer et al., 2010). Wet soils have lower load-bearing capacity
and grazing damage can lower herbage production by 20% or more
(Humphreys et al., 2011). Furthermore, Schulte et al. (2006) demon-
strated that the length of the grass growing season can be reduced
by as many as five months at a regional level as a result of excess
soil moisture conditions. Overall, wet soil conditions are considered
the most important factor limiting the utilisation of grazed grass on
Irish farms (Shalloo et al., 2004; Creighton et al., 2011).
In this setting, land drainage systems on existing land in pro-
duction or on new land areas that fulfil EIA criteria, offer potential
as part of a suite of measures to overcome such constraints. Any
land drainage works aim to siphon excess water from the soil and



44 L. O’Sullivan et al. / Land Use Policy 47 (2015) 42–54

of soil
S

m
z
a
fi
e
a
i
c
e
t
o
o

i
e
m
(
a
t
m
e
w
t
t
(
p
i
t
e
e

O

t
r
o
c
p
T
a
p
f
e
M

Fig. 1. Freestyle illustration of typical suites
chulte et al. (2014)

aintain the water table at a designated depth below the rooting
one, thereby increasing soil water storage capacity. Primarily from
farm management perspective such an investment improves traf-
cability for machinery and livestock as the recovery time after
pisodic rainfall events is shorter (Tuohy et al., 2014). The aver-
ge cost of milk production is reduced by over 1D cent/l for a 2.5%
ncrease in grazed grass in the cow diet where the diet of the cow is
omprised of more than 50% grazed grass (Dillon et al., 1995; Lapple
t al., 2012). Therefore a key objective for land drainage design is
o extend the grazing season. The extent of land drainage in Ireland
f the utilisable agricultural area is currently low at 25%, relative to
ther contexts, such as England with 65% (Humphreys et al., 2012).

There are potential threats associated with achieving productiv-
ty targets in relation to land drainage (Skaggs et al., 1994; Jacinthe
t al., 2001). Soil moisture is a key driver that affects the accu-
ulation and storage of C in soil. Globally, Jobbágy and Jackson

2000) found that soil C stocks are positively correlated with mean
nnual precipitation and negatively with mean annual tempera-
ures. Thus, larger C stocks are found in latitudinal gradients with

oist cold ecosystems and frequently saturated soils (Moyano
t al., 2013) as is typical in the Irish context. Conditions where the
ater filled pore spaces of the soil is close to saturation results in

he decreased metabolic activity of aerobic organisms as respira-
ion rates are reduced due to oxygen deprivation and slow diffusion
Franzluebbers, 1999; Dessureault-Rompré et al., 2011). At its sim-
lest drainage of very wet soils promotes aeration which results

n the optimisation of microbial oxidation of organic matter and
he release of carbon dioxide (CO2) to the atmosphere (Kechavarzi
t al., 2010; Willems et al., 2011; Necpálová et al., 2014; Burchill
t al., 2014).

bjectives

In this paper, we examine the trade-offs between the soil func-
ions ‘primary productivity’ and ‘carbon cycling and storage’, in
esponse to the intervention of agricultural land drainage systems
f imperfectly and poorly draining managed grasslands. Specifi-
ally, we examine these trade-offs as a function of the nominal
rice of Certified Emission Reductions (CER’s) or ‘carbon credits’.
his is achieved whereby the economic value of productivity gains
ssociated with the installation of land drainage systems is com-

ared to a range of CO2 prices. This is shown spatially to account
or geographical variation. This paper therefore constitutes the first
xample of a practical application of the concept of Functional Land
anagement that is of direct relevance to policy stakeholders.
functions under contrasting land use types.

Materials and methods

Land use data

Schulte et al. (2014) related the relative functionality of soil
functions in the first instance to land use (Fig. 1) and added that
further categorisation is required in relation to soil drainage cat-
egories, which is the subject of current research (Coyle et al.,
in preparation). Fig. 1 shows that all soils deliver a suite of soil
functions but the delivery of individual functions relies on land
use. Although land drainage systems are installed across differ-
ent drainage classes, we focus on poorly and imperfectly drained
managed grasslands as these represent the vast majority of sites.
Grasslands on soils with an organic layer of greater than 40 cm
depth or on histic lithosols are not included in this analysis as
drainage requirements for peat depend on the parent material
underlying the peat layer; furthermore this relates to more long
term projects that are commonly outside the scope of individ-
ual farmers (Tuohy et al., 2013). Therefore, as a first step in our
spatial analysis, we needed to establish the location and geograph-
ical extents of land use in combination with the drainage classes
poorly drained and imperfectly drained (Schulte et al., submitted
for publication).

