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Abstract 

Generalizing various concrete radicals in associative rings like the nilradical, the Jacobson 
radical, and so on, A.G. Kurosh and S.A. Amitsur introduced an abstract notion of radical in 
the early 1950s. The basic notions of their general radical theory can be characterized by 
properties which are “almost” categorical ~ in the sense that they can be conveniently defined in 
the category of rings or even in suitable categories of Q-groups but not in general categories. 
Here we are going to characterize radicals of associative rings by means of pullbacks, a notion 
which is of a pure/J categorical nature. Throughout the paper we shall work in the category C of 
associative rings (not necessarily with identity), just calling them “rings”. We hope that our two 
categorical characterizations of semisimple classes in C can provide natural general frameworks 
for radical theory, just as localizations do for torsion theories. 

1. Introduction 

For a general background on radicals of rings we refer to [l] or 161. 

Recall, in particular, that radicals can be described in various classical ways: as 

functions which assign to every ring one of its ideals called its radical (or equivalently, 

as developed first by Hoehnke [2], the quotient by its radical), or in terms of radical 

classes, or again in terms of semisimple classes or, finally, as in the case of torsion 

theories, as pairs consisting of a radical class and a semisimple class. The one which we 

will mainly work with describes a semisimple class as a class X of rings which satisfies 

the following conditions: 

(S) X is subdirectly closed, i.e., if A is a subdirect product of rings from X, then A is 

in X; 

(H) X is hereditary, i.e., if X is in X and A is an ideal of X, then A is in X; 

(E) X is closed under extensions, i.e., if A is a ring with an ideal X such that X and 

A/X are in X, then A is in X. 
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The categorical meaning of condition (S) is clear: let C, and X,, be the categories with 

objects all rings and the elements of X, respectively, and with morphisms the surjective 

ring homomorphisms in both cases - then (S) is equivalent to 

(S,) the inclusion functor X, + C, has a left adjoint. 

We will denote that left adjoint by I and the unit of the adjunction by ~1; so, for every 

ring A, the homomorphism qA : A + I.4 has the universal property which says that for 

each surjective homomorphism f: A -+ X with X in X there exists a unique 

,f : IA --f X making the diagram 

VA 
A - IA 

(1) 

commute. 

Of course if X satisfies also the conditions (H) and (E), i.e. if it is a semisimple class, 

then qa: A + IA is just the canonical homomorphism A + AIRA, where R is the 

corresponding radical. 

The question we are interested in can now be formulated as follows: What are the 

categorical properties of I which correspond to (H) and (E)? 

First we need the following observation. Certainly the surjective homomorphisms 

are not enough, and we will use C and X to denote the category of rings (with all 

homomorphisms) and its full subcategory corresponding to the class X, respectively. If 

,f : A + X is a morphism in C ~ not necessarily surjective and not necessarily with X in 

X, but such that there exists a m0rphism.f: IA + X making the diagram (1) commute 

~ then ,f is still uniquely determined. and we will say briefly that f:is well defined. 

Furthermore. if r : A + B is such that qBx: IA + IB is well defined, then we will write 

g,x = la and say that Ix is well defined. This agrees with the definition of I and 

extends it at least to all morphisms in X. 

Experience with torsion theories suggests now that (H) and (E) hold if and only if 

our extended functor I preserves some pullbacks. However, as the following example 

shows, we have to be careful; for I need not preserve u/l pullbacks, even where it is well 

defined. 

Let C be the category of commutative rings (an easier case!) and X the category of 

commutative rings without nonzero nilpotent elements ~ the semisimple class of the 

usual nilradical. Consider the pullback 

inclusion 
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where K is, say, a field and K[x] the polynomial ring. Its image under I is 

inclusion 1 

1 (3) 

and so I does not preserve that pullback. 

Nevertheless the conditions (H) and (E) (together) have an equivalent form in terms 

of pullbacks. Actually we propose two such conditions (conditions (b) and (c) in 

Theorem 3.1) one of which ~ namely (b) ~ says in fact that I must preserve those 

pullbacks 

A1’X 

x I 1 (P 

B-Y 
9 

in which y is surjective and X and Y are in X 

(4) 

2. Conditions on pullbacks 

We shall use only very elementary facts from category theory. They can be found 

e.g. in [4]. 

