View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Elsevier - Publisher Connector

Available at

www.MATHEMATICSwEB.0RG soumar oF
POWERED BY SCIENCE @DIHEOT' N“mber
ACADEMIC Theory
PRESS Journal of Number Theory 100 (2003) 203-216

http://www.el sevier.com/l ocate/jnt

p?-Catalan numbers and squarefree binomial
coefficients

. o - vl
Pantelimon Stanica
Department of Mathematics, Auburn University Montgomery, Montgomery, AL 36124-4023, USA

Received 19 July 2000; revised 24 July 2002
Communicated by A. Granville

Abstract

In this paper, we consider the generalized Catalan numbers F(s,n) = m(‘:), which we
call s-Catalan numbers. For p prime, we find all positive integers n such that p? divides
F(p4,n), and also determine all distinct residues of F(p?, n)(mod p?), g=1. As a byproduct we
settle a question of Hough and the late Simion on the divisibility of the 4-Catalan numbers by
4. In the second part of the paper we prove that if p? <99 999, then (pq”’f]) is not squarefree for
nz=1(p?) sufficiently large (t;(p?) computable). Moreover, using the results of the first part,
we find n<t;(p?) (in base p), for which (") may be squarefree. As consequences, we obtain
that (*'1') is squarefree only for n = 1,3,45, and (/') is squarefree only for n = 1,4, 10.

© 2003 Elsevier Science (USA). All rights reserved.

Keywords: Binomial coefficients; Catalan numbers; Congruences; Squarefree numbers

1. Introduction

Problems involving binomial coefficients were considered by many mathemati-
cians for over two centuries. Guy [6] mentions several problems on divisibility of
binomial coefficients (see B31, B33). Erdos conjectured that for n>4, (zn”) is never
squarefree. This was proved by Sarkézy [13], for sufficiently large n, and by
Granville and Ramaré [5] for any n>4 (see also [17] for another proof).

Many people (see, for instance, [1,2,7-9,12,15]) proposed and studied the

following generalization of classical Catalan numbers ——(*"

1(r), which we will call s-
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Catalan numbers, namely F(s,n) = m(éj) There are many interpretations of this

sequence (see [2,7,9,12,15]), for instance: the number of s-ary trees with n source-
nodes, the number of ways of associating n applications of a given s-ary operator, the
number of ways of dividing a convex polygon into n disjoint (s+ 1)-gons with
nonintersecting diagonals, and the number of s-good paths (below the line y = sx)
from (0,—1) to (n,(s — 1)n —1).

Naturally, some of the questions proposed by Erddés on the classical Catalan
numbers, may be asked here as well, as Hough and the late Simion proposed [8]: (a)
When p is prime, for what values of n is F(p, n) divisible by p? (b)* For what values
of n is F(4,n) divisible by 4? (c)* What can you say when s takes on the other
composite values? There are no answers yet known for (b) and (c). In this paper we
give a simple proof to (a), and we show that F(p? n) is divisible by p?, unless
(p> — Dn+ 1 is an even power of p, or a p-term sum of odd powers of p, thereby
answering (b), and (c) for s = p>. We generalize this result describing all integers #,
for which p? divides F(p?,n), ¢=3. In the second part of the paper, we show that if
p9<99999, then (”q’;“) is not squarefree for n>7,(p?) sufficiently large (compu-

table). If n<1t,(p?), we employ the generalized Catalan numbers to find the set of

4n+l)

integers n, where (qu+1) might be squarefree. As consequences, we obtain that ()

is squarefree only for n = 1, 3,45, and (9””“) is squarefree only for n = 1,4, 10.

2. Preliminary results

Let [x] be the largest integer smaller than or equal to x. In this section we state a
few results which will be needed later. Lucas (1878) (see [3]) found a simple method
to determine (') (mod p).

Theorem 1 (Lucas). If p is prime, then () = ([[’://11)’]])(’;13) (mod p), where my, ny are the

least non-negative residues modulo p of m, respectively n.