We used the following datasets:

• Land Parcel Identification Service (LPIS), Department of Food,
Agriculture and the Marine – data show the farm outlines of all
land held by farmers who have applied for support payments
from the EU. Data are held electronically on the DAF mainframe
and maps are updated annually by Mallon Technology since 1995
(Mallon Technology, 2014). Data were reclassified on the basis of
the main land uses required to populate the matrix in Fig. 1. Any
other listed land uses were classified as ‘other’.

• Forest Service – since 1995 the Forest Service have produced spa-
tial datasets detailing the extent of the forest estate in Ireland.
The current dataset, Forest07, includes detailed species informa-
tion. This information was placed in ‘forest type’ categories based
on the Forest Type definitions using a standardised system of
nomenclature adopted to classify forests based on the composi-
tion of tree canopy cover, available at: Forest Type Methodology
(DAFM, 2013). This was further reclassified wherein all broadleaf

and mixed forestry were combined into one category, conifer-
ous stayed as an exclusive category and all remaining forestry
was reclassified as other forestry ‘OF’ to be included in the ‘other’
land use category.
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Natura 2000 – The National Parks and Wildlife Service (NPWS)
is responsible for the designation of conservation sites in Ireland
and includes four categories: (1) SPA, special protection areas;
(2) SAC, special areas of conservation; (3) NHA, national heritage
areas, and (4) PNHA, proposed national heritage areas. Status def-
initions available at: Protected sites Ireland (NPWS, 2014). Natura
2000 is included as a land use as it represents an important indi-
cator for Functional Land Management. Natura 2000 occurs on all
land uses, and this designation defines the management options
and the suite of soil functions available. Therefore, in our analy-
sis we use Natura 2000 as a separate land use. Shapefiles were
combined to provide one Natura 2000 data layer. Custom python
script was used to overcome issues associated with duplicate
geometry for sites of more than one designation.

We combined spatial datasets in ArcGIS 10.2.2 using overlay
nalysis, and maps were generated in Arc Map 10.2.2. Datasets were
rocessed in polygon shapefile format allowing the calculation of
eometry and spatial extents of land areas. Fig. 2 below shows the
orkflow schema for the datasets and results are shown in Fig. 3.
ll datasets were set to projected coordinate system (PCS) of the

rish National Grid TM65 Irish Grid.

oil drainage

To extend this and include soil type in addition to land use
ype, the land use data were overlaid with an indicative drainage

ap (Schulte et al., 2005, submitted for publication). The indica-
ive drainage map is based upon the Irish Soil Information System
ational Soil Map of the Republic of Ireland, constructed at
:250,000 (Creamer et al., 2014a). Importantly, land drainage works

n Ireland typically are <10 hectares (ha) in size, where soils are
eterogeneous and standardised drainage system designs are not
ppropriate as these are intrinsically site specific. Consequently,
haracterisation of Functional Land Management is generalised to
scale that is usable at a national policy level and is not suitable at a

arm or local level. Based on the Irish Soil Information System, this
cale is 1:250,000 which can account for spatial variability at a soil
ssociation level. Drainage categories were assigned on the basis of
iagnostic features based on field based descriptions (Schulte et al.,
ubmitted). This enabled us to calculate the spatial extent of each
rainage class for every land use category (Table 1). Poorly drain-

ng soils were defined as those showing mottling throughout the
rofile and have an argic or spodic horizon resulting in stagnation.
oils with much more than 40 cm of an organic layer are classified as
eat. Moderately drained soils present mottling at depth, but lack
ny organic matter accumulation but an argic or spodic horizon
ay be present. Mottling at the same depth but with a presence of

ome organic matter accumulation and an argic or spodic horizon
resent were categorised as imperfectly drained. Well drained soils
re those that showed no evidence of water-logging and have no
rgic or spodic horizon present. For the small number of soils where
he presence of sandy loam or sandy textural classes is dominant,
his soil subgroup was considered excessively drained. A detailed
escription of the diagnostic criteria will be published in Schulte
t al. (submitted).

arbon loss model

iogeochemical modelling
We used a modified version of the DNDC model (version 9.4; see
i et al., 2011; Abdalla et al., 2013) to assess the impact of drainage
n Irish soils. DNDC contains four main sub-models (Li et al.,
992; Li, 2000, 2011); the soil climate sub-model calculates hourly
nd daily soil temperature and moisture fluxes, the crop growth
olicy 47 (2015) 42–54 45

sub-model, the decomposition sub-model and the denitrification
sub-model.