Let C be the category of (associative) rings, X a full subcategory of C satisfying 

condition (SO), and I and q as above (we will identify X with the class of its objects). 

C has pullbacks, i.e., any pair 

9 (P 
B-Y-X 

of morphisms with the same codomain can be completed to a pullback 

Bx,X- X 

(5) 

Consider the following conditions, in which (4) is used as an arbitrary pullback in 

C with 9 surjective and X in X, and notice that the surjectivity of 9 implies here that 

,f’ is also surjective because pullbacks of rings lie over pullbacks of sets: 

(S,) if 9 : B + Y is the same as qB: B -+ IB then ,f: IA -+ X is an isomorphism; 

(C,) if B and Y are in X, then A is in X; 
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(S,) if Y is in X, then Isc:IA + IB is well defined and 

IA-LX 

lr I i c” 

IB- Y 
$7 

(6) 

is a pullback; 

(C,) if B is in X, then A is in X; 

(S,) if 8: IB + Y is well defined, then Ir: IA -+ IB is well defined and (6) is 

a pullback. 

Proposition 2.1. (S,) 0 (S,) & (C,). 

Proof. The implications (S,) * (S,) and (S,) * (C,) are obvious. In order to prove 

(S,) & (C,) j (S,), decompose the pullback (4) as 

(VR%.f) PC 
A- IBxyX-X 

(7) 

where both squares are pullbacks. Applying (C,) to the right-hand square, we 

obtain IB x y X E X. After that applying (S,) to the left-hand square, we conclude 

that (vBr,f): IA + IB x yX is an isomorphism. On the other hand, since (qBm(,f) 

is well defined, Ix = qea = proj, (qBr,f) is also well defined, and (vsa,.f) = 
(rs(,f). Therefore, (Icc,f) : IA + IB x yX is an isomorphism and so (6) is a 

pullback. 0 

Exactly the same arguments prove also the following. 

Proposition 2.2. (S,) 0 (S,) & (C,). 

Now we shall see how these conditions are connected with the conditions (H) 

and (E). 

Proposition 2.3. (C,) G- (H). 
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Proof. Suppose X is in X an A and ideal in X. Consider the pullback 

X 
canonical 

>XIA 
map 

Since X satisfies condition (SO), it satisfies condition (S), too, and so X x XjA X is in X. 

Now applying condition (C,) to the pullback 

f i-l (9) 

(0, u) x x ,yA x- x 
wj 1 

we conclude that A is in X. 0 

Proposition 2.4. (S,) * (E). 

Proof. Let X be an ideal in a ring A such that X and A/X are in X. Applying (S,) to 

the pullback 

x-o 

inclusion 

I i 
(10) 

i 

A canonical A;x 
map 

we obtain the pullback 

x-o 

I I 
IA- A/X 

which together with the previous one giv’es the commutative diagram 

O-i- f-“r-0 

O-X- IA-A/X-O 

(11) 

(12) 
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with exact rows. By the standard 5-lemma in homological algebra va must be an 

isomorphism and so A is in X. 0 

Proposition 2.5. (H) & (E) 3 (C,). 

Proof. Consider the pullback (4) again - with y surjective and X and B in X as in (C,). 

The kernel Kerf‘ is isomorphic to Kerg, which is in X by (H). Now, since ,f’ is 

surjective and Kerfas well as X are in X, A is in X by (E). 0 

What we really need is the following lemma, which is a formal consequence of these 

propositions: 

Lemma 2.6. Suppose thut X satkjies condition (S,). Then the conditions 

(H)&(E),(S,),(S,),(C,),(C,) 

aYe equiaalent. 

Proof. We have (C,) * (H) by 2.3 and 

(C,)<by (S*)&(E). 