In 1808 Legendre showed that the exact power of p dividing n! is
[n/p] + [n/p*] + [n/p°] + -+ (1)

We define (see [4]) the sum of digits function o,(n) =no+n; + - +ng, if n=
no 4+ nip + -+~ +ngp®. Then, using ¢, (1) transforms into

n _O'p(”).

o )

Kummer found a way to determine the power to which a prime p divides a
binomial coefficient.
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Theorem 2 (Kummer). The power to which the prime p divides the binomial coefficient
(), say v,(()), is given by the number of carries when we add n and m — n in base p.

Define n!, to be the product of all integers <n, that are not divisible by p. We see
that n!, = [n/p]nW' Granville [4] proves the following beautiful generalization of both
Lucas and Kummer’s Theorems.

Theorem 3 (Granville). Suppose that the prime power p? and positive integers m =
n+r are given. Let N; be the least positive residue of [n/p’] (mod p?) for each j=0
(that is, N;j=nj+np+ - + npg1p?", where n=ng+np+ - +ngp): also
make the corresponding definitions for m;, M;,r;, R;. Let e; be the number of indices
i=] for which m; <n; (that is, the number of carries, when adding n and r in base p, on
or beyond the jth digit). Then

L m E(-ﬁ-l)e‘/*l Mo!p Ml!p Md!p (modp")
P\ n - NO!pRO!pN]!pRl!p Nd!de!p ’

where (+) is (—1) except if p =2 and q=3.

Our first result gives a complete answer to the first posed question (a), generalizing
the well-known result on Catalan numbers, or equivalently, on middle binomial

coefficients (see [6]), which states that 4 | (2n”)7 unless n = 2K, for some k. Denote by N
the set of nonnegative integers.

Theorem 4. Let p be a prime. Then, p divides F(p,n), unless n is of the form ’%, keN,
in which case F(p,n) =1 (mod p).

Proof. We rewrite F(p,n) :m(l’:) :,ﬁ(pnjl)' Since ptF(p,0), we assume
n>0. Applying Lucas’ Theorem repeatedly for the base p representations
O<my,m<p—1), m=mg+mp+ - +mgp? and n=ny+np+ - +ngp?, we
obtain () = (70)(;') -+ (7) (mod p). For m = pn+ 1 =1 (mod p), we get

n ny
1 no Nng—1
(mod p), ny#0.
no n ng

F(p,n) = <pn;—1>

If F(p,n)#0(modp), we must have 1>ny>n;>--->ny;>0, therefore n; =1,

0<j<d.Inthatcase,n=1+p+ --- +p? z”ij_ll_l and F(p,n) =1 (modp). O

The following lemma will be extensively used throughout the paper.
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Lemma 5. We have

_ op((p? —n+1) — 1.

o (F(p*, 1)) P

Proof. Using (2) we get that the power of p dividing (7)) is

., ( (m)) _opln) + op;m_lm —oy(m) 5

If m = p?n+ 1, by using the identity F(p?,n) = p,,nlﬂ(pq’;“), (3) becomes

6(n) + 0,((p = D+ 1)~ a,(pPn+1) o, ((p? = n+1) — 1
p—1 N p—1

vp(F(p?,n)) =

)

since 0,(p'n+1) =0,(n)+1. O

3. Scarce squarefree p’>-Catalan numbers

Denote by n= (ab...)p the base p representation of n, a being the most
significant digit. Our next result refers to the third question of Hough and Simion,

if s = p’.