The model calculates soil organic matter sequestration from
simulated organic matter turnover, crop growth (which simulates
crop biomass accumulation and partitioning) and decomposition
(which calculates decomposition, nitrification, ammonia (NH3)
volatilisation and CO2 production through heterotrophic and
autotrophic respiration). When grass is cut or grazed, all of the root
biomass and a specified fraction of the stem biomass are added to
the soil litter pool of carbon. C and nitrogen (N) inputs from agri-
cultural management (i.e. animals and fertilisers) are also inputted
via management and grazing sub-routines. Leached carbon is cal-
culated from the hydrological model which simulates hydrological
flows. The denitrification sub-model tracks the sequential bio-
chemical reduction from nitrate (NO3) to nitrite (NO2

−), nitric oxide
(NO), nitrous oxide (N2O) and nitrogen (N2) based on soil redox
potential and dissolved organic carbon.

Daily measured values of meteorological parameters, manage-
ment and soil properties were used as input variables to the DNDC
model (see below). Field N2O flux data were used for DNDC model
validations by comparing previous measured and predicted gas
fluxes (see Li et al., 2011). As soil C sequestration is sensitive to the
distribution of C between recalcitrant and labile pools, the models
were run for 200 years until soil C pools reached equilibrium. The
model was then run with (a) the water table set near the surface
(10 cm) (near saturated conditions which would represent and un-
drained scenario), and (b) with the water table depth dropped to
1.5 m below the surface (drainage system represents deepest piped
drains possible). Both depths are chosen as representing the full
range of conditions in relation to land drainage.

Parameters

• Synoptic station data – weather data from five main weather sta-
tions geographically spread across the republic of Ireland were
used: (1) Valentia; (2) Malin Head; (3) Belmullet; (4) Mullingar,
and (5) Dublin. Data were recorded by Met Éireann (the meteo-
rological service of Ireland).

• Clay content values for drainage classes were defined using the
modal series for soil types. Soils were categorised on the basis
of drainage (well, imperfect and poor) and type (histic, humose
or typical). Horizons were disaggregated to depths of 0–25 cm;
25–40 cm; 40–60 cm and 80 cm plus. The clay values by hori-
zon for the different soil types were averaged to develop a clay
horizon curve based on data analysed for the National Soil Map
(Creamer et al., 2014a).

• The livestock density was set at two typical dairy cows per hectare
(ha) with an implied organic manure deposition of 85 kg per
animal and 170 kg ha−1. These figures are above the average live-
stock density in Ireland, but typical for farms, predominantly
dairy enterprises, that are currently installing drainage systems
in anticipation of the abolition of EU milk quota. This livestock
density also corresponds to the lower limit of the derogation
requirement by Ireland pursuant to Council Directive 91/676/EEC
concerning the protection of waters against pollution caused by
nitrates from agricultural sources to be sufficiently accounted.

Indicative carbon map for imperfect and poorly draining
grasslands

The potential C loss was computed from the difference in soil
C stocks associated with each of the modelled groundwater depth.

We accounted for the spatial heterogeneity of soils by using the
Irish Soil Information System, which provides an inventory of the
diversity of soils and their properties as well as geographic extents
(Creamer et al., 2014b). As a result, we produced an indicative soil
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loss map that, at an association level (1: 250,000), accounts for

he spatial variation in the potential soil C loss. Output data from
he C model was plotted indicating the soil organic carbon (SOC)
tonne C ha−1a−1) loss associated with drainage for both imperfect
nd poorly draining soils used for managed grass. These data were
ng data schema.

splined using a tension spline set at 0.1 and 4 points in ArcGIS 10.2.2

and converted to shapefile format. These steps were processed
separately for the imperfectly draining and the poorly draining
soils. Finally, these shapefiles were unioned to produce a combined
indicative SOC loss map.
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roductivity data