Therefore (C, ) * (H)&(E), and we have 

by 2.5 by 2.2 
W)&(E) -(C,) - @,I 

0 II 

trivially 

(Cl)< 
trivially 

(S*) 0 

(by 2.1) 

3. The Theorem 

Let X be a semisimple class of rings and A an arbitrary ring. We set 

RA = Kerq, 

and 

The class R is called the radical class corresponding to the semisimple class X, and its 

elements the rudicai rings (with respect to X, whose elements are called the semisimple 
rings). In particular, RA is a radical ring for each ring A, i.e., 

RRA=RA. (13) 
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Moreover, RA is the largest ideal in A with this property, i.e., 

KaA&RK=K =+ KcRA, (14) 

and RA is called the radical of A (with respect to X). In other words, RA can be defined 

by a universal property using only the class R. And this makes possible to recover 

X from R by 

x= ~AECIRA=~}, 

which is one of the basic connections in Kurosh-Amitsur radical theory. 

Our theorem uses these few well-known facts from radical theory as well as 

Lemma 2.6. 

Theorem 3.1. Let X he u class of associutioe rings which sutisjies condition (SO) 
(equivalent to (S)). Then the,following conditions are epicalent: 

(a) X is a semisimple class, i.e., it satisjies (H) und (E); 

(b) X satisfies (S,) (equivalently (S,) and (C,)); 
(c) X satkfies (S,) (equiuulently (S,) and (C,)). 

Proof. Since the conditions (S,) and (S,) are stronger than (S,), by Lemma 2.6 it 

suffices to prove that every semisimple class X satisfies (S,). 

So, we have to prove that if X is a semisimple class and 

A1’X 

cl I I cp 
(15) 

is a pullback with X in X, thenf: IA + X is an isomorphism. 

Compare the kernels RA = Ker na and Ker.f: On the one hand, we have 

RA c Kerf since f is well defined. On the other hand, since (15) is a pullback, 

Kerf g Kerqs = RB, which is a radical ring by (13) and so Kerf c RA by (14). 

Therefore, Kerf = RA, and since f and qA are surjections, this means that ,f is an 

isomorphism. 0 

Remark 3.2. The proof of (a) * (S,) above uses the same arguments as the proof of 

[3, Theorem 3.11. 

Remark 3.3. Since our proofs are more categorical than ring-theoretical, let us briefly 

describe possible levels of generalization for them. Propositions 2.1 and 2.2 obviously 

can be proved in general categories: we only need the existence of some pullbacks and 

we have to choose a “good” class of morphisms in place of surjections. In order to 

have the equivalence (S) o (S,), this good class should give a factorization system in 

the ground category C - like that given for rings by the surjections together with the 
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injections. Lemma 2.6 depends on the strong property that in the situation 

o-o-o-o-o 

// ; 1) 
o-a-*-*-o 

the broken arrow is an isomorphism (see (12)). This property need not hold even in an 

exact category, although it does hold in any variety of R-groups and in abelian 

categories, where radical theory has been developed (for abelian categories, radicals 

are just torsion theories). Finally, Theorem 3.1 uses (13) and (14) i.e., it makes real use 

of the radical theory of associative rings. Moreover, the fact that any semisimple class 

satisfies (H) is not true even for non-associative rings. Theorem 3.1 holds, however, in 

those classes of Q-groups where semisimple classes are characterized as the classes 

satisfying conditions (S), (H) and (E); for instance, in groups, lattice-ordered groups. 

alternative rings, Jordan algebras over a field of characteristic # 2 (see Cl]). 

Remark 3.4. In the special case when X = 0, Condition (S,) reads as follows: if 

A = Ker qe then IA = 0. This is a very well-known condition in radical theory ~ in our 

presentation above, it is just (13) - which together with (S), (E) and a weaker version of 

(H) characterizes semisimple classes in any variety of Q-groups (see [ 1, Theorem 3.3.43 

or [6, Theorem 131). In this general case (S,) does not follow from (S), (E) and (H). 

Thus adding the weak version of (S,) as above to (S), (E) and (H), we get a character- 

ization of all hereditary semisimple classes in any variety of &groups. 

It would be interesting to see how conditions (S,) and (S,) relate to semisimple classes 

in structures other than Q-groups, e.g., whether they fit into the approach presented in [S]. 
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