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Abstract The unsteady processes of the Marangoni migration of deformable liquid drops are simu-
lated numerically in a wider range of Marangoni number (up to Ma = 500) in the present work. A
steady terminal state can always be reached, and the scaled terminal velocity is a monotonic function
decreasing with increasing Marangoni number, which is generally in agreement with corresponding
experimental data. The topological structure of flow field in the steady terminal state does not change
as the Marangoni number increases, while bifurcation of the topological structure of temperature field
occurs twice at two corresponding critical Marangoni numbers. A third critical value of Marangoni
number also exists, beyond which the coldest point jumps from the rear stagnation to inside the drop
though the topological structure of the temperature field does not change. It is found that the inner
and outer thermal boundary layers may exist along the interface both inside and outside the drop
if Ma > 70. But the thickness decreases with increasing Marangoni number more slowly than the
prediction of potential flow at large Marangoni and Reynolds numbers. c© 2011 The Chinese Society
of Theoretical and Applied Mechanics. [doi:10.1063/2.1103205]
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A fluid particle (gas bubble or liquid drop) floating
in an immiscible bulk fluid with a temperature gradi-
ent can be moved by the non-uniform surface tension
at the particle interface. This motion is well known
as the thermocapillary or Marangoni migration. It is
a classical problem in fluid mechanics playing an im-
portant role in many natural physical processes as well
as a host of industrial activities, particularly in space
material processing and many other scientific and engi-
neering applications in microgravity. Thus, it attracts
much interests of researchers all over the world along
with the progress of human space activities.1

Marangoni migration was first analyzed by Young et
al.2 in the case of infinitesimal Reynolds and Marangoni
numbers, in which convective transport of momentum
and heat can be neglected compared with molecular
transport of these quantities and the governing equa-
tions can thus be linearized. They derived the named
YGB theory to predict the following steady migration
velocity

VYGB =
2U

(2 + 3α)(2 + β)
, (1)

where U = −σT∇T∞R/μ1 is the named thermocapil-
lary velocity. σT , ∇T∞ and R denote the variation of
interfacial tension with the temperature, the tempera-
ture gradient imposed in the continuous bulk fluid, and
the drop radius, respectively. α = μ2/μ1 and β = k2/k1
are the dynamic viscosity ratio and the thermal con-
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ductivity ratio between the two phases. The subscripts
1 and 2 denote the continuous bulk fluid and the liq-
uid drop, respectively. There are also many other di-
mensionless parameters, such as the Reynolds number
Re = UR/ν1, the Marangoni number Ma = UR/λ1,
the Prandtl number Pr = ν1/λ1, the capillary num-
ber Ca = μ1U/σ, the density ratio ξ = ρ2/ρ1, and
the thermal diffusivity ratio χ = κ2/κ1. Not all of
them are independent, for example, one can easily ob-
tain Ma = PrRe.

The analysis of Young et al.2 was extended by many
others to include the convective factor. For example, us-
ing asymptotic expansion technique, the migration ve-
locity of a nondeformable bubble or drop for small but
non-zero convective heat transfer in the limit of zero
Reynolds number was obtained by Subramanian.3,4 He
found that the migration velocity was reduced by the
inclusion of the effect of convective transport of energy
when Marangoni number was small. Balasubramaniam
and Subramanian5 found a linear increase of the migra-
tion velocity of a liquid drop with increasing Marangoni
number in the case where the convective transport of en-
ergy is predominant both in the drop phase and in the
continuous phase, i.e. when the Marangoni number and
the Reynolds number are large enough. They employed
the method of matched asymptotic expansions to solve
the conjugate heat transfer problem in the two phases.
Thin thermal boundary layers were assumed both out-
side and within the drop, while the velocity fields were
given by a potential flow field in the continuous phase
and a Hill’s vortex inside the drop. However, experi-
mental observations, e.g. Hadland et al.6 and Xie et
al.7 did not support this prediction. A monotonous de-
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crease of the migration velocity of drop with increasing
Marangoni number was observed. Because of the strong
non-linearity of the problem with large Reynolds and
Marangoni numbers, it can be observed experimentally
only in microgravity environment in order to avoid the
buoyant convection. Restricted by the scarce opportu-
nity of space experiment, data are not sufficient, though
experiments reported in the literature have covered a
wide range of Reynolds and Marangoni numbers.