The impact of drainage on productivity was approximated by
omputing the extent to which land drainage decreases the num-
er of days at which soils are untrafficable (Schulte et al., 2012).
n their review, Schulte et al. (2012) found that a variety of traf-
cability thresholds are used in the literature, ranging from 0 to
0 mm soil moisture deficit (SMD). For the purpose of this exercise,
e used a threshold of 5 mm. Here, we assumed that land drainage
oves soils from the poorly drained or imperfectly drained cate-

ories into the moderately drained drainage category, as defined
y the Hybrid Soil Moisture Deficit model (Schulte et al., 2005). The

ybrid Soil Moisture Deficit model has been widely applied and is
sed at a national level by Met Éireann and is cited in more than 50
cientific papers. It has been extensively calibrated for Irish con-
itions. An important caveat in this regard, is that the extent to

able 1
and use with drainage category based on Irish Soil Information System (ha).

Arable Bioenergy Broadleaf mixed
forestry

Coniferous fore

Excessively 3631 35 200 91
Well 160,589 961 42,238 61,420
Moderately 124,152 721 16,826 23,234
Imperfectly 8358 79 6345 22,383
Poor 65,746 595 33,016 57,534
Peat 7605 101 48,272 171,572
Othera 1441 13 2649 2057

Grand total 371,522 2505 149,546 338,291

a Includes mask, urban, tidal marine, rock, island.
se map of Ireland.

which land drainage could move from imperfectly or poorly drain-
ing category to the next drainage category is site specific and may
not be accurate for some of the wettest soils. However, for simplic-
ity we made the zero-order assumption that the drainage works
would be appropriately customised to the site-specific drainage
requirements. By doing so, we quantify the potential increase
in trafficability for all drainage scenarios in Ireland. For 104 cli-
matic weather stations operated by Met Éireann, we computed
the daily SMD for a 30-year period from 1979 to 2008 for poorly
drained and moderately drained soils. Subsequently, for each of
these weather stations we derived the median number of field
capacity (FC) days for both drainage categories. The difference

between these two median values was taken as an indicative value
for the increase in the length of time that the soil is trafficable,
and hence the increase in the length of the potential grazing sea-
son.

stry Managed grass Other grass Natura 2000 Other agricultural
land use

10,499 803 3771 137
1,287,372 93,010 71,495 28,290

661,375 42,447 15,102 11,345
157,985 44,611 54,698 6614
797,567 87,663 148,449 24,438
236,938 456,646 478,529 47,642

26,310 60,086 268,963 1536

3,178,046 785,265 1,041,005 120,001
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Expressing this increase in herbage productivity and utilisation
n economic terms, previous research (reviewed in Schulte et al.,
012) has shown that this longer grazing season translates into an

ncrease in the gross margin of dairy farming of between D 2.30 and
3.20 per cow per day (Shalloo, 2009; Kinsella et al., 2010). Here,
e used D 2.75 as the average within that range. Similar to the C

oss model, we assumed an average stocking rate of two cows per
a, resulting in an increase in D 5.50 per ha per day of increased
razing season.

The economic data were added to the productivity file which
as plotted in ArcGIS 10.2.2 and splined using a tension spline set

t 0.1 and 4 points to develop an indicative productivity shapefile
or Ireland. Once converted to a shapefile this was unioned and
lipped with the imperfectly and poorly draining grasslands to give
he final productivity file.

arbon maintenance versus land drainage

The indicative soil C loss map (Fig. 4a) was unioned in ArcGIS
0.2.2 with the difference in trafficability days map (Fig. 4b). When
ombined a field was added and the final hectare extent of each
olygon was calculated.