Theorem 6. Let p be a prime. Then, p* divides F(p*,n), unless n is of the form ;2;—:11,

; 20j+1_|
teN, in which case F(p*,n) = 1 (mod p?), or of the form Z:’ﬂ}:ifl

where ¢;>0 and Y7, ¢; = p, s=2, in which case F(p*,n)=(_ .7 ) (modp?) (the

€15€25-.-5Cs

, < <l
multinomial coefficient).
Proof. By Lemma 35, if F(p?,n)#0 (mod p?), then

o (P = D+ 1)~ 1
p—1

UP(F(pzvn)) = <1, (4)

which implies that a,((p> — 1)n+1) is 1 or p.
If o,((p> — Dn+1) = 1, then (p? — Dn + 1 = p* = (=1)* (mod (p + 1)), therefore

2r
k must be even, say k = 2¢, and n :f)z_ll.
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If GP((pz - l)l’l+ 1) =D, then (P2 - l)l’l+ 1 = Z£:1 pakv al<a2< "'<apv Wlth
oy <ap. It follows that

P -n=-1+p Y 1+ > 1

o; odd o; even

=—l4+p -(p-1) Y 1

o; even

=—(p—1) Y 1(mod(p*—1)),

o even

SO ), even | Must be divisible by p + 1. Since 0< 1<p,weseethat ) ...,

s |
Z/ | GP s

172*1 I

o; even
must be an empty sum. Therefore, all o; = 2i; 4+ 1. We obtain n =
h<bh<- <y, Z};l ¢; = p and the first claim is proved.

For the second part of our theorem, we use the congruence F(p? n)=
("""+1) (mod p*). Let n_; = 0. Consider n = = (1010---101),,

and since p’n + 1 attaches to this string the block 01 to the right, it is of the same
form. Moreover, M;=N;», and R;!, =1, except for Ry_i!,=(p—1). By
Granville’s theorem, we get

My!, My,

F(p2m) = p(=1) 2

(mod p?).

—
9]
=

Now, My!,=1,M!,=(p—1)l. Thus, (5) becomes F(p* n)=pe(—1)"
1 (mod p?), since ey = e; = 0.

s
Zj | 9P s

Pl

Consider n = , i1 < -+ <y and Zle ¢; = p, with s=2. It follows that

{_ ¢ 241 _ + 2 _ 1 s i )
n :Z/fl j(p ' lp) P _ Z ¢ Z PRkl g
P — i— —

=cp™ b ep T+ (e )P T e+ L (6)

By Kummer’s theorem, there is a carry in this case, so ¢y = ¢; = 1. Also, ny =1,

My, =1,M!, = (p— 1), R!) = 1 except for Ry !, = (cxp)!p = ("’,‘1’;& and Ry, 11!, =

(ck)!p = ck!, for k = 1,2, ..., s. Applying Granville’s theorem we get

1)61 MO'PMIP = _1 (p_l)'

R21 +1 p P Hk (ckp)!pck!

P
_D P o
(CI’CZ"“’ >Hk (ckp)lp <C1,62,...,c‘y> (mod p7), (7)

since (¢xp)!, = (=1)* (modp) and >, cx =p. O

F(p*.m
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The following corollary gives a complete answer to the second question of Hough
and Simion.
1

Corollary 7. F(4,n) is divisible by 4, unless n is of the form 22%, in which case

F(4,n) =1 (mod4), or of the form %, for t>j, in which case F(4,n) =
2 (mod 4).

In [10] we study products of factorials modulo p, and a consequence of one of our
results is that the multinomial coefficients appearing in our previous theorem cover
all residues of the form pk modulo p?, where 0<k<p —1 (except for p =5).
Therefore, the residues of F(p?, n) modulo p*> will be {1} U {p k| 0<k<p — 1} (except
for p =5, in which case the residues are {0, 1,5,10,20}).

4. Divisibility of p?-Catalan numbers

Let p prime and ¢ =2 fixed. For easy writing we denote by % the set of all positive
. . itk — 1
integers of the form Z’f‘;"iplﬂ teN, 1< <p, 0sm<gq, =, cx =m(p—
+1,d= 2 5”71 eN, gty +jrx#qti +ji and 0<j 1 <p < -+ <jy<g.
Concerning arbitrary powers of an odd prime, we prove

Theorem 8. If p is a prime and q=3, then p? divides F(p?,n), unless n is of the form

pq 1,for some teN, in which case F(p?,n) =1 (mod p?), or n is in &, in which case,

F(pq’ ) = 8p£0+mgﬂ - (}I[))‘/*]]!). ((1 cz[ ) (mOdpq) if jk>la =1, where ¢ =1 fO}"

p=2ande=(—1)" for p=3.