There are also lots of numerical simulations on this
subject. The followings are some examples focusing
upon the case of liquid drops. Ma et al.8 analyzed
numerically the quasi-steady Marangoni migration of a
nondeformable spherical drop, and concluded that the
migration velocity initially decreases as the Marangoni
number increases, but increases after it reaches a certain
value (around 50−200). They stated that the computed
drop velocities at large Marangoni numbers were quali-
tatively in agreement with the prediction of Balasubra-
maniam and Subramanian.5 Unfortunately, as pointed
out later by Balasubramaniam and Subramanian,5 a ty-
pographical error in their earlier version resulted in a
lower velocity by a factor of 4. Using the front-tracking
method, Yin et al.9 investigated numerically the un-
steady Marangoni migration of a nondeformable spher-
ical drop. It has been found that fairly large Marangoni
numbers may lead to fluctuations in the drop velocity at
the beginning of simulations. A monotonous decrease of
the terminal migration velocity, however, was observed
with increasing Marangoni number. Using the level-
set method to catch the interface, Haj-Hariri et al.10

simulated numerically the unsteady Marangoni migra-
tion of a deformable liquid drop at finite Reynolds and
Marangoni numbers (up toMa = 100). They also found
that the heat convection may retard the Marangoni
migration of the drop, and that the terminal migra-
tion velocity decreases monotonously with increasing
Marangoni number.

In the present paper, the unsteady processes of the
Marangoni migration of deformable liquid drops are
studied in a wider range of the Marangoni number (up
to Ma = 500), while the major effort is concentrated
on the steady terminal states, particularly on the topo-
logical structures of the flow and temperature fields in
the drop. The axisymmetric model is adopted in our
simulations, and the level-set method is employed to
catch the interface between the drop and the continu-
ous phase. The detailed numerical method is the same
as that used in Zhao et al.11 and not included here for
brevity. Constant material parameters are assumed,
namely ξ = 1.89, α = 0.14, β = 0.47, χ = 0.69, and
Pr = 83.3, which are based on the fixing of the space
experimental materials in Hadland et al.6 and Xie et
al..7 Furthermore, a slightly larger value for the capil-
lary number, i.e. Ca=0.2, is used here to accelerate the
convergence of the numerical process and to prevent the
virtual flow caused by the strong jump of the normal
stress across the interface. Although the capillary num-
ber in the space experiments is of the order of 10−1 or

Fig. 1. Evolutions of the scaled migration velocity versus
the dimensionless time.

Fig. 2. Comparison of the present predictions of the steady
terminal migration velocity with space experimental data
and other numerical data reported in the literature.

less, the above value is still much less than 1 to guaran-
tee not distinct deformation of the drop, and then not
distinct difference caused by the drop deformation. It is
verified by the computed results that the biggest vari-
ation of the aspect ratio between the longitudinal and
transverse lengths of the drops at the steady terminal
state is no more than 0.8 %.

Figure 1 shows the evolutions of the scaled migra-
tion velocity of the drops versus the dimensionless time
at different Marangoni numbers. It oughts to be pointed
out first that the fall of the scaled velocities in the
marked range is due to the influence of the upper wall on
the flow and temperature fields. Further analysis shows
that this influence will not be evident unless the position
of the drop center does not get across the line z = 8,
or the dimensionless distance between the drop center
and the upper wall is less than 4. Thus, a reasonable
terminating distance oughts to be adopted before the
wall influence becomes obvious. Notwithstanding this
effect, it is still evident that a steady terminal state can
always be reached for the Marangoni migration of the
drops, and the scaled terminal velocity is a monotonic
function decreasing with increasing Marangoni number.
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Fig. 3. Evolution of topological structure of temperature field at different Marangoni numbers.

In Fig. 2, the terminal migration velocities, which
are scaled using the corresponding values predicted by
the YGB theory, are compared with the experimental
data of Hadland et al.6 and Xie et al.7 These data are la-
beled respectively as HBWS-1999 and XHZLH-2005 for
brevity. Generally, good agreements are evident. Nu-
merical results of Ma et al.,8 Yin et al.,9 and Haj-Hariri
et al.10 labeled respectively as Ma-1998, YGHC-2008,
and HHSB-1997, are also shown in Fig. 2. Everyone ex-
cept the prediction of Ma et al.8 shows a monotonic de-
crease of the terminal migration velocity with increasing
Marangoni number. Considering the different values of
physical parameters used in these simulations, the dif-
ferences among the present results and those of Yin et
al.9 and Haj-Hariri et al.10 are reasonable.

A Hill’s vortex is formed inside the drop, which can
be seen from the streamlines in the local reference frame
attached to the center of the drop. The center of the
vortex locates near the interface. Its transverse posi-
tion in the local reference frame is not changed with
the Marangoni number, while the longitudinal position
moves downstream with increasing Marangoni number.
The topological structure of flow field does not change
as the Marangoni number increases.