To add the productivity value gains associated with drainage a
eld was added and populated as follows:

roductivity value gain = [hectares] × [days] × [D 5.50]

To add the SOC loss value, a field was added and populated by
alculating the value by:

nnual SOC loss = [Final SOC value]
[Discount rate30 years]

To quantify CO2 emissions the C stock changes were converted
o units of CO2 emissions by multiplying the C stock change by a
onversion factor 3.667 (US EPA, 2004):

O2 loss = [Annual SOC loss] × 3.667 conversion factor

We calculated the value of CO2 loss for each polygon by multi-
lying the area extent by a variable price:

O2 loss values = CO2 loss × [hectares] × [variable price]

The differential value of soil functions was calculated as: the
ifference between drainage benefit and the variable C prices:

ifferential value of soil function = [Productivity value gain]

− [CO2 loss value]

esults

patial extent of land use

Fig. 3 represents the first coherent land use map that combines
gricultural land use categories, as defined within the Functional
and Management concept. Irish agriculture is primarily a grass-
ased industry (Teagasc, 2014). In line with this, excluding Natura
000 designated grass, ‘managed grass’ accounts for over half (53%)
f the agricultural land area and when combined with the ‘other
rass’ category accounts for two-thirds of this area (66%). Arable
epresents almost 377 kHa, which aligns with findings of the Tea-
asc Tillage Crop Stakeholder Consultative Group (TTCSCG, 2012).
ioenergy continues to be a minor land use (<1%), reflecting little

hange since the end of the government pilot scheme in 2009 to
upport the development of non-food energy crops (McDonough,
010). Coniferous plantations represent a much larger portion of

and area compared to the broadleaf mixed forestry, and this is
olicy 47 (2015) 42–54

consistent with the focus on commercial timber and pulp produc-
tion largely composed of non-native conifers that grow quickly in
temperate moist climates (Bosbeer, 2012).

Table 1 reflects the spatial extents of land uses in their respective
soil drainage categories. This table, whilst providing an aggregate
spatial extent of the suite of soil functions in relation to drainage
categories, does not distinguish between soil types but this is the
subject of ongoing research. Soils in the poorly, imperfectly and
peat drainage categories combined make up almost half (49.19%) of
the soil drainage categories in Ireland. As these categories are con-
sidered ‘wet soils’ this finding aligns with that of Humphreys et al.
(2011) who proposed that drainage problems account for almost
half of soils in Ireland. In their research, Creighton et al. (2011)
found wet soil conditions are likely the most important limiting
factor restricting grass utilisation on Irish farms. Notably, even on
well-drained soils, the number of field capacity days (Van Orshoven
et al., 2013) is the main constraint to herbage utilisation (Creighton
et al., 2011; Schulte et al., 2012). Given that a majority of agricul-
tural land use in Ireland (Table 1) is dedicated to grasslands, wet
soil conditions represent a major limitation in Irish agriculture. In
relation to forestry, 75% of coniferous forestry can be found on wet
soils, 51% of which is found on the peat drainage category. Simi-
larly, 59% of broadleaf and mixed forestry are found on wet soils.
In contrast, a majority of arable production (78%) is found on the
drier soil drainage categories.

Trade-offs within Functional Land Management – the case of
carbon storage and productivity gains associated with land
drainage

Fig. 4a shows the spatial variability of potential SOC
(tonne C ha−1a−1) loss in response to the installation of drainage
systems, with greatest losses observable in the north-western and
coastal locations of the country. The spatial variability of the deliv-
ery of the productivity function is represented in Fig. 4b and shows
that the greatest benefits associated with drainage in relation to
productivity gains can be found mostly in the south-west. This
aligns with on-going research in relation to ‘heavy’ soils that are
found in the south-west region, where these areas are known to
be negatively impacted economically, due to excess soil moisture
conditions (O’Loughlin et al., 2012; Tuohy et al., 2015).

Fig. 5a illustrates that at today’s international CO2 price of D 6
per tonne (Thomson Reuters, 2014) productivity gains by far exceed
the monetary value of potential CO2 losses for almost 100% of the
total grassland area. In contrast, at D 150 per tonne, as illustrated in
Fig. 5d, productivity gains are exceeded by this nominal CO2 value
in almost all areas (99.9%). Fig. 6 below, shows this relationship as
the proportion of wet grassland where the value of CO2 exceeds the
value of productivity gains.