Proof. By Lemma S5, if p?{F(p?,n), then v,(F(p?,n)) :qu—l, SO
op((p? —1)n+1)=m(p—1)+1, for some 0<m<(q—1). If m=0, then (p?—
Dn+1=p"ti for some 0<i<g — 1. Working modulo p? — 1 implies i = 0. Thus,
n=2-1 Next, assume 0<m<gq — 1. We obtain, for [ = m(p — 1)+ 1, (p? — 1)n +

pi—1"

l=p"+ - +p* o< - <oy, where no p of the o;’s can be equal. Thus, n=

s )
Zk:l cep! 1

i 1 ) I<a<q,0<i1<p<s)s<q, 22:1 =1 and Zk apt =

1 (mod p? — 1), therefore, n is in 7.
To find the residues of the generalized Catalan numbers modulo p?, we use the
congruence F(p?,n) = (""*!) (mod p¥), Granville’s theorem and the proof of

Theorem 6. If n—fﬂ*ll, m=pin+1 and r=p%. We observe that M, , = N;.

Moreover, My =1, Migs1 =p?™", Migo =p72, ..., Migsq—1 = p, M1y =1, for

any 0<i<t—1; R!, =1 except for Ry g1 =p", Ry—gir =p?2, ...,Ru_1 = p.
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Since ¢y = e; = 0, we get

Mo, - Myl M, !
F q’n Epeo P P q—1'p
(p ) qu—q+l!p"'th—l p (

_ @Dy ()Y - pY
(pq 1) (pz)p Pl

mod p?)

(mod p?) = 1 (mod p?).

We find the residues of F(p?,n) modulo p? when j; > 1, t, =1, for any k. In base p,
using jr =1, >1, we get

n=>Y " ap(pr V4 1) +d

k=1
c+dp! -+ 1+d=1+dp!+ - =1+dpi+ -

(0<d'<p and the power of p in the missing terms is at least ¢ + 1). Moreover,
pin+1=1+pl+dp*+ . Thus, My=1,M; =p?~' M =p?=2 ... .M, 1 =p.
Since R=Y;_, cxp?¥e, then Ry!, =1, except for Ryt—1)4ji+1 = cp?t,

Ryi—1)jr2 = cp?™2, ..., Ryi4j+1 = ¢, for any i. By Granville’s theorem, using
( iP )
Zl 1 C,—l—m(p—1)+1 and (C,p )p—W, Weobtaln
=1k ITi-
_ k:l(p)'P _ kl(])/cl
F(p',n) = ep” — ) pav = ep® . p— ]
[Tiei TLZo (er®)l [T= a! TTi= e p T
pil
T a—1 v 1 71
— 8p60 p! '-0/p-1) — 8peo+m(p‘1’lfl) ptj !
T, et [Ty (et )!

=1 per GI7T-1)/(p-1)

-1
= gp"g+,,1(p‘f '-1) pq ! lpq
(lpq 1) Clpq_17 "'acqu_l

1| /
— ppetmipri—1) P dp? 8
= {1y <c1 o ,cy> (modp). ®

where e = 1 for p =2 and e = (1) for p>3. O
We use in the next section the following

Corollary 9. p? divides W(”;’”) if and only if p? divides (pq’,’fl).
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5. Squarefree binomial coefficients

In this section, we study squarefree binomial coefficients of the form (”q"’fl), by
employing the previous results on the generalized Catalan numbers.