On the contrary, bifurcation of the topological
structure of temperature field occurs twice at certain
critical values of Marangoni number (Fig. 3). According
to the YGB theory, a uniform and straight layer-type
structure of temperature field exists as Re → 0 and
Ma→ 0, and thus the coldest point in the drop locates
at the rear stagnation. As the Marangoni number in-
creases, the isotherm begins to wrap inside of the drop
due to convective transport, and a distorted layer-type
structure appears (Fig. 3a). The coldest point in the
drop still locates at the rear stagnation. Beyond the first
critical value of Marangoni number, a local cooler zone
appears around the center of the drop, and thus the first
bifurcation of the topological structure of temperature
field occurs (Fig. 3b). The coldest point, however, still
locates at the rear stagnation. Further increase of the
Marangoni number results in reduction of the tempera-
ture inside the local cooler zone, and also in expansion
of this zone, particularly in the transverse direction. Af-
ter the Marangoni number exceeds the second critical
value, a cap-type structure of the local cooler zone can
be observed (Fig. 3c), and the coldest point jumps to
inside the drop, even locates at a position above the

Fig. 4. Movement of the coldest point inside the drops with
increasing Marangoni number.

center of the drop though the topological structure of
temperature field does not change. With further in-
creasing Marangoni number, the cap-type structure of
the local cooler zone moves upwards with a transverse
expanding and a longitudinal shrinking, leading to a
shell-type one. The center part of the shell-type cooler
zone inside the drop will become thinner and thinner. It
will finally rupture from the central point and then form
a torus-type one if the Marangoni number exceeds the
third critical value (Fig. 3d), which corresponds to the
second bifurcation of the topological structure of tem-
perature field. Then the coldest line, not a sole point,
inside the drop will depart from the symmetrical axis
of the drop. Figure 4 shows the coldest locations inside
the drop at different Marangoni numbers.

If the concepts of the inner and outer thermal
boundary layers attached to the interface are introduced
formally, the thickness along the interface can be deter-
mined straightforwardly. Figure 5 shows the variation
of the thickness of the inner and outer thermal bound-
ary layers versus the attack angle of π/3, which decrease
with increasing Marangoni number. There is no doubt
that the inner and outer thermal boundary layers ex-
ist in the common meaning if Ma > 70. It is obvi-
ous that the thickness of the outer thermal boundary
layer δT ∼ O

(
Ma−2/3

)
, and a negative, smaller expo-

nent very close to 0 can be found for the inner one.
δT ∼ O

(
Ma−1

)
, however, was assumed for both inner

and outer thermal boundary layers in Balasubramaniam
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Fig. 5. Thickness of the inner and outer thermal boundary
layers at different Marangoni numbers.

and Subramanian.5 The maximum of Reynolds num-
ber in the present work is about 6, which is not large
enough for the retention of potential flow in the contin-
uous phase. This may be the reason for the fact that
the trend of the migration velocity is inconsistent with
the prediction of Balasubramaniam and Subramanian.5

The above thermal structures have also been ob-
tained in the previous numerical simulations, but no
allegation on detailed process of its evolution has been
made in the literature. It is observed that the evolu-
tion of the topological structure of temperature field re-
ported here is consistent with that in Haj-Hariri et al.10

in the same range of Marangoni number. However, a rel-
atively slower evolution was found in Yin et al.,9 while
a much quicker one in Ma et al..8 In the latter work, the
second bifurcation of the topological structure of tem-
perature field occurred at a much smaller Marangoni
number, and then the thermal structure at Ma = 100
(shown in Fig. 9 of Ma et al.8) was close to that at
Ma ≈ 500 found in the present work. Thus, much
quicker decrease of the thickness of thermal boundary
layers both inside and outside the drop was observed
in Ma et al..8 Although it is not clear for the reason of
the difference, the validity of the present results may
be guaranteed by the agreements with other numerical
simulations as well as with experimental data.

In summary, the unsteady processes of the
Marangoni migration of deformable liquid drops are
simulated numerically in a wider range of Marangoni

number (up to Ma = 500) in the present work. A
steady terminal state can always be reached, and the
scaled terminal velocity is a monotonic function de-
creasing with increasing Marangoni number, which is
generally in agreement with space experimental data
and some previous numerical predictions except those
of Ma et al..8 The topological structures of the flow and
temperature fields in the drop are analyzed in detail.
The topological structure of flow field does not change
as the Marangoni number increases, while bifurcation
of the topological structure of temperature field occurs
twice at two critical Marangoni numbers. A third crit-
ical value of the Marangoni number also exists, beyond
which the coldest point jumps from the rear stagnation
to inside the drop though the topological structure of
the temperature field does not change. The existence
and the thickness of thermal boundary layers along the
interface both inside and outside the drop are also dis-
cussed. It is found that the inner and outer thermal
boundary layers may exist if Ma > 70. But the thick-
ness decreases with increasing Marangoni number more
slowly than the prediction of potential flow at large
Marangoni and Reynolds numbers.
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