Discussion

Model constraints

The explicit aim of this paper was to assess trade-offs between
two soil functions, namely carbon storage and primary productiv-
ity, in response to a management intervention, in this case artificial
land drainage systems. In the context of studying the impact of
land drainage on GHG balance sheets, this paper only considers
soil carbon cycling and storage as the pertinent soil function being
examined. A full GHG analysis would involve a full life cycle analysis

(LCA) that quantifies changes in nitrous oxide (N2O) and methane
(CH4) emissions, as well as changes in productivity in order to
account for land use and indirect land use effects, which was out-
side the scope of this study. Also the time period for the loss of SOC
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Fig. 4. (a) Indicative annual soil C loss for poorly and imperfectly draining grasslands in Ireland associated with drainage in one year, using a 30 year discount period. Data
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re categorised using equal intervals for illustrative purposes. (b) Difference in traffi
ariable carbon price against productivity as defined by trafficability days.

as set at 30 years post-drainage. However, the impacts of land
anagement on grassland soils can vary from 10 years to >100

ears depending on (a) the magnitude of the disturbance and (b)
he soil type and climate (Poeplau and Don, 2013). For similar rea-
ons, we did not consider the capital costs associated with drainage
ystems in our economic analysis; instead, we constrained our
nalysis to the change in the value of the soil function ‘primary pro-
uctivity’. On a grassland site, specific drainage requirements and
herefore design (spacing and depth) vary depending on soil phys-
cal parameters, site geometry and drainage criteria (rainfall minus
vapo-transpiration). As a result, the current cost of a field drainage
ystem ranges from D 125 ha−1 for a shallow mole drainage system
o D 8600 ha−1 for the piped drainage conventional system (Anon.,
013). A cost benefit analysis, not based on empirical data, of the
conomics of land drainage for dairy systems has previously been
uantified by Crosson et al. (2013) which found that where land
rainage costs exceed D 7413 ha−1 there is only economic benefit
here grass growth increases by 30% at a milk price above 28 cent/l

nd 20% above 34 cent/l. These capital costs should be taken into
ccount in the interpretation of Fig. 5. Where these costs are high,
his will reduce the monetary value of gains in primary productiv-
ty, and will reduce the price of C at which these gains are equalled
y loss in the value of soil C.

For the indicative soil C map, five synoptic weather stations were

sed, and although geographically spread across the country, this
eflects a lower spatial resolution of the C model as opposed to the
rafficability model which was based on daily data from 104 cli-

atic weather stations. This difference in the number of weather
ity days for the same soils. The data for both figures were combined to compare (a)

stations used for the two maps is consistent with the difference
in resolution or precision between the C model and trafficability
model, with the latter having been extensively calibrated, vali-
dated and used, specifically under Irish conditions: this allowed
for a greater resolution in input data.

We arbitrarily set the threshold for trafficability at 5 mm of SMD,
this being the middle of the range of thresholds reviewed by Schulte
et al. (2012). Our experience with the Hybrid Soil Moisture Deficit
model is that this is also the range at which the model predictions
on SMD diverge most prominently between drainage categories:
the model converges when the SMD approaches either 0 mm or
exceeds 10 mm.

Sensitivity analysis

We based our analyses on a discount period of the soil C losses of
30 years following the installation of drainage systems. However,
the rules governing the accounting of the Land Use, Land Use
Change and Forestry (LULUCF) sector are currently under devel-
opment and subject to change. In Fig. 7, we present a sensitivity
analysis in relation to both the nominal CO2 price and the discount
rate over which the loss of SOC is applied for reporting purposes.
The results show a high degree of sensitivity to the discount period.
At a discount rate of 10 years the increased value of productivity

could be outstripped by the environmental value of CO2 loss almost
at a carbon price as low as D 40 per tonne. In contrast, when we
apply a discount period of 40 years at the same price, productivity
gains exceed CO2 value in almost all areas.
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Fig. 5. (a–d) Drainage and carbon maintenanc

rade-off between soil functions ‘primary productivity’ and

carbon cycling and storage’

Using Ireland as a case-study, we explored the trade-offs
etween the two soil functions. Specifically, we examined these
ibution relative to C values ranging D 6–D 150.

trade-offs as a function of the nominal price of ‘carbon credits’. This

trade-off has been demonstrated spatially using a range of C prices
(Fig. 5a–d). In relation to the delivery of soil functions it is essen-
tial to understand how individual soil functions are prioritised. In
particular, it is necessary to understand the perspectives of those
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Fig. 6. Proportion of poorly and imperfectly drained grasslands on which the value
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trasting biophysical environments, and are therefore potentially
f soil carbon loss is projected to exceed the value of productivity gains, in response
o the installation of drainage systems.

hat are responsible for the delivery of the supply of soil functions
generally farmers and foresters), and those that frame demand for
oil functions (i.e. policy makers).