Granville and Ramar¢ [5], proved that if (}) is squarefree, then n or n — k must be
small. Finding explicit bounds is a much more difficult task. They showed that (Zn") is
squarefree for n>2'%!" and used some clever arguments to simplify the computer’s
work, in checking the possible exceptions n = 2" up to 2'¢!7. In this section of the
paper we rely on [5] and use some estimates on the Chebyshev’s function
> a<x A(d), where A(d) is the Von Mangoldt’s function, A(d) = logr, if d =71, r
prime and A(d) = 0, otherwise, to show our results. Define e¢(x) = ¢* and (x) = 0,
if x is an integer, and (x) = {x} — 1, otherwise, where {x} is the fractional part of x.

The following lemma proves to be very useful

Lemma 10. If p?7<99 999, the inequality

0.9999975+/p4n + 1 — 10000025/ (p4 — 1)n + 1

23q 23 11
>21.683p 3 138 (log(256((p? — 1) + 1))))4 + U(3logn +2qlogp)  (9)

is true for n=1q sufficiently large.

Proof. First, (vx+ 1+ vx — 1)? = 2x 4+ 2v/x2 — 1 <4x, since 2v/x> — 1 <2x. Thus,
VIdx+V1I+x—n<yx+1+Vx—1<2x, for 2<n<x+1. Now, let x' =
1 + x. We evaluate

(1 —a)’x — (1 +a)*(x' —n)
(1 —o)vVx' + (1 +a)Vx —n

1—a)? "
B n(1 + o) — dox’ n(1 + o) — dox’ >”(( 1+D;) - n(f‘ﬂ)x)

=V A+ )V —n 1+ a)(VX + VX —n) 2V/x

Therefore,

1-)Vi+x—-(14+a)Vli+x—n=

—062 o X n
(1 —o)V1+x—(1+a) 1+x—n><(11+a) _1‘:@2)2\/} (10)

Taking x = p?n, o = 5, in (10), we get

0.9999975+/pin + 1 — 1.0000025+/(p? — )n + 1

(09999975 1\ 11 )
=\ 1.0000025 ~ 10000025" )2/p7
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If p7<99999, then (11) implies our claim that the inequality (9) is true for n>=1g
1
sufficiently large, since, by (11), the left side of (9) is O(n2) and the right side is
23
on®). 0O
As before, p is a prime and q>2 is an integer. Also, 7¢ is the bound obtained in

%0

1 5'°p*, 7). Our main result of this section is stated

Lemma 10 and 71 (p?) = max(¢, =
in the next

Theorem 11. Assume p?<99999. Then, (qu+1) is not squarefree for n=t(p?).

Moreover, if n<t(p?), (¥ q”“) may be squarefree only for n of the form occurring in
Theorem 8 (¢=3) or Theorem 6 (q = 2).

We proceed to the proof of the theorem. Let P =n(pin—n+1)(pin+1).
Corollary 3.2 of [5, p. 82] implies:

Pt s squarefiee. Then,

+ (g

del

Z‘P( n+1)A(d)

del

Lemma 12. Suppose that (

le(pn-l- )

del

>1 > A), (12)

del, (d,P)=1

where I is the set of integers d in the range \/(p? — 1)n+ 1 <d <+/pin+ 1.

An immediate consequence of Lemma 7.1 of [5] (see also [16]) is

> u(2) 1)<z ;A@*( > l) o 3 e(7)ac)

del 0<Jr|<R

where a;° = 2p5(n(1 - R‘ﬂl) cot(7p) + 1) £ agn(l — ).
Taking R = 10 and using Mathematica® we obtained 3 _ < o |¢;[~0.868 <58,
which implies

Lemma 13.