Farmers value primary productivity as it directly affects farm
ncome. Land drainage offers increases in productivity potential.
t the scale presented in this study, the research indicates that

and drainage could potentially increase the trafficable period by
s many as 55 days per year (Fig. 4b), which translates to produc-
ivity gains of D 302.50 ha−1 a−1. Based on current CO2 prices of D 6
er tonne (Thomson Reuters, 2014), Fig. 6 shows that the value
f these gains in productivity exceed the “carbon cost” on almost
00% of the grasslands in the study. For farmers, the environmen-
al cost does not translate into a change in income, or into a direct
nd observable change in the quality of the countryside, especially
t today’s CO2 price. Even if future CO2 prices were to increase to
40 tonne, this finding still holds true for almost 80% of the relevant

rea.
In contrast, the C cycling and storage function of soils is a high

riority for policy makers who are focused on reducing EU GHG
missions. To this stakeholder group, land drainage may represent
potential threat. Whilst recognising the agronomic opportunity

ost in relation to decisions to forego land drainage, they may con-
ider this cost small compared to the long-run environmental cost.

Our paper shows that these divergent perspectives can be
xplained, at least partially, by the different monetary values that
hese two stakeholder groups assign to soil organic carbon. EU Com-

ission, developing a policy for 2030, bases their assessments on
he projected CO2 price by 2030, which they set at D 40 per tonne
O2 (EC, 2014a). Allowing for an inflation rate of 2% per annum, this
ould equate to a value of D 30 per tonne in today’s money. Based

n these assumptions, Fig. 5 indicates that should this higher CO2
rice materialise by 2030, the environmental cost of C loss would
utstrip the financial benefits of increased production for 21.78%
f the area at a discount rate of 30 years. CO2 loss would only
xceed productivity gains at either higher CO2 prices, or at reduced
iscount rates (e.g. 10 years) that are currently being considered.
ig. 7 demonstrates that the outputs are indeed very sensitive to
he discount period rate.

At this point, it is unclear to what extent the C price can be man-
ged or manipulated to incentivise maintenance of soil C stocks.
urrently, this price is determined by the international market
rice. GHG emissions from agriculture are aggregated at national
cale and any compliance or non-compliance with EU targets is
urdened by the national exchequer. Opportunities for farm-level

ncentivisation are limited: two key issues emerge in this regard.

n the first instance, the rules of EU agri-environmental schemes
nder the Common Agricultural Policy (CAP) Pillar II only allow
or actual costs to be remunerated. The calculation of premia for
olicy 47 (2015) 42–54 51

EU funded schemes is derived on the basis of costs incurred and
income foregone by the farmer in the participation of the agri-
environmental measure (Murphy et al., 2013). Not draining land
does not represent an actual cost, but is instead an opportunity cost
and as such is not eligible to be included under Pillar II payments
(Murphy et al., 2013). Secondly, monitoring, reporting and verifi-
cation (MRV) or carbon-auditing at a farm scale are associated with
significant operational challenges that include high administra-
tive transaction costs, low accuracy, issues of equitability (Teagasc,
2011b).

In conclusion, this research highlights that in relation to ‘pri-
mary productivity’ and ‘carbon cycling and storage’ a considerable
gap exists in relation to the prioritisation of these soil functions
from two diverging stakeholder perspectives. Whilst the current
CO2 price fails to incentivise the maintenance of SOC stocks this
equation is likely to change, depending on the discount period
applied in MRV of the LULUCF sector. Moreover, the metrics used
for EU funded schemes would require more flexible mechanisms
that could also take account of opportunity costs.

Functional Land Management for supporting targeted policies

Forest and agricultural land currently covers more than three-
quarters of the EU territory and naturally hold large C stocks (EC,
2014b). The release of just 0.1% of the C stored in these soils would
equal the annual emissions from 100 million cars (EC, 2014c). In
Ireland, despite a downward trajectory in carbon emissions since
2005, agriculture still accounted for 40% of the non-ETS emission
and 30% of all GHGs in 2011 (Farrelly et al., 2014). Within the
EU, expanding on previous climate and energy packages, European
leaders have committed to reductions in both the emissions trading
sector (ETS) and the non-ETS amounting to a 43% and 30% reduction
by 2030 compared to 2005 respectively (European Council, 2014).
Given the size of the agricultural sector in Ireland, and its contribu-
tion to GHG emissions, any meaningful reduction in GHG emissions
will require a marked reduction in agricultural emissions.

Where a divergence in the prioritisation of soil functions exists,
such as was highlighted here, a need to harmonise and incen-
tivise the delivery of soil functions to meet multiple objectives
exists. Here, we performed a sensitivity analysis at a range of C
values in relation to biophysical criteria at a scale that is poten-
tially usable for policy makers in constructing a realistic value to
satisfy the demand for an individual soil function, in this case C
cycling and storage, in relation to the primary productivity func-
tion. Moreover, we performed a sensitivity analysis in relation
to variable discount periods, the results of which yielded a high
degree of sensitivity to the discount rate. Both of these, enable
policy makers to develop agri-environmental policies that sup-
port the optimisation of soil functions by contrasting the potential
trade-offs between soil functions. This would allow soil functions
to be altered in such a way that some functions can be incen-
tivised or suppressed. At a time of ever increasing demands on
the soil resource, the Functional Land Management framework
can facilitate the development of land use policies that are more
harmonised and result in land use management decisions that bet-
ter reflect policy goals and targets. The spatial analysis presented
in this paper enabled the characterisation of the spatial dimen-
sion of the complex interaction between land use and biophysical
constraints/endowments, as defined by soil drainage categories.
The Functional Land Management framework thus allows for
the development of policies that are specifically tailored to con-
more effective than ‘blanket approaches’. By design, Functional
Land Management is not intended to be a legislative instrument for
the ‘zoning’ of land use, but rather a tool to support policy decision
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aking that incentivises appropriate land management decisions
O’Sullivan et al., 2014; Schulte et al., 2014).

Whilst this research is focused on the development of Func-
ional Land Management as a tool for national or regional policy
ormation, it is important to briefly consider how national target
etting relates to changes in management practices at farm level
nd vice versa. Notwithstanding the challenges associated with
ranslating a national objective into an agricultural cost or incen-
ive, synergies exist between national and farm level priorities. The
uccess of Ireland’s significant food exports is intrinsically linked
o the green credentials associated with management practices at
arm level. It is a contemporary imperative to demonstrate and
urther improve the C efficiency of production to maintain these
redentials (Murphy et al., 2013). Farm level tools, such as the Car-
on Navigator that measure and guide adoption of technologies to
educe GHG emissions on farms, provide one mechanism to support
his. It is important that such tools are flexible and can incorporate
ew research findings, for example in relation to decision making
n drainage. As such, these tools can then provide a pathway to
onnect national policy objectives to on-farm decision making.

urther research
As a first example of Functional Land Management, we have
nvestigated the impact of a manipulation of soil functions by
irect alteration of soil properties. Therein, this study provides one
nominal value of carbon and variable discount periods ranging from 10 to 40 years.

example of the trade-offs between two soil functions. Further
research would seek to build on this case study by exploring
trade-offs in relation to the delivery of the other soil functions:
water purification, habitat and nutrient cycling in response to land
drainage interventions. In relation to the technicalities of land
drainage, there remain knowledge gaps in relation to spatial extent
of different types of drainage systems and further investigation
could expand on and refine the current model. Equally, it is impor-
tant to investigate further opportunities for synergies between
national level target setting and on-farm management practices
and develop pathways to connect these two.

Conclusions

• We have explicitly quantified an example of the trade-offs
between two soil functions: primary productivity and C cycling
and storage.

• We used drainage systems for this example: these can increase
productivity by up toD 302.50 ha−1 a−1, but decreases soil carbon
stocks.

• We showed that the prioritisation and incentivisation of these

competing soil functions is primarily a function of the CO2 price.

• At the current CO2 price, the agronomic benefits are larger than
the monetised environmental costs. This results in an incentive
for farmers to drain.
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Even at future projected prices, this finding remains true for
almost 80% of the land area however this is highly dependent
on the discount period.
Should the discount period be reduced to ten years could result
in an inverse observation materialising. This scenario could result
in incentives for policy makers and legislators to discourage the
installation of drainage systems.
Finally, our study shows large geographic variation in this envi-
ronmental cost: agronomic benefit ratio. This allows for more
specific and hence effective prioritisation of the two contrasting
soil functions.
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