22 Z 99 X<x<lOX

>

del

> (30

2 A Trademark of Wolfram Research.
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Using (12) and the previous lemma we get

% Z Z‘/’(p’H_l)

1 v(g)aw

del, (d,P)=1 del del
n+1

s z//( )A(d)l

del
X
—)A(d

22 Z 99 p‘/n+l<r?<a10( In+1) dz; e(d) (d)

86 X

— —)A(d

99 (qul)n+1<rxn<a1)§)<(qul)n+1) ; e(d) (d)

+ 8—6 max
99 n<x<ion

;ew\

A(d
S Z 33 n<v<nllouﬂn+1)

del

Since, Yder, @p)>1 Ald)<logn+log ((p? — )n+1) +log (p?n + 1)<3logn +
2qlogp, for n=2, we obtain

Z A n<x O(p‘/n+1

11
+—(3logn+2qlogp). (13)
del 8

> e(gua

Schoenfeld [14], obtained, for x=>¢*° (see also [11]),

ZA(d)—x<

d<x

4% 105"

Since > ,.; A(d) = ng\/m A(d) — Zd<\/m A(d), we obtain

1 I
i+ 1 —-——=sv/pin+1—+/(p? -1 1l-——/(p7 -1 1
VP = g Vet L= (= Dn 1= o V(= Dt
11
— g (3logn+2qlogp) = 0.9999975/pin + 1

11
— 1.0000025+/(p? — )n + —§(310gn+2qlogp)

43
<— max
6 n<x<10(pin+1)

del

60

for n>€
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Now, we apply Theorem 9 of [5], a consequence of some very important bounds
on exponential sums.

Theorem 14 (Granville-Ramaré). If k>0 integer and y<ix3/, then

1

42F-1)
50 X 1
<?y (ﬂ) (log 16y)+4
Y

2

Jfor any y<y <2y.

Since v/pin+ 1<2,/(p? — 1)n + 1, the above theorem of Granville and Ramaré

applies, and we get for n>5'"% (to have the bound y<ix¥/5),

max

X
n<x<10(pin+1) dz: (E) ‘
5
< max );x/(p‘l—l)n—i—l

n<x<10(pin+1

1

42F-T)
X L
X 3 (log (164/(p? — 1)n+1))4
((p?=Dn+1)4

o+

40k_1)
50 0pm+1) ¢
:?\/(p‘f—l)nJrl ﬂ

((p? — l)n + 1)
11 _q
x (log(16y/(p? — N)n+ 1)) 4 < 1142‘ 0pAT 1)
S 1 k43 11 1
AT (p7 — n 4+ 1) PE—1273 (1og(256(p" — 1)n + 1)) 4
1 1 k-1 1 k=1
<5_302_1741 A T,72 T 2 1) (1og(256((p" — 1)n + 1)))4.

We obtain (by taking k = 2—that will suffice for our purpose)

1
@2 vy 1112p A n48(log(256((pq —Dn+1)))4.

max
3

n<x<10(pin+1)

> (2]
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By combining (14) and the preVious inequality, we get (by Lemma 12) that if ("q’;“)
is squarefree, and n>max( =1 510p%0)  then

0.9999975/p4n + 1 — 1.0000025/(p? — L)n + 1

23q 23 1
<21.683p 3 ni¥ (Iog(256((p" — Dn+ 1)) +1 (3logn + 2glogp),  (15)

which is false for n>1y by Lemma 10. By taking 7, (p?) = max( &=l 510p% 1), the
first claim of Theorem 11 follows. If n<1t(p?), then we use the fact that pq divides

(”q’;“) (therefore it is not squarefree, since ¢ =2), unless n is of the form 1177‘1 7, for any
m(p—1)+1 P 1 .
teN, or of the form ":'pq—_l, for any 7;,eN, 1<m<qg—1,0<j;<qg—1, and

> p/ =1 (mod p? — 1). The proof of Theorem 11 is done. [

Remark 15. Inequality (9) provides explicit bounds for #, for any choice of p and ¢,
with p?<99999. We can increase the bound for p?, by using a weaker result of
Schoenfeld [14]. However, in doing that we increase the bound on n as well, so we
preferred a better bound on n.

If ¢ = 2, using Theorem 6, we get better results for the number of exceptions up to
the bound 7;(p?). We give here two samples in our next theorem.

Theorem 16. Except for 1, 3 and 45, (4”;1) is not squarefree. Except for 1, 4 and 10,
(9”:1) is not squarefree.

Proof. If (p,q) = (2,2), inequality (9) changes into
0.9999975v4n + 1 — 1.0000025v3n + 1
z eIEE!
>42.1311n%8(log(768n + 1)) 4 + % logn 4 1.65566, (16)

which is true for n>2""18 =7, Observe that 1, = 1) = max(“t D1 510210 70,
Theorem 6 and Corollary 9 imply that the exceptions for n<2!318 (1f they exist)
are of the form %, j<t (we include j = ¢ in the count). Observe that the
number of pairs (j, ), giving different numbers of the above form, is less than
(721)~218A2'

If (p,q) = (3,2), inequality (9) changes into

0.9999975v9n + 1 — 1.0000025v/8n + 1

2 1
>26.04n48 (1og(2048n + 1)) 4 + ¥ logn + 2.62417, (17)
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which is true for n>3%° = 1,. Observe that 7, = 7y = max("ﬁi‘%l,Sloyo,ro). As in
the previous case, we get that the exceptions for n<3%¢ (if they exist) are of the
form %, i<j<t (we include i=j=1¢ in the count). Observe that
the number of triples (i,/,?), giving different numbers of the above form, is less
than (4;8).

To check divisibility by squares up to t;, we need only concern ourselves
with integers of the described forms. First, take the binomial (4”;“1). We used
Granville’s theorem (or Kummer’s theorem) to find the power to which p =3
divides (%), m = 4n + 1. We expanded 7, m in base 3 and then compared their digits.
The computation took about 6 hours on our PC (850 Mhz with 256 Mb of
RAM). After the first run of the algorithm, we obtained that all binomial co-
efficients (4”;1) (for n among the above values) are divisible by 32, except for the
following integers n =1, 3, 13, 45, 85, 171, 181, 2731, 2733, 10965, 13653, 43861,
44741973, 181753173. For n = 1, we get (f) = 5. For n =3, we get (130) =2-11-13.
For n =45 we get ('3))=2-3-5.7-13-23-29-47-53-59-71-73-79-83-89-
137-139-149 - 151 -157-163 -167-173-179 - 181. For the remaining values of n,
the binomial coefficient (*'!) is divisible by 5? for n = 171, 181, 2731, 2733, 10965,
13653, 43861, 44741973, 181753173; divisible by 7> for n = 13; divisible by 13> for
n = 85. The first claim follows.

We ran a similar program for (9”;1), which unfortunately stopped (because of
integer overflow) after a few days. Meanwhile, we wrote another program in Python
(which we ran on a PC with the same features), based on the known fact that the

number of carries is Zgﬁ% mHl([%] — [#] — [%7]). For each t, we checked if the
number of carries is greater than or equal to 2, and if it is, we stopped the summation
(the expression inside the sum is either 0 or 1). The output of our program (which ran
for 9 days) is that the binomial coefficient (9””“) (for n among the above values) is
divisible by 22, except for the following integers: 1, 4, 10, 34, 64, 274, 277, 280, 304,
334, 550, 5194, 24604, 199297, 199324, 201754, 202024, 145285144. Among these, for
n =34, 64, 274, 280, 304, 334, 24604, 199324, 201754, 202024, 145285144, we have
divisibility by 5%; for n = 277,550,199297, we have divisibility by 7%; for n = 5194,
we have divisibility by 112. Forn = 1,4,10, we get (") =2-5,(}/) =3-5-7-17-37,
respectively, (?(])) =7-11-13-17-29-41-43-83-89. The second claim fol-
lows. [0

Remark 17. Since we were successful in getting the computation done in Python, we
experimented with a large set of integers n for divisibility of (4"”“) and (9";1) by
squares of various other primes r. It might be worth mentioning that the output in
each case was a very short list of integers for which we have no divisibility by > (or
22 respectively 3%). Further investigation is needed to find a bound for the number of
binomial coefficients of the form (”%“) (or more general ('), which are not divisible

by either p? or r* (p,r primes).